Avatar photo

Andrea Simonetto

Professor

I am an Associate Professor (Enseignant Chercheur, HDR, equivalent PU 2eme classe) within the applied mathematics department (UMA) at ENSTA Paris. I work at the intersection of optimization and learning for large-scale and streaming data, with a number of application domains as smart grids, intelligent transportation, personalized health, and quantum computing. Since January 2025, I am also affiliated with the combinatorial optimization team (OC) in the CEDRIC lab at the CNAM. I am a member of the research ethics committee of the Institut Polytechnique de Paris.

2025

Journal Articles

  1. Fabiani, F. and Simonetto, A. Concentration inequalities for semidefinite least squares based on data. In IEEE Signal Processing Letters, 33, 2025. doi  www 
  1. Zylberman, J.; Nzongani, U.; Simonetto, A. and Debbasch, F. Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs. In ACM Transactions on Quantum Computing, 2025. doi  www 

Conference Articles

  1. Mauduit, E.; Berthier, E. and Simonetto, A. Time-Varying Gaussian Process Bandit Optimization with~Experts: No-Regret in~Logarithmically-Many Side Queries. In Lecture Notes in Computer Science, pages 164-182, Springer Nature Switzerland, Porto, Portugal, Lecture Notes in Computer Science 16017, 2025. doi  www 

Unpublished

  1. Laplace Mermoud, D.; Simonetto, A. and Elloumi, S. Variational quantum algorithms for permutation-based combinatorial problems: Optimal ansatz generation with applications to quadratic assignment problems and beyond. , working paper or preprint. doi  www 
  1. Nzongani, U.; Mermoud, D. L.; Di Molfetta, G. and Simonetto, A. Sampled-Based Guided Quantum Walk: Non-variational quantum algorithm for combinatorial optimization. , working paper or preprint. doi  www 
  1. Mauduit, E.; Berthier, E. and Simonetto, A. No-Regret Gaussian Process Optimization of Time-Varying Functions. , working paper or preprint. doi  www 
  1. Simonetto, A. Differentiable Optimisation: Theory and Algorithms -- Part II: Algorithms. , Lecture. www 
  1. Nzongani, U.; Simonetto, A. and Molfetta, G. Di Non-unitary enhanced transfer efficiency in quantum walk search on complex networks. , working paper or preprint. www 

2024

Journal Articles

  1. Simonetto, A. Flexible Optimization for Cyber-Physical and Human Systems. In IEEE Control Systems Letters, 8: 1475-1480, 2024. doi  www 
  1. Simonetto, A. and Massioni, P. Nonlinear Optimization Filters for Stochastic Time-Varying Convex Optimization. In International Journal of Robust and Nonlinear Control, 2024. doi  www 

Unpublished

  1. Mukherjee, S.; Simonetto, A. and Jamali-Rad, H. MAPL: Model Agnostic Peer-to-peer Learning. , Our code is available and can be accessed here: https://github.com/SayakMukherjee/MAPL. www 

2023

Journal Articles

  1. Fabiani, F.; Simonetto, A. and Goulart, P. J. Personalized incentives as feedback design in generalized Nash equilibrium problems. In IEEE Transactions on Automatic Control, 2023. doi  www 
  1. Bastianello, N.; Carli, R. and Simonetto, A. Extrapolation-based Prediction-Correction Methods for Time-varying Convex Optimization. In Signal Processing: 109089, 2023. doi  www 
  1. Perotti, E.; Ospina, A.; Bianchin, G.; Simonetto, A. and Dall'anese, E. Renewable-based charging in green ride-sharing. In Scientific Reports, 13 (1): 15425, 2023. doi  www 
  1. Fabiani, F. and Simonetto, A. Incentives and co-evolution: Steering linear dynamical systems with noncooperative agents. In IEEE Transactions on Control of Network Systems, 2023. doi  www 
  1. Mariella, N. and Simonetto, A. A Quantum Algorithm for the Sub-Graph Isomorphism Problem. In ACM Transactions on Quantum Computing, 4 (2), 2023. doi  www 

Conference Articles

  1. Simonetto, A. and Massioni, P. Optimization Filters for Stochastic Time-Varying Convex Optimization. In European Control Conference, Bucharest, Romania, 2023. doi  www 
  1. Mauduit, E. and Simonetto, A. Constrained Hierarchical Clustering via Graph Coarsening and Optimal Cuts. In Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, United States, 2023. www 
  1. Verchère, Z.; Elloumi, S. and Simonetto, A. Optimizing Variational Circuits for Higher-Order Binary Optimization. In IEEE International Conference on Quantum Computing and Engineering (QCE), Seattle (WA), United States, 2023. www 

2022

Journal Articles

  1. Notarnicola, I.; Simonetto, A.; Farina, F. and Notarstefano, G. Distributed Personalized Gradient Tracking with Convex Parametric Models. In IEEE Transactions on Automatic Control: 1-1, 2022. doi  www 
  1. Madden, L. and Simonetto, A. Best Approximate Quantum Compiling Problems. In ACM Transactions on Quantum Computing, 3 (2): 7, 2022. doi  www 
  1. Ospina, A.; Simonetto, A. and Dall'Anese, E. Time-Varying Optimization of Networked Systems With Human Preferences. In IEEE Transactions on Control of Network Systems: 1-12, 2022. doi  www 

Conference Articles

  1. Bastianello, N.; Simonetto, A. and Dall'Anese, E. OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression. In Learning for Dynamics & Control Conference, Stanford, United States, 2022. www 
  1. Madden, L.; Akhriev, A. and Simonetto, A. Sketching the Best Approximate Quantum Compiling Problem. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, United States, 2022. doi  www 
  1. Fabiani, F.; Simonetto, A. and Goulart, P. J. Learning equilibria with personalized incentives in a class of nonmonotone games. In European Control Conference, London, United Kingdom, 2022. www 
  1. Simonetto, A. and Notarnicola, I. Achievement and Fragility of Long-term Equitability. In Artificial Intelligence, Ethics, and Society (AIES), Oxford, United Kingdom, 2022. doi  www 

PhD Theses

  1. Simonetto, A. Optimizing through change for cyber-physical and social systems. Accreditation to supervise research, Institut Polytechnique de Paris, 2022.

2021

Journal Articles

  1. Simonetto, A.; Dall'Anese, E.; Monteil, J. and Bernstein, A. Personalized optimization with user's feedback. In Automatica, 131: 109767, 2021. doi  www 
Top