Séminaire ROC de Ali Khalesi le 11 décembre 2025

Le 11 décembre prochain, M. Ali Khalesi viendra faire un séminaire dans l’équipe ROC du CEDRIC. Voici quelques informations concernant ce séminaire (en français, puis en anglais) :

Titre : Calcul distribué multi-utilisateurs linéairement décomposable : limites fondamentales et nouvelles architectures codées.

Résumé : Ce séminaire présentera les résultats principaux de ma thèse, soutenue en 2024 à Sorbonne Université, consacrée à l’étude théorique du calcul distribué multi-utilisateurs pour des fonctions linéairement décomposables.
Dans ce cadre, nous proposons un modèle général permettant de factoriser une matrice de demandes computationnelles en deux matrices creuses -une matrice de calcul et une matrice de communication- révélant une connexion profonde avec plusieurs domaines : théorie du codage, codes couvrants, syndrome decoding, compressed sensing, et factorisation matricielle à support fixe (tessellation).
Nous présenterons :
• des bornes fondamentales sur les coûts de calcul et de communication ;
• la caractérisation d’une nouvelle classe de codes dite codes couvrants partiels ;
• des architectures optimales pour le calcul distribué parfait (perfect distributed computing) ;
• une nouvelle méthode appelée Tessellated Distributed Computing, permettant d’obtenir des compromis optimaux calcul/communication, tant en régime exact qu’avec approximation.
Ces résultats ouvrent la voie à des applications en large-échelle dans les systèmes distribués, l’apprentissage machine distribué et les infrastructures de calcul haute performance.

A propos : Ali Khalesi est Maître de conférences (enseignant-chercheur) à l’IPSA, Ivry-sur-Seine, et lauréat du 2e prix de thèse EDITE Paris 2025 ainsi que finaliste des Prix solennels de la Chancellerie des Universités de Paris 2025. Il a obtenu en 2024 son doctorat à Sorbonne Université, au sein d’EURECOM, sous la direction du Prof. Petros Elia. Ses travaux portent sur les limites fondamentales du calcul distribué, la théorie de l’information, la théorie du codage, et l’étude des compromis communication-calcul dans les architectures distribuées modernes.

Title: Multi-User Linearly-Decomposable Distributed Computing: Fundamental Limits and New Coded Architectures

Abstract: This talk presents the main results of my PhD thesis, defended in 2024 at Sorbonne University, devoted to the theoretical study of multi-user distributed computation for linearly-decomposable functions.
In this framework, we construct a general model in which a matrix of computational demands can be factorized into two sparse matrices -a computation matrix and a communication matrix- revealing deep connections with several areas: coding theory, covering codes, syndrome decoding, compressed sensing, and fixed-support matrix factorization (tessellation).
We will discuss:
• fundamental lower and upper bounds on computation and communication costs;
• the characterization of a new class of codes, called partial covering codes;
• optimal architectures for perfect distributed computing;
• a new method called Tessellated Distributed Computing, offering optimal computation-communication trade-offs, both in the exact and approximate regimes.
These results lead to practical applications in large-scale distributed systems, distributed machine learning, and high-performance computing infrastructures.

Brief Profile: Ali Khalesi is an Assistant Professor (Maître de conférences) at IPSA, Ivry-sur-Seine, and recipient of the 2nd Prize for the Best PhD Thesis- EDITE Paris 2025, as well as finalist for the 2025 Chancellerie de Paris Awards. He obtained his PhD in 2024 from Sorbonne University, within EURECOM, under the supervision of Prof. Petros Elia. His research focuses on the fundamental limits of distributed computing, information theory, coding theory, and the analysis of communication-computation trade-offs in modern distributed architectures.

Haut