Vincent Le Guen
Doctorant
Site web : https://www.linkedin.com/in/vincentleguen/
Bureau : 37.0E.36
Thèse "Deep learning pour la prévision spatio-temporelle -application à la prévision photovoltaïque" entre le CNAM (supervision: Nicolas Thome) et EDF R&D
2022
Articles de revue
- Deep Time Series Forecasting with Shape and Temporal Criteria. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (1): 342-355, 2022. doi www
Articles de conférence
- Complementing Brightness Constancy with Deep Networks for Optical Flow Prediction. In Lecture Notes in Computer Science, vol 13681, Springer, Tel Aviv, Israel, Lecture Notes in Computer Science, vol 13681 , 2022. doi www
2021
Articles de revue
- Augmenting physical models with deep networks for complex dynamics forecasting. In Journal of Statistical Mechanics: Theory and Experiment, 2021 (12): 124012, 2021. doi www
Articles de conférence
- Augmenting physical models with deep networks for complex dynamics forecasting. In Ninth International Conference on Learning Representations ICLR 2021, Vienna (virtual), Austria, 2021. www
Thèses et habilitations
- Deep learning for spatio-temporal forecasting - application to solar energy. Ph.D. Thesis, HESAM Université, 2021.
2020
Articles de conférence
- Probabilistic Time Series Forecasting with Structured Shape and Temporal Diversity. In NeurIPS 2020, Vancouver, Canada, 2020. www
- A Deep Physical Model for Solar Irradiance Forecasting with Fisheye Images. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, United States, 2020. doi www
- Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, United States, 2020. doi www
2019
Articles de revue
- A non-homogeneous model for kriging dosimetric data. In Mathematical Geosciences, 52 (7): 847-863, 2019. doi www
Articles de conférence
- Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models. In Advances in Neural Information Processing Systems 32 (NIPS 2019) proceedings, Vancouver, Canada, Advances in Neural Information Processing Systems 32 (NIPS 2019) proceedings 4191--4203, 2019. www
- Prévision de l'irradiance solaire par réseaux de neurones profonds `a l'aide de caméras au sol. In GRETSI 2019, Lille, France, 2019. www
2018
Rapports
- Synthèse des résultats du prototype V01 (1ère génération). Technical Report, GIPSA-LAB ; FEDER progress report, 2018.
2014
Articles de revue
- Cartoon+ texture image decomposition by the TV-L1 model. In Image Processing On Line, 4: 204-219, 2014. doi www