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ABSTRACT

This paper presents an improvement on a biologically inspired net-
work for image classification. Previous models have used a multi-
scale and multi-orientation architecture to gain robustness to trans-
formations and to extract complex visual features. Our contribution
to this type of architecture resides in the building of complex visual
features which are better tuned to images structures. We allow the
network to build complex features with richer information in terms
of the local scales of image structures. Our classification results
show significant improvements over previous architectures using the
same framework.

Index Terms— Image classification, scale, biological network
visual cortex

1. INTRODUCTION

The task of visual classification is a cornerstone of computer vi-
sion. A good classification system shall respond invariably to objects
within the same class and differently between classes. The current
State-of-the-art in this field revolves around Bag-of-features meth-
ods which rely on building vector signatures from a dictionary of
features [1]. The vector signatures in these models are essentially
obtained in one step using a flat architecture.

These flat architectures are in sharp contrast with biological vi-
sual systems which are characterized by deep multilevel process-
ing. Research on biological visual systems has been and impor-
tant field of work since the famous work of T.Hubel & D.Wiesel
[2]. One biologically inspired network which has received a great
deal of attention comes from the HMAX model of Riesenhuber&al
[3]. This networks alternates layers of features extraction with lay-
ers of maximum pooling. The feature extraction layers gives the
network its discriminative power while the pooling layers allow for
partial invariance to scale and to the exact configurations of fea-
tures. Serre &al [4] extended the original HMAX model to add
multi-scale representations as well as more complex visual features.
Shuangping&Lianwen [5] combined these biologically inspired fea-
tures with other descriptors to gain more discrimination.

Mutch&al [6] extended the network of [4] by tuning the complex
visual features to the dominant local orientations. This improvement
yielded visual prototypes which are better tuned to the image struc-
tures and thus less sensitive to noise and clutters. However, the vi-
sual prototypes used in [6] are shallow in scale and therefore not
optimally tuned to local image structure.

In this article, we propose a new architecture (HMAX-S) by al-
lowing the network to represent visual prototypes with multiple local
scales. By using a range of available local scales at each position, our
model tunes itself to the local scale of images thereby increasing its
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Fig. 1. Global architecture of the network used in [6].

discriminative power when compared to the shallow prototypes used
in [6]. Integrating local discriminative features into global features
helps recognition of object in complex situations [7]. Our network
is not only able to represent more precisely the local structures of
images, it also provides a mean to integrate the relative scales of
local visual features into to the global scale of objects. We report
extensive experimentation on the Caltech image data set in order to
validate our model.

2. GENERAL FRAMEWORK

Our image classification model follows the general 4 layer architec-
ture used in [4, 6] and illustrated in figure 1.

S1 layer. The S1 layer extracts simple features by taking the
normalized dot product of Gabor filters G of multiple orientations θ
and scales s with local patchesX at each position in the image plane
such that

Rθ,σ(G,X) =
〈G|X〉
‖X‖ (1)

with
G(x, y) = exp(

x2
o + γy2

o

2s2 ) · cos(
2π

λ
xo) (2)

where xo = x cos θ + y sin θ and yo = −x sin θ + y cos θ. The
parameter γ indicates the aspect ratio of the filter and λ its wave-
length. All parameters have been setup to provide biologically plau-
sible features, as in [4]. Each filter is normalized to zero mean and
unit length.

C1 layer. The C1 layer selects the local maximum value of each
S1 orientation over two adjacent scales. As in [4], the spatial area of
maximum selection is proportional to the scale of the corresponding
Gabor filter. The C1 layer operation corresponds to a spatial down
sampling where only the maximum values are kept.

S2 layer. The S2 layer combines the C1 features into more com-
plex features using a Radial Basis Filter (RBF) defined by

Yi = exp(−β‖X − Pi‖2) (3)



where β is a tuning parameter and i = 1...N

These N filters compute a Gaussian distance between C1
patches X and visual prototypes Pi. In [6] a large number of
prototypes was used (i.e N = 4000). The prototypes Pi are de-
fined during a training phase. This training phase is critical since it
impacts the type of complex features represented by the network.

C2 layer. The C2 layer selects the maximum output of each S2
filter. In [4], the maximum is selected on the whole image. In order
to incorporate spatial information in our model, we choose to select
the maximum value of each S2 filter in a neighborhood surrounding
the position where the prototype Pi was learned during training [6].

Classifier. The C2 output vectors are used to train one-against-
one linear classifiers (SVM) [8].

3. OUR MODEL: HMAX-S

Our HMAX-S model is based on the previous (S1-C1-S2-C2) ar-
chitecture with two major improvements. As opposed to the RBF
(equation 3) used in [4, 6] we instead redefined the S2 filters with a
normalized dot product such that

Yi =
〈Pi|X〉
‖Pi‖‖X‖

(4)

Our S2 filters compute the cosine similarity between C1 patches
X and visual prototypes Pi. We found that a normalized dot prod-
uct, as opposed to RBF, not only speeds up computations but also
improves classification scores. A normalized dot product is invari-
ant to light intensity changes, whereas the RBF used in [6] is not.
Indeed, even if the S1 dot product is normalized, the S2 filters still
cover larger regions than the S1 filters. Using a normalized dot prod-
uct at the S2 level maintains the S1 normalization which is otherwise
lost when using RBF.

Our next improvement is in the important training phase of the
prototypes Pi. Prototypes Pi are patches of n× n units selected on
the C1 layer of training images. According to equations 1 the pro-
totypes selected during training define the visual features extracted
by the S2 filters. In [6], each position (p, q) in the n × n patch
defining a prototype was set to the strongest C1 unit across all orien-
tations. Figure 2a) shows the visualization of a prototype as defined
in [6]. The yellow square indicates the spatial area covered by the
prototype. The red ellipses indicate the corresponding S1 filters with
respect to scale and orientation.

Pi(p,q)

n

n

Fig. 2. a) Prototype as in [6]. b) Our multi-scale prototype.

In HMAX-S the prototypes Pi are also n × n patches selected
from the C1 layers of training images. However, as shown by figure
2b), they are not limited to one scale. This means that a prototype
represents features over multiple orientations and multiple scales.
This is in contrast with [6] where the prototypes have no inner scale

variations. As a result, our S2 filters are more adapted to the lo-
cal structures of training images and thus less sensitive to noise and
clutter.

3.1. HMAX-S S2 prototype definition

A prototype Pi is defined in a local C1 coordinate frame centered
on a central scale sc. At every position (p, q), each value Pi(p, q)
in a prototype is set to the value of the strongest C1 unit across all
orientations θ ∈ Θ and across a local range of scales s ∈ S =
[sc −∆s, sc + ∆s] such that:

Pi(p, q) = C1(p, q, s∗, θ∗) (5)

where

(θ∗, s∗) = argmax
θ ∈ Θ, s ∈ S

C1(p, q, s, θ) ∀(p, q) (6)

This is illustrated in figure 3, with ∆s = 1, sc = 3, and
Θ = {0 , π

3
, 2π

3
, π } . The S2 prototypes Pi(p, q) at position (p, q)

defined by equation 5, and corresponding to the optimal scale and
orientation (θ∗, s∗) defined by equation 6, are represented in red.
These local connexions are established during training. Once train-
ing is done, when computing the S2 layer for new images (eq 4), the
S2 filters Pi are blind to other orientations and scales.
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Fig. 3. HMAX-S multi-scale S2 prototype.

Algorithms 1 summarizes the steps for training one S2 prototype.

3.2. Multi-scale image signature

When an image is presented to the network, each S2 prototypes Pi
is searching for a match in a local neighborhood Ui. As shown by
figure 4, the search region Ui of prototype Pi is a limited region over
scale and space. The search regionUi is centered on the central scale
sc and on the spatial position P ci at which Pi was selected during
training. More specifically the search region Ui of each prototype Pi
is defined by shifting the prototype’s local frame (yellow box) over a
limited spatial region and over the 2 adjacent scales, as illustrated by
the blue box in figure 4. The ith element of the C2 signature, that we
denote C2i, is obtained by taking the best match in Ui of prototype
Pi, determined by the maximum Yi value (eq 4).
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Fig. 4. HMAX-S multi-scale signature.

Algorithm 1: Prototype selection
//Input C1: Θ× S′ × a× b // (a,b):size Θ:orientations S′:scales
//Random initialization:
n← rand(4, 8, 12, 16), P c ← rand(a, b), sc ← rand(S′),
∆s← rand(1, 2, 3), S ← [sc −∆s, sc + ∆s]

//Computing the prototype
for p = P cx to P cx + n− 1

for q = P cy to P cy + n− 1
(θ∗, s∗) = argmax

θ∈Θ,s∈S
C1(p, q, s, θ)

Pi(p, q) = C1(p, q, s∗, θ∗)
end for

end for
Return Pi, (θ∗, s∗)

Searching for each prototype in a limited region over scale and
space, provides partial invariance to scale and position while retain-
ing some spatial and scale information [1, 6].

4. VISUALIZATION AND CLASSIFICATION
EXPERIMENTS

To test the improvements gained by HMAX-S we used the Caltech
101 images data set. The data set consists of 9,197 images split into
102 categories each containing from 45 to 800 images. We used stan-
dard classification protocol [6] with 15 and 30 training examples. We
used 4 different spatial sizes of prototypes with n ∈ {4, 8, 12, 16}
and a total of 8 scales and 12 orientations. We trained 4080 S2 pro-
totypes.

4.1. Classification results with multi-scale visual prototypes

First we give quantitative results showing the improvement gained
from our two main contributions. We tested the improvement of
HMAX-S in terms of the number of scales used by the prototypes Pi.

As shown by table 1 up to 4% increase in classification scores is ob-
tained when using prototypes with deeper scale range. This increase
in classification scores over the the results obtained in [6] comes
from our S2 prototypes which are are better adapted to the structures
of training image which increases the discriminative power of the
network.

Model |S| 15 images 30 images
Mutch&Lowe [6] 1 48 54

HMAX-S (eq.3) 3 50 58
5 51 58

HMAX-S (eq.4) 3 53 58
5 53 59

Table 1. Classification results in Average Precision, done over three
runs with std ' 0.5 for both methods.

Figure 5 shows the average image reconstruction error with re-
spect to the scale depth of S2 prototypes. The reconstruction error
for each prototypes Pi measures how well it matches the local re-
gion of the training image. Not surprisingly the graph gives a quan-
titative validation of our initial intuition stating that S2 prototypes
with deeper scales are on average better tuned to the training images
structures and thus more discriminant.

Our second main contribution was to replace equation 3 with
equation 4. An improvement of 2% was obtained when using nor-
malized dot product as opposed to RBF. As explained in section 3 a
normalized dot product computes the similarity between prototypes
and image patches robustly with respect to light intensity whereas a
RBF is sensitive to lighting conditions. Using equation 4 with multi-
scale prototypes yields a gain in classification of 5%.

4.2. Optimal parametrization

The lower reconstruction error obtained when using more scales
translates into more discriminative power which results in better rep-
resentation of local image structures. As shown by table 2 a large im-
provement in performance was obtained for certain categories when



Fig. 5. Reconstruction error is lower with respect to scale depth of
S2 prototypes.

using prototypes with 7 scales.

Wild cat Dalmatian Llama Wrench Scissors
APD +25 +13 +15 -11 -11

Table 2. Average Precision difference (APD): 5 scales prototypes vs
1 scale prototypes.

Certain categories are better classified when using single scale
prototypes. This can be explained by the fact that when using one
scale to define the prototypes there are more possibilities of finding
a match when shifting the Ui search region which results in more
scale invariance. Conversely, when using multiple scales to define
a prototype there are fewer scales available to shift the Ui search
region at other scales which results in less scale invariance.

Fig. 6. The Wild Cat category is well represented using multi-scale
prototypes while the Scissors category is well represented with sin-
gle scale prototypes.

It thus seems that for good classification, a compromise must be
made between discrimination and invariance. –Too much discrimi-
nation results in less invariance whereas to much invariance results
in less discrimination between categories–. To this regard, different
categories seem to require a different balance between invariance
and discrimination.

One idea to exploit the optimal balance in discrimination and
invariance for each category was to combine all prototype depths
|S| ∈ {1, 3, 5, 7} into the model to get C2 signatures containing fea-
tures of all scale depth. A linear SVM will naturally perform selec-
tion on scale by allocating more weight to the discriminant features.
After training the SVM, the discriminative scales for each category

should be allocated more weights thereby giving more discrimina-
tive power to the network while retaining sufficient invariance for
categorization. The score of 61% clearly indicates the advantage of
using a more refined local representation, not only in terms of ori-
entations as in [6] but also in terms of scale. 7% improvement in
classification scores is obtained when using S2 filter prototypes of
all scale depths. This allows the formation of C2 signatures which
represent the image structure more faithfully, giving more discrim-
inative power to the network and thus alleviating the work of the
classifier.

Model |S| 15 images 30 images
Mutch&Lowe [6] 1 48 54
HMAX-S (eq.4) 1,3,5,7 54 61

Table 3. Classification results in Average Precision, done over three
runs with std ' 0.5.

5. CONCLUSIONS

Deep architectures inspired by the visual cortex certainly offer a
great deal of promises when considering the level of performance
achieved by the human visual system. A balance between complex
and invariant visual information is essential for image classification.
The HMAX-S architecture presented in this paper allows for the ma-
nipulation of these two crucial variables. Our contribution was fo-
cused on increasing the complexity variable of the network by build-
ing S2 filters with richer information. Our future work shall focus
on the learning of visual prototypes in order to optimize the balance
between invariance and complexity of visual representations.
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