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ABSTRACT

Although “Bag-of-Features” image models have shown very good
potential for object matching and image retrieval, such a complex
data representation requires computationally expensive similarity
measure evaluation. In this paper, we propose a framework uni-
fying dictionary-based and kernel-based similarity functions that
highlights the tradeoff between powerful data representation and
eff cient similarity computation. On the basis of this formalism, we
propose a new kernel-based similarity approach for Bag-of-Feature
descriptions. We introduce a method for fast similarity search in
large image databases. The conducted experiments prove that our
approach is very competitive among State-of-the-art methods for
similarity retrieval tasks.

Index Terms— Bag-of-Features, similarity, kernels, Bag-of-
Words, visual dictionary, image retrieval

1. INTRODUCTION

Complex descriptions representing each image by one set of vectors,
called Bag-of-Features (BoF), showed to be powerful for image sim-
ilarity search in image and video databases [1, 2]. Designing power-
ful similarities between images and ranking schemes on unordered
sets of local features is a very challenging task.

As an alternative to standard voting scheme [1], Bag-of-Words
models (BoW) based on visual dictionary computation have been
developed both to overcome the amount of data to be processed [3].
Recently, alternatives very successful in categorization tasks, based
on a generative coding of BoW, have been considered [4, 5].

Another popular alternative to the voting scheme that provides a
similarity function on BoF are kernel on bags. Grauman and Darrell
[6] proposed the pyramid matching kernel to compute the similar-
ity between sets of PoIs. Their scheme provides good results, but
is restricted to kernels which can be explicitly formulated as a dot
product in an induced space. Other approaches attempting to go be-
yond explicit feature mappings belong to the class of kernels on sets
of vectors, derived from kernels on vectors [7, 8]. These kernels have
been successfully adapted for object retrieval [9, 10, 11]. The ma-
jor advantage of such a framework is that it becomes possible to use
unspecif ed kernel functions. However, the similarity computation
rapidly becomes intractable when the size of the database increases.

In this paper, we propose a new approach based on kernel on
bags, combining accuracy of kernel-based similarities and eff ciency
of dictionary-based approaches. We validate the relevance of the
proposed kernel on two image datasets for semantical similarity
search and near duplicate detection. Our formalism encompasses

in a unif ed framework dictionary-based and kernel on set-based
similarity functions. We evaluate the performances of our system
both in terms of retrieval accuracy and computational eff ciency,
and compare our new kernel with State-of-the-art techniques (BoW
approaches, kernel on bags, and super-vector coding [5]).

2. BOF SIMILARITY FOR IMAGE SEARCH

Let any image Ij be represented by a feature bag Bj composed of s

unordered feature vectors bsj ∈ R
p: Bj = {bsj}s. Let B be the

database of images and F the database of feature vectors b. Let Iq

be the query image represented by the bag Bq = {brq}r .
In content-based image retrieval, if scorej = score(Bj , Bq)

denotes the similarity score between the query image Iq and the
image Ij , the search-by-similarity process in B aims at ranking the
database thanks to the scores: Rank

Bj∈B
(scorej). The scores scorej

considered here may be written as:

scorej =
X

brq∈Bq

X

bsj∈Bj

f(brq,bsj)

where f is a similarity function that ref ects the similarity between
two local descriptors brq and bsj .

If the similarity function f is a kernel function (let us then denote
it k), scorej is then also a kernel corresponding to the well-know
class of kernels on bags proposed in [7, 8]:

scorej = K(Bq, Bj) =
X

brj∈Bj

X

bsq∈Bj

k(brj ,bsq) (1)

k is called the minor kernel on local descriptors brj .
This means that it exists an embedding function Φ (possibly im-

plicit) which maps any bag Bj to a vector Φ(Bj) in a Hilbert space
such that scorej is then def ned by a dot product in the induced
space:

scorej(Bq) =< Φ(Bq), Φ(Bj) > (2)
This class of kernels has been later extended [9, 10] by raising

the minor kernel k to the power of q in order to increase the gap
between high and low matches:

K
q
power(Bj , Bq) =

X

bsj∈Bj

X

brq∈Bq

k
q(bsj ,brq) (3)

However, computing this score between the query image Iq and
all the images from the databaseF is clearly computationally expen-
sive if one thinks to the amount of combinations between all local
descriptors of Iq and all local descriptors of all other images.



3. OUR ULTRA FAST KERNEL SCHEME

If some strategies have been developed to build kernels on bags using
explicit mapping Φ [6, 12], we propose here a kernel on bags frame-
work, called UFastK , compliant with implicit mappings while re-
maining computationally tractable.

More precisely, our kernel, generalizing eq.(1), is def ned by:

UFastK(Bj , Bq) =
X

brq∈Bq

X

bsj∈Bj

k(brq,bsj)fQ(brq,bsj)

(4)
where fQ is a function associated to a quantif er Q of the local
descriptor space. By this way, many irrelevant matches in eq.(4)
may be discarded, so that the whole similarity get closer to the ex-
act match kernel between sets of points. This scheme exploits the
fact that a large number of fQ values are zero over the dataset F to
optimize the computation of the similarity UFastK using indexing
structures.

We use here the strategy developed for BoW: the quantif er Q

maps a local descriptor x ∈ R
d to the integer indexm ∈ J1, |W|K of

the closest codewordwm, among the codebookW , to the descriptor
x. fQ is def ned as the indicator function:

fQ(x,y) = 1IQ(x)=Q(y) (5)

The algorithm 1 details the steps of our similarity search overF .

Algorithm 1
1: Database image similarity scorej are initialized to 0.
2: for all query image feature brq do
3: a fast fQ search on all features of the dataset F quantized in

the same cluster as brq

4: for all Ij such that a feature bsj has been found do
5: increase the similarity by

scorej := scorej + k(bsj ,brq)
6: end for
7: end for

As one can see in step 3 of the algorithm, fast strategies may be
implemented to boost the search using indexing structure. Inverted
f les strategies may be used with classical clustering techniques like
K-means if the data are sparse [13]. Among all techniques, we have
focused in our work on the powerful Locality-Sensitive Hashing
scheme (LSH) which achieves this search step with a computational
complexity sublinear with the amount of local descriptors in F . A
cluster (or a bucket) of LSH is hence def ned by the intersection of
L hash tables, each one concatenating H hash functions.

The breakdown in complexity of UFastK compared to exhaus-
tive kernels on bags lies in the restriction of all combinations of mi-
nor kernel computations inside the M clusters (or buckets in LSH)
which can be emphasized by rewriting UFastK :

UFastK(Bj , Bq) =

M
X

m=1

κ(minim(Bj), minim(Bq)) (6)

where minim(Bj) = {bsj ∈ Bj |Q(bsj) = m}.
Another interest of our UFastK is to reduce the amount of

noise by taking into account only neighbors of each query local de-
scriptor while the exhaustive kernel on bags accumulates small sim-
ilarity values corresponding to very dissimilar PoIs between com-
pared BoFs. This is illustrated on Fig.(1). Indeed, for the class cars,

(a)

(b)

(c)

(d)

Fig. 1. VOC2006: 5 300 images, 260 PoI / image, 1.4 Million of
color SIFT (384 dimensions)

almost all objects have the same pose and they cover most of the
image, thus most local descriptors are semantically relevant. In such
a case, similarity search results are equivalent for exhaustive kernel
on bags, Fig.(1(a)), and for our Ultra Fast kernel scheme, Fig.(1(b)).
Our scheme povides thus highly reduced computational complexity
for no accuracy loss. If the class of objects contains more appear-
ance variations, as for bus, our Ultra Fast kernel provides even better
results than exhaustive kernel, comparing results of Fig.(1(d)) with
Fig.(1(c)), because the amount of semantically useless local descrip-
tors is reduced by the clustering def ning minim representation of
BoF.

In our framework, any minor kernels k in eq.(4) may be used.
We focus on corresponding κ functions (eq.(6)) in the next section.



4. CHOICES FOR κ

We introduce in our formalism different choices for κ leading to de-
f ne classical BoF similarity measures. We thus encompass in one
scheme all BoF similarities, including our Ultra Fast scheme, high-
lighting computational complexity and accuracy differences.

4.1. linear kernel

The standard similarity measure between image Ij and query image
Iq , when they are represented by Bow vectors, is the inner product
of these vectors. By def ning the kernel on mini Bags:

κ(minim(Bj), minim(Bq)) = |minim(Bj)|.|minim(Bq)| (7)

in our formalism (eq.(6)), UFastK corresponds to the standard in-
ner product between BoW vectors.

4.2. Shifted-linear kernel

In order to ref ne the similarity between BoWs and not anymore
counting only local descriptors falling into the same cluster, one can
account for the position in the feature space of each local descriptor
with respect to the center of its assigned cluster:
κ(minim(Bq), minim(Bj)) =

X

brq∈Bq

X

bsj∈Bj

< brq−wm,bsj−wm >

(8)
We show in appendix A that this representation corresponds to the
Vector of Locally Aggregated Descriptors (VLAD) proposed by Je-
gou et al. [5].

4.3. χ2-gaussian kernel

We propose in this paper to preserve all the accuracy of considering
a χ2-gaussian kernel as minor kernel k.
κ(minim(Bq), minim(Bj)) =

X

brq∈Bq

X

bsj∈Bj

kq(brq ,bsj)fLSH(brq ,bsj)

(9)
Based on the properties of LSH, we can easily prove that our
UFastK , with the above κ function, is indeed a Mercer kernel
by demonstrating the positive def nite property of its Gram matrix
Kij := (kq(bri,bsj)fLSH(bri,bsj))ij .

The computational complexity of kernel on bags given in eq.(1)
is O(n2) with n the number of local descriptors in each image while
the complexity of our Ultra Fast Scheme is O(( n

M
)2M) = O(n2

M
)

with M the number of clusters. Classically M and n are of the same
magnitude order, leading to a complexity of approximately O(n).

5. EXPERIMENTS

We perform search-by-similarity on the VOC2006 image database
[14] and on a 100K image dataset (INRIA Holidays+Flickr [5]). In
all experiments, the minor kernel between local descriptors is the χ2-
gaussian kernel at power q = 5. Mean Average Precision (MAP) is
used to compare retrieval performances. We consider performances
both in terms of accuracy and eff ciency.

5.1. UFastK vs Bow & Kernel on Bags performances

VOC2006 contains 5304 images organized in 10 classes. Queries
Iq are randomly sampled from the database and each search-by-
similarity method performs a database ranking1. The MAP is com-

1Because of the various size of the categories in this database, ranking
lists over the 100 best images will be considered here.

puted by considering as relevant, any image in the same class as the
current Iq . This experiment allows to focus on semantical similarity
aspects: the similarity between any pair of images from the same
class should be high, and low otherwise, and the VOC2006 classes
are def ned by highly semantic concepts as bottle, bus, cars ... so that
each class always contains very different objects.

Bags of SIFT are extracted for all images. ForUFastK settings,
we use the standard implementation E2LSH from [15] (R = 225,
L = 100, H = 20). We compare UFastK with Kpower (eq.(3))
and the Bag-of-Words method with the standard parameter settings
[16, 17]: database SIFT vector K-means clustering, tf-idf weighting
scheme, and Euclidean distance.

MAP and time results (expressed in terms of ratio for kernel ap-
proaches) are reported on Tab.1 with 4 dictionary sizes: 100, 200,
300 and 1000 for BoW. First, let say that the MAP scores are not
very high because the similarity search is evaluated here without any
learning. Far away from near-duplicate or copy-detection, the evalu-
ation here really focuses on highly semantical similarity purpose. It
highlights the ability of the methods to get high similarity scores for
categories of objects and not only for the same object taken under
various points of view.

BoW1 BoW2 BoW3 BoW1k Kpower UFastK
MAP % 6.5 6.5 6.1 5.3 9.4 9.5

Table 1. Similarity search performance of UFastK , BoW and
Kpower methods on VOC2006 database.

We can observe on Tab.1 that BoWs do not allow to reach same
performances as kernel approaches. Indeed, the kernel MAPs exhibit
relative gain of at least 45% over the BoWs. The best score for BoWs
is obtained with 200 words.

Our UFastK kernel gives the best results in term of MAP and
time computation. TheMAP is slightly better than theKpower MAP,
while drastically reducing the computation time: the kernel Kpower

is 175 times slower than UFastK .

5.2. Performances on 100K dataset (INRIA Holidays+Flickr)

We now compare UFastK with State-of-the-art approaches for im-
age retrieval task on large databases. These databases contains 1491
images for INRIA Holidays, at which are added 100,000 ”distrac-
tors” images from Flickr to reach a 100K dataset [5]. We have used
the experimental setup of [5] and the local features publicly available
from authors’ webpage. The comparison here is more near duplicate
detection oriented. Tab.2 shows State-of-the-art results provided by

Method MAP
1K words 41.4

BoW (from [18]) 20K words 44.6
200K words 54.9

VLAD (from [5]) 16 words, D=2048 49.6
64 words, D=8192 52.6

UFastK 76

Table 2. Comparison of the accuracy of UFastK with State-of-the-
art approaches on INRIA Holidays dataset (1491 images)

authors in [18, 5] on the 1491 image of INRIA Holidays dataset
with the same experimental protocol. These results show that our
method is more accurate than BoW approaches which quantize local
features but consider only hard-assignment and even more accurate
than VLAD which integrates a normalized linear kernel on shifted
vectors.



Tab.3 present the results for experiments on the 100K (INRIA
Holidays+Flick) dataset conducted as def ned by the experimental
protocol in [5]. The results given for VLAD are actually extracted
from the curves in [5] and based on details provided by the authors.
We can thus see that for about the same time of computation we have
a relative gain of 10% in MAP. These results show that the non-linear
mapping used in UFastK is more accurate than the linear one used
in original VLAD for that database for comparable running times.

Method MAP Time (sec)
VLAD (from [5]) 64 words, D=8192 39 9 − 10
UFastK 43 12

Table 3. Performances on 100K dataset of UFastK vs VLAD

6. CONCLUSION

In this paper, we focus on designing a kernel-based similarity ap-
proach to f nd a trade-off between powerful data representation and
eff cient similarity scheme. We propose a new kernel on Bag-of-
Features, the Ultra Fast kernel, based on the kernels on sets of vec-
tors derived from kernels on vectors. Our framework encompasses
dictionary-based and kernel on set-based similarity functions, in-
cluding recent Fisher representation simplif cation. We have eval-
uated our method in a semantic similarity search context and for a
near copy detection task showing the good tradeoff between accu-
racy of exhaustive kernel on Bags and eff ciency of Bow represen-
tation, our kernel provides. The designed kernel fulf lling Mercer’s
conditions, we have hence integrated it in a SVM framework to eval-
uate its performances in an active learning context [19] and we are
currently working on evaluating it for large scale classif cation task.

A. VLAD IS A LINEAR-SHIFTED KERNEL ON BAGS

Starting from eq.(8), we can write:

κ(minim(Bq), minim(Bj)) =
X

brq∈Bq

X

bsj∈Bj

< brq − wm,bsj − wm >

=<
X

brq∈Bq

brq − wm,
X

bsj∈Bj

bsj − wm >

=<
X

brq∈Bq

φm(brq),
X

bsj∈Bj

φm(bsj) > (10)

with φm a mapping function from R
d to R

d×M such that:

φm(x) = x ⊗ Um − wm ⊗ Um (11)

where Um, a vector of M − 1 zeros and a 1 at the mth component,
m = Q(x) as def ned for eq.(5) and wm is the codeword assigned
the vector x.

With the notations of [5], ith component of the VLAD descriptor
associated to mth cluster is def ned by:

vm,i =
X

x∈B|Q(x)=m

xi − wm,i =
X

x∈B|Q(x)=m

φm(x) (12)

where xi and wm,i respectively denote the ith component of the
local descriptor x and its assigned visual word wm. We can f nally
rewrite our κ as:

κ(minim(Bq), minim(Bj)) =< vm,q,vm,i > (13)

In [5], the VLAD vector vi is further L2-normalized which leads,
instead of considering UFastKV LAD

with the above κ, to consider
the normalized kernel:

UFastKV LAD
(Bq , Bj) =

UFastKV LAD
(Bq , Bj)

p

UFastKV LAD
(Bq , Bq)UFastKV LAD

(Bj , Bj)
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