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a b s t r a c t

We describe SNOOPERTEXT, an original detector for textual information embedded in photos of building
façades (such as names of stores, products and services) that we developed for the iTowns urban
geographic information project. SNOOPERTEXT locates candidate characters by using toggle-mapping image
segmentation and character/non-character classification based on shape descriptors. The candidate
characters are then grouped to form either candidate words or candidate text lines. These candidate
regions are then validated by a text/non-text classifier using a HOG-based descriptor specifically tuned
to single-line text regions. These operations are applied at multiple image scales in order to suppress
irrelevant detail in character shapes and to avoid the use of overly large kernels in the segmentation.
We show that SNOOPERTEXT outperforms other published state-of-the-art text detection algorithms on
standard image benchmarks. We also describe two metrics to evaluate the end-to-end performance of
text extraction systems, and show that the use of SNOOPERTEXT as a pre-filter significantly improves the
performance of a general-purpose OCR algorithm when applied to photos of urban scenes.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Here we describe SNOOPERTEXT, an algorithm for the detection of
text embedded in images or videos of urban scenes. This is a
challenging problem in computer vision [1] with many potential
applications, such as traffic monitoring, geographic information
systems, road navigation, and scene understanding.

SNOOPERTEXT was developed specifically for use in iTowns [2], a
pilot project for resource location and immersive navigation in ur-
ban environments, similar to Google’s Street View [3]. The main
raw data for the iTowns project is a collection of GPS-tagged
high-resolution digital photos of the city, including building
façades, taken with a set of car-mounted cameras. The mean
viewpoint spacing between photo sets is about 1 m. See Fig. 1.

The frontal images of the building façades are processed offline
to extract any legible textual information, such as street and traffic
signs, store names, and building numbers. The extracted strings are
then stored in a geo-referenced database, which is used to answer
textual queries by users—for example, to locate the addresses of
stores with a specified name or selling a specified product. The user
is then offered a navigable 3D view of the location, created by suit-
able projection of pre-stitched image mosaics. See Fig. 2.

A project like iTowns could easily generate hundreds of thou-
sands of such mosaics in a single city. The manual annotation of
all these images with the visible textual information would be very
time consuming and probably impractical. Clearly, automated
algorithms for this task are highly desirable.

The difficulties in this task mainly come from the diversity of
the texts (including extreme text size and font variations, and
tilted or curved baselines), the complexity of the backgrounds
(including many vaguely text-like objects such as fences, windows,
and cobblestones) and difficult illumination conditions. OCR algo-
rithms designed for scanned documents perform very poorly on
such photos. See Fig. 3(a). Much better results are obtained by
applying an OCR algorithm to the output of a text detector de-
signed specifically for such images, as illustrated in Fig. 3(b).

The SNOOPERTEXT detector initially locates candidate characters
on the images by using image segmentation and shape-based char-
acter/non-character binary classification. The candidate characters
found in this step, represented by their bounding boxes, are
grouped by simple geometric criteria to form either candidate
words or candidate text lines. These candidate text regions are
then validated by a binary text/non-text region classifier that re-
jects any candidate region that does not appear to contain a single
line of text. This classifier uses the T-HOG descriptor [4], which is
based on the multi-cell histogram of oriented gradients (HOG) of
ge Un-
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Fig. 1. The iTowns imaging vehicle and a captured image.

2 R. Minetto et al. / Computer Vision and Image Understanding xxx (2013) xxx–xxx
Dalal and Triggs [5]. These steps are performed in a multi-scale
fashion, in order to efficiently handle widely different character
sizes and to suppress irrelevant texture details inside the charac-
ters. Finally, the regions found by SNOOPERTEXT are fed to TESSERACT’s
back-end for OCR processing [6]. See Fig. 4.

Tests show that the accuracy of SNOOPERTEXT on street images is
comparable to that of the best text detectors described in the liter-
ature [1,7–11], and better than TESSERACT’s own text detector.

The SNOOPERTEXT detector described and tested here is an im-
proved version of the detector presented at ICIP 2010 [12]. The
improvements include the use of the T-HOG descriptor for text-re-
gion validation, and the tuning of various internal parameters of
the algorithm, such as the number and spacing of levels of the mul-
ti-scale pyramid and the range of character sizes considered at
each level. SNOOPERTEXT is implemented in Java and its source is
available at the project’s site [13].

This paper is organized as follows. In Section 2 we review the
literature on text detectors and text/non-text region classification,
with emphasis on urban photos. The SNOOPERTEXT detector is de-
scribed in Section 3, and its experimental evaluation is reported
in Sections 4 and 5. The limitations of SNOOPERTEXT are described
in Section 6.

2. Previous work

2.1. Text detection

There is an extensive literature on text detection. The surveys
of Jung et al. [14] and Liang et al. [15] cover some systems up to
2005. Many published text detectors are devoted to specific
contexts, such as postal addresses on envelopes [16], cursive
handwriting [17], and license plates [18]. Only a few systems
have been designed specifically for photos of outdoor scenes
[1,7,8,19–21].
Fig. 2. Result of a search for the query string ‘‘sushi’’ through the iTowns user interf

Please cite this article in press as: R. Minetto et al., SnooperText: A text detecti
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2013.10.004
Text detection algorithms can be classified into two categories.
A bottom-up algorithm first attempts to identify probable charac-
ters, which are then grouped into words or texts. A top-down
algorithm first attempts to find regions of the image that appear
to contain text, and then tries to split those regions into
characters.

The system of Hinnerk Becker [22] (winner of the 2005 ICDAR
challenge) is an example of bottom-up solution. It uses an adaptive
binarization scheme to extract character regions which are then
combined into text lines according to certain geometrical con-
straints. The detector of Alex Chen et al. [22] (second place in the
2005 ICDAR challenge) follows the top-down approach: it identi-
fies probable text regions of the image by their statistical proper-
ties, which are then segmented into presumed characters.

In 2007, Mancas-Thillou and Gosselin [19] proposed another
top-down approach. They focused on the segmentation and extrac-
tion of characters, assuming that the text-containing regions were
previously identified. They used pixel clustering by color similarity
and log-Gabor filters to segment characters. This approach is prone
to fail in those texts with similar colors for foreground and
background.

In 2010, Epshtein et al. [7] proposed a bottom-up approach, that
they called Stroke Width Transform (SWT), to detect characters in
images. They used the pixel gradients orientation over image edges
to determine a ‘‘local stroke width’’, and gathered pixels with sim-
ilar stroke widths into candidate characters. (They also provided
one of the image datasets [23] that we used in our tests.)

In 2011 and 2012, Chen et al. [8] and Neumann et al. [10], pro-
posed bottom-up methods based on Extremal Regions (ER). Chen
et al. used Maximally Stable Extremal Regions (MSER), which are
a subset of ER, for edge-enhancement in order to candidate charac-
ter detection. The letter candidates were then filtered out using
stroke width information computed by the SWT. However, as ob-
served by Neumann et al., MSER detectors have problems with
ace. The textual information was automatically extracted from the photographs.

on system for automatic indexing of urban scenes, Comput. Vis. Image Un-

http://dx.doi.org/10.1016/j.cviu.2013.10.004


Fig. 3. Top left: a store-front photo from the iTowns image base. Bottom left: output of the TESSERACT OCR software applied to that whole image. Top right: text regions
identified by SNOOPERTEXT on that image. Bottom right: output of TESSERACT’s back-end OCR module (TESSBACK) applied to those regions.

(a) (b) (c)

(f) (e) (d)
Fig. 4. Overall diagram of the SNOOPERTEXT detector (a)–(e) and the OCR step (e) and (f). These steps are repeated at several scales of image resolution.
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blurry images and characters with low contrast. Therefore,
Neumann et al. used all ERs and classified them as being characters
or not by developing original features.
Please cite this article in press as: R. Minetto et al., SnooperText: A text detectio
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2013.10.004
Also in 2011, Pan et al. [9] proposed an hybrid multi-scale ap-
proach for text detection. They used a sliding window detector,
in each scale of the pyramid, composed by a cascade of classifiers
n system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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trained over HOG features, to initially estimate the text positions.
The estimates were then used to enhance the original image in or-
der to help the character segmentation. Then, the authors per-
formed character classification and grouping.

In 2012, Yi et al. [11] and Yao et al. [1] proposed bottom-up
methods that use the stroke width information to character iden-
tification. As observed by Yi et al., the letter boundary, used by
the SWT, may be broken or connected to a non-text object due to
background interference. To avoid this problem, the authors pro-
posed to combine edge pixel clustering and the structural analysis
of the stroke boundary with a color assignment procedure. Charac-
ters were grouped by geometric criteria. Yao et al. used the SWT for
character extraction and two layers of filters based on geometric
and statistical properties, as well as a classifier trained with scale
and rotation invariant features to reject non-text characters found
by the SWT. The character grouping was done by considering the
stroke properties, geometric and color features of nearby charac-
ters. A greedy hierarchical agglomerative clustering method was
also applied to aggregate character pairs into candidate chains.

2.2. Text/non-text region classification

Comparatively little has been published about text/non-text re-
gion classification algorithms, although they are often present as
post-filters in many text detectors.

Text/non-text region classification is often cast as a texture clas-
sification problem, and several texture descriptors have been con-
sidered in the literature. For instance, in 2004, Kim et al. [24]
described a text recognizer that decomposes the candidate sub-im-
age into a multi-scale 16 � 16 cell grid and computes wavelet mo-
ments for each block. Then each block is classified as text or not
using an SVM. The ratio of text to non-text outcomes is used to de-
cide if the entire sub-region is text or non-text. In 2005, Ye et al.
[25] described a similar text recognizer based on multi-scale wave-
let decomposition; however, they used more elaborate features,
including moments, energy, and entropy. In 2004, Chen and Yuille
[26] proposed a descriptor that combines several features, includ-
ing 2D histograms of image intensity and gradient, computed sep-
arately for the top, middle and bottom of the text region, as well as
for more complex slices subdivisions of the image—89 features in
total.

Other text detectors, such as the one described by Anthimopo-
ulos et al. [27] in 2010, have used descriptors based on multi-scale
local binary patterns (LBP) introduced by Ojala et al. [28]. Their
descriptor has 256 features.

In 2012, Yi et al. [11] proposed a text line descriptor that com-
bines the Gabor filter with gradient and stroke information. They
used the block patterns proposed by Chen and Yuille. Their
descriptor has 98 features.

The use of gradient orientation histograms (HOGs) as texture
descriptors was introduced by Dalal and Triggs in 2005 [5], for hu-
man recognition. HOG-based descriptors have since been used for
other object recognition and tracking problems [29]. They have
been used in some recent text recognizers. The classifier described
in 2008 by Pan et al. [30] partitions the candidate sub-image into
14 cells, as proposed by Chen and Yuille, but computes for each cell
a 4-bin HOG complemented by a 2 � 3 array of LBP features. Their
resulting descriptor has 140 features.

Other HOG-based text recognizers have been proposed in 2009
by Hanif and Prevost [31] for single-line text, and Wang et al. [32]
for isolated Chinese and Roman characters as well as single-line
text. Hanif and Prevost’s descriptor has 151 features (16 cells, each
with an 8-bin HOG and a standard deviation, plus 7 cell mean dif-
ferences). The descriptor of Wang et al. has 80 features (8 cells,
each with a 8-bin HOG, 1 mean difference and 1 standard
deviation).
Please cite this article in press as: R. Minetto et al., SnooperText: A text detecti
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2.3. Optical character reading

The last stage of a text extraction system is to parse the candi-
date text-containing regions of the images to yield the text strings.

Robust OCR algorithms especially designed for images of urban
scenes is an active area of research, and some recently advances
were described by Wang et al. [33], Mishra et al. [34] and Neumann
and Matas [10]. However, an evaluation of OCR algorithms is be-
yond the scope of this paper, since our contribution is limited to
the text detection part.
3. Description of the text detector

As shown in Fig. 4, the SNOOPERTEXT detector consists of four main
modules: image segmentation, character filtering, character grouping,
and text region filtering. These modules are applied at various scales
of resolution, as described in Section 3.5.
3.1. Image segmentation module

The segmentation algorithm used in SNOOPERTEXT was developed
by Fabrizio et al. [35]. It is a modified version of Serra’s toggle map-
ping [36], a morphological operator for local contrast enhancement
and thresholding, using morphological erosions and dilations [37]
to define the local foreground and background levels.

Specifically, in order to segment an input image I, we first com-
pute a local background image B by gray-scale erosion (neighbor-
hood minimum) and a local foreground image F by gray-scale
dilation (neighborhood maximum), using an 11 � 11 square struc-
turing element. Note that BðpÞ 6 IðpÞ 6 FðpÞ for every pixel p. Then
each sample IðpÞ is mapped to a ternary class value DðpÞ 2 f0;1;2g
as follows. If jFðpÞ � BðpÞj is less than a fixed threshold cmin, then
DðpÞ is set to 1 (indeterminate). Otherwise, DðpÞ is set to 0 (pre-
sumed background) or 2 (presumed foreground) depending on
whether the relative brightness jIðpÞ � BðpÞj=jFðpÞ � BðpÞj is less
than or greater than another threshold cmed.

Since the thresholding is not symmetrical between dark and
light regions, and target scenes often have light text on dark back-
ground, the segmentation is repeated on the negative (pixel-wise
complemented) image. See Fig. 5.
3.2. Character filtering module

The segmented foreground regions of the positive and negative
images are then screened to identify plausible characters. First, the
module checks simple size and aspect ratio constraints

hmin 6 h 6 hmax

rmin 6 h=w 6 rmax

where w and h are the width and height of the segment’s axes-
aligned bounding box, and hmin, hmax, rmin and rmax are parameters
of the module. See Fig. 6(a). Each segment that satisfies these con-
straints is then tested with a more elaborate character/non-charac-
ter classifier based on the shape of the segmented region; see
Fig. 6(b).

The shape classifier is based on three scale- and rotation-invari-
ant shape descriptors extracted from the segmented region: Fou-
rier moments, pseudo-Zernike moments, and an original polar
encoding [35]. These descriptors are fed to three separate SVM
classifiers, whose numeric outputs are packed as a three-dimen-
sional vector and fed to a final SVM classifier [38]. The output of
the final SVM is then thresholded to yield a binary character/
non-character decision. See Fig. 7.
on system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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Fig. 5. (a) Toggle segmentation of the original image of Fig. 4 into background (dark gray), foreground (white) and indeterminate (light gray) pixels. (b) Toggle segmentation
of the negative image.

Fig. 6. (a) The foreground segments of Fig. 5(a) that satisfy the height and aspect ratio constraints with hmin = 13 px, hmax = 78 px, rmin = 0.5, and rmax = 8.0. (b) The subset of
the segments in (a) that pass the character/non-character shape classifier.

SVM

SVM

SVM

SVM

Fourier
descriptor

Pseudo-Zernike
moments

Polar
descriptor

Yes/No

Fig. 7. The SVM-based character/non-character shape classifier.

Fig. 8. Geometric parameters used for character grouping.
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3.3. Character grouping module

SNOOPERTEXT’s character grouping module joins the candidate
characters found by the character detector into text regions –
which may be either words or text lines – according to geometric
criteria defined by Retornaz and Marcotegui [39]. These criteria
take into account the heights h1, h2 and widths w1, w2 of the two
bounding boxes, as well as the coordinates (x1,y1) and (x2,y2) of
their centers. See Fig. 8.
Please cite this article in press as: R. Minetto et al., SnooperText: A text detectio
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2013.10.004
Specifically, let h ¼minðh1;h2Þ; dx ¼ jx1 � x2j � ðw1 þw2Þ=2 and
dy ¼ jy1 � y2j: Note that dx is negative if and only if the two boxes
overlap in the x direction. Then the two boxes are said to be com-
patible—that is, assumed to belong to the same text word or line—if
and only if

jh1 � h2j < t1h

dx < t2h

dy < t3h

where t1, t2 and t3 are parameters of the module. The parameter t2,
in particular, determines whether the groups will be words or text
lines.

These criteria are applied to all pairs of detected characters. The
groups are the equivalence classes of the transitive closure of this
compatibility relation.

In the iTowns application we found that grouping characters
into words often failed for store names because of extra-wide
spaces used between characters. Increasing t2 to cover those cases
was not feasible because it would cause words to be joined in texts
with normal inter-character and inter-word spaces. To get around
that problem we run the character grouping module twice, with
n system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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increasing values t02 and t002 for the relative separation limit, but con-
sidering in the second pass only those character candidates that
were not joined to any group by the first pass. Characters candi-
dates that remain ungrouped after both passes are discarded; this
requirement normally eliminates a large fraction of the false posi-
tives (non-character regions classified as characters by the previ-
ous steps).

Each group is then summarized by a single axis-aligned rectan-
gle, which is the bounding box of its component characters. See
Fig. 9.

The grouping module is applied separately to the candidate
characters found in the segmentation of each version of the image,
positive and negative. Each version produces a list of rectangles,
each rectangle being a candidate text line region. These two lists
are then merged, and any two regions that have significant overlap
(70% of the area of the smaller box) are fused into a single candi-
date text line region.
3.4. Text filtering module

The task of SNOOPERTEXT’s text filtering module is to examine the
image contents of each candidate region that is output by the char-
acter grouping module, and discard those that do not seem to con-
tain a text line. Specifically, this stage is intended to eliminate
those spurious text line candidates that result from two or more
non-character image segments that passed the character filtering
module and were accidentally grouped together. See Fig. 10.

The text filtering module is basically a texture classifier based
on the T-HOG descriptor [4]. The latter is a variant of Dalal and
Triggs’s R-HOG descriptor [5], specialized to capture the gradient
distribution characteristic of character strokes in occidental-like
scripts. The T-HOG descriptor is fed to an SVM classifier, whose
output is thresholded to give a binary text/non-text region
classification.

The T-HOG descriptor is based on the observation by Chen and
Yuille (2004) that different areas of a text have distinctive distribu-
tions of gradient orientations [26]. The reason is that the strongest
gradients are generally perpendicular to the strokes that form the
characters.

The HOG-based text/non-text discriminators described in the
literature, generally divide the image into a two-dimensional array
of nx � ny cells and compute a separate histogram of gradient ori-
entations with a fixed number nb of bins within each cell, as Dalal
and Triggs did for human body recognition [5]. The resulting multi-
hog descriptors, that are often complemented with other statistics,
typically have more than 100 features.

However, while a two-dimensional cell array may be justifiable
for isolated characters, it does not seem to be useful for multi-char-
acter texts of variable width. In such texts, the gradient distribu-
tion is largely independent of horizontal position; therefore, a
cell layout with vertical cuts increases the size of the descriptor
without providing any additional relevant information. Indeed,
through extensive experiments [4] we confirmed that, for any
descriptor length, partitioning the image into a small number of
horizontal stripes (between 3 and 7) was generally more effective
than a two-dimensional cell arrangement. Moreover, near-optimal
results could be obtained with relatively small descriptors.
Fig. 9. Grouping characters into text words.

Please cite this article in press as: R. Minetto et al., SnooperText: A text detecti
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We also found that pre-scaling the given text region to a small
fixed height H (between 20 and 30 pixels), preserving its aspect ra-
tio, was more effective than computing the HOGs at the original
image resolution. This resizing step seems to provide a good bal-
ance between preservation of useful detail and removal of noise
and spurious texture.

The detailed description of the T-HOG descriptor and its exper-
imental analysis have been published separately [4]. In brief, the
sub-image delimited by the candidate rectangle is extracted from
the input image I, converted to gray-scale, scaled to the fixed
height H, and normalized with a Gaussian weight window to com-
pensate for local variations of brightness and contrast. This nor-
malized image is then divided into ny horizontal stripes, the
image gradient is computed at each pixel within the stripe, its
direction is quantized into a small number nb of equal angular
ranges, and the corresponding bins of the histogram are incre-
mented. Opposite directions are identified, so each bin is p/nb radi-
ans wide. The T-HOG descriptor is the concatenation of those ny

histograms.
The contribution of each pixel to the histogram is weighted by

the gradient’s norm, so that the small gradients that result from
camera and quantization noise are largely ignored. Both the stripes
and the histogram bins have gradual boundaries in order to mini-
mize the impact of small vertical shifts and rotations of the text in-
side the bounding box.

3.5. Multi-scale processing

The basic SNOOPERTEXT algorithm as described above performs
rather poorly on images that contain characters of widely different
font sizes and styles, as usually happens in photos of urban scenes.
In particular, characters that are much larger than the structuring
element used in the morphological thresholding are often over-
segmented. To overcome this problem, the basic SNOOPERTEXT detec-
tor is applied in a multi-scale fashion [40].

More precisely, for each image I, SNOOPERTEXT first builds a multi-
scale image pyramid Ið0Þ; Ið1Þ; . . . ; IðmÞ. The base Ið0Þ of the pyramid is
the original image I, and each subsequent image (level) IðkÞ is a copy
of the preceding one Iðk�1Þ, reduced in width and height by a factor
1/l, for some real parameter l greater than 1. Therefore level IðkÞ

has 1/l2k as many pixels as level Ið0Þ. The maximum level m de-
pends on the size of the original image and the minimum size of
the characters to be detected.

The character detection and character grouping modules are ap-
plied separately to each level of the pyramid. As described in Sec-
tion 3.2, at each level k the algorithm only looks for characters
whose heights lie in a bounded range [hmin . . . hmax] which corre-
sponds to the range [lkhmin . . . lkhmax] in the original image. The
parameters hmin and hmax should be chosen so that there is some
overlap between two consecutive scales k and k + 1, namely
hmax > lhmin. Segmented regions whose height fall outside the
interval [hmin . . . hmax] are ignored, since they are expected to be
found at other scales. See Fig. 11. One advantage of the multi-scale
approach is that we can use a structuring element of fixed (and
modest) size in each morphological operation, with significant
speed gains. Note that the cost of processing the whole image pyr-
amid, for characters of any size, is only

Pm
i¼01=l2i � l2=ðl2 � 1Þ

times the cost of processing the original image for characters with
the height range [hmin . . . hmax].

Another advantage of the multi-scale approach is that it makes
the segmentation algorithm insensitive to character texture – high
frequency details that are much smaller than the characters
themselves. Those details may cause each character to be split into
several separate segments, and will tend to confuse the character/
non-character classifier. With the multi-scale approach, these
problems are largely avoided when the segmentation procedure
on system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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Fig. 10. Examples of false text candidates produced by the grouping module.

Level 0 Level 0

Level 2 Level 2

Level 5 Level 5

Fig. 11. Example of multi-scale segmentation and character detection, showing accepted candidate characters (left) and accepted text lines (right) at each level.
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is applied at the scale where the characters are still legible but
those finer details have been blurred away. See Fig. 12.

3.6. Asymptotic worst-case analysis

The asymptotic running time of the image segmentation step is
O(N) where N is the number of pixels in the input image. Since the
size of each segment that passes the size/aspect criteria is
bounded, the cost of computing the shape invariants for each seg-
ment is also bounded, and therefore the running time of the char-
acter filter is proportional to the number M1 of segments that pass
those criteria. The cost of the T-HOG text region validation module
is at worst linear on the total area of the text regions, which is
bounded by a multiple of the number M2 of characters that enter
the grouping step. Since M2 6M1 6 N, these parts of SNOOPERTEXT

run in O(N) time.
The naive implementation of the character grouping module

enumerates all pairs of candidate characters that pass through
Please cite this article in press as: R. Minetto et al., SnooperText: A text detectio
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2013.10.004
the character filter module, and therefore has cost HðM2
2Þ. In

practice this is usually not a problem, since very little compu-
tation is spent on each pair, and M2 is almost always much
smaller than N (typically, hundreds of character candidates
against millions of pixels). However, some peculiar images—
such as a wall covered with many round dots—may generate
tens of thousands of character candidates, in which case the
naive grouping algorithm may become the bottleneck. Fortunately,
since the characters have bounded size, it is possible to imple-
ment the grouping step to run in O(M2) time with a proper
data structure.

4. Performance of the text detector

In this section we compare the performance of SNOOPERTEXT

with that of other text detectors published in the literature
in their ability to locate text lines on images of building
façades.
n system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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Level 0 Level 0

Level 2 Level 2

Level 5 Level 5

Fig. 12. Example of multi-scale segmentation and character filtering with reduction factor l ¼
ffiffiffi
2
p

, illustrating suppression of spurious texture at the proper scale. Note that
the characters of ‘SIGNO’ are over-segmented in levels 0 and 2 but correctly segmented and recognized (black boxes) in level 5.
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4.1. Image collections

For our tests, we used four image collections, described below.
For each of these datasets we have a reference file containing the
bounding boxes of the text regions visible in each image, and the
corresponding text contents, in a simple XML format. This data
was obtained by human inspection of the images, as opposed to
examination the actual scene.

1. ITW: a subset of the iTowns Project’s image collection [2], con-
sisting of 100 frontal high-resolution color photos of Parisian
façades, with 1080 � 1920 pixels, as taken by the iTowns vehi-
cle. The reference file, containing 848 readable text words, is
available on-line [13].

2. SVT: a public benchmark of 249 urban photos selected from the
Google Street View images by Wang et al., ranging from
1024 � 768 to 1918 � 898 pixels. The reference file contains
647 readable words [41].

3. EPS: the benchmark used by Epshtein et al. [7], with 307 color
images of urban scenes, ranging from 1024 � 768 to
1024 � 1360 pixels, taken with hand-held cameras. The refer-
ence file, containing 1981 readable text lines, was provided by
the authors [23] and converted to XML by us [13].

4. ICD: the ‘‘testing’’ half of the 2005 ICDAR Challenge collection
[42], consisting of 249 color images, ranging from 307 � 93 to
1280 � 960 pixels, captured with various digital cameras, of
book covers, road signs, posters, etc. [42]. The reference file
has 1107 readable text words.

The ICD collection is not very appropriate for our purposes,
since it includes images that differ substantially from photos of
Please cite this article in press as: R. Minetto et al., SnooperText: A text detecti
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2013.10.004
storefront signage in many ways (such as sharpness, brightness,
contrast, angle of view, font variety, and the frequency of occlu-
sions). We included it because it is a popular benchmark for text
detection, and it is the only one for which we have reliable data
on the performance of several other detectors.

4.2. Parameter settings

In all these tests, the SNOOPERTEXT parameters were set as
follows. In the image segmentation module: minimum contrast
cmin = 30/255, relative segmentation threshold cmed = 0.79. In the
character filtering module: character height limits hmin = 13 px
and hmax = 78 px, aspect ratio limits rmin = 0.5 and rmax = 8. In the
character grouping module: max relative height difference
t1 = 0.70, max relative y offset t3 = 0.40. In the text filtering
module: extracted image height H = 24 px, number of T-HOG cells
(horizontal strips) ny = 7, bins per histogram nb = 9. The detector
was applied on an image pyramid with reduction factor l ¼

ffiffiffi
2
p

and maximum level m = 9 (10 levels).
The t2 parameter (maximum relative letter spacing) of the char-

acter grouping module was set differently for each database, so
that characters would be grouped in the same way (words or lines)
as in the corresponding reference file. Thus, for the EPS dataset we
used a single grouping pass with t2 = 1.4 to get the characters
grouped into lines. For the ITW, ICD and SVT we performed two
grouping passes, with relative spacing limits t02 = 0.38 (to get iso-
lated words of normal text) and t002 = 1.1 (to get isolated words of
store names and other texts with extra-wide inter-character
spacing).

In the text filtering module, T-HOG descriptors with ny = 7
stripes and nb = 9 bins provided the best scores overall. However,
on system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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in separate tests we found that the settings ny = 4 and nb = 5, that
reduce the descriptor size from 63 to 20, would have lowered
the scores by only 1–2% on average. The text filtering SVM was
configured to use a Gaussian v2 kernel, whose standard deviation
was found by cross-validation.
4.3. SVM training

The four SVM classifiers in the character filtering module (Sec-
tion 3.2) were trained on a dataset of bi-level images prepared by
Fabrizio et al. [35,43]. The set contains 16,200 instances of upper-
case and lowercase letters (positive samples) and 16,200 non-letter
shapes (negative samples). See Fig. 13.

To train the SVM of the text filtering module we used true and
false examples produced by SNOOPERTEXT’s character detection and
grouping modules. Since these databases are fairly small, instead
of splitting each database into training and evaluation halves, we
used the whole database for evaluation and a combination of the
other databases for training. Specifically, for the tests with the
ICD and SVT datasets we trained the SVM with the ‘‘training’’ sub-
set of the ICDAR Challenge dataset (with 258 images and 1157
hand-annotated words), together with all of the ITW and EPS data-
sets. For the tests with the EPS collection we trained with the
ICDAR ‘‘training’’ subset together with the whole ITW dataset.
Finally, for the tests with the ITW collection we trained with the
ICD ‘‘training’’ subset and the whole EPS dataset.

In each case, we ran SNOOPERTEXT’s character detection and
grouping modules on the chosen collection of training images.
The resulting set X of rectangles was compared with the set Y of
rectangles in the corresponding reference files, and separated into
true positives (X+) and false positives (X�). Note that the rectangles
in X+ were similar, but not identical, to the corresponding reference
rectangles. We also identified the set Y� of the false negatives, that
is, rectangles in the reference files that did not match any rectangle
in X. The text filter was then trained with the T-HOG descriptors of
X+ [ Y� as the positive samples, and of X� as the negative samples.
4.4. Competing detectors

We compared SNOOPERTEXT against several state-of-the-art text
detectors described in the literature. Specifically, we compared it
with the contestants of the ICDAR Challenge [22], and also with
the detectors of Epshtein et al. [7], H. Chen et al. [8], Pan et al.
[9], Neumann et al. [10], Yi et al. [11], and Yao et al. [1]. (The sys-
tem of Mancas-Thillou and Gosselin [19] uses the text detector of
Alex Chen, which is included in our set.)

We added to the list of competing text detectors the front-end
module of the popular open-source TESSERACT OCR software, de-
noted here TESSFRONT. The front-end’s task is to locate the candidate
text regions in the input image before calling the back-end
Fig. 13. Some of the positive samples (top) and negative samples (bottom) used to
train the SVM shape classifiers for character/non-character discrimination. (Pro-
vided by Fabrizio [35].)

Please cite this article in press as: R. Minetto et al., SnooperText: A text detectio
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2013.10.004
(TESSBACK) to parse them. TESSERACT is considered one of the best OCRs
publicly available today [6]; however, its front-end was designed
for scanned documents, and it usually reports a large number of
false positives when applied to photos of 3D scenes. Finally, we
also added to the list of competing detectors the combination of
TESSFRONT with the T-HOG as an output filter (TESSFRONT + T-HOG).

4.5. Detection performance metrics

The quantitative criteria we used to compare these text detector
systems are based on the ICDAR 2005 measure of similarity [22]
between two rectangles r, s, defined as

mðr; sÞ ¼ Aðr \ sÞ
Aðr [ sÞ ð1Þ

where A(t) is the area of the smallest rectangle enclosing the set t.
The function m(r,s) ranges between 0 (if the rectangles are disjoint)
and 1 (if they are identical). See Fig. 14.

The function m is extended to a set of rectangles S by the
formula

mðr; SÞ ¼max
s2S

mðr; sÞ ð2Þ

From this indicator one derives the ICDAR precision P and recall R
scores [22],

P ¼
P

r2Emðr; TÞ
#E

R ¼
P

r2T mðr; EÞ
#T

ð3Þ

where T is the set of rectangles in the reference file, and E is the set
of rectangles reported by the detector.

For ranking purposes, the ICDAR 2005 Committee used the F-
measure [22], which is the harmonic mean of precision and recall:
F = 2/(1/P + 1/R).

4.6. Computing average scores

There are several ways of averaging the P, R, and F scores over a
multi-image database. The approach used by the ICDAR 2005 scor-
ing program (method I) is to evaluate P, R and F separately for each
image, and then compute the arithmetic mean of all three scores
over all images. Another approach (method II) is to compute P
and R for each image, then take the arithmetic means of all P and
R values, and compute F from these means. Yet another approach
(method III) is to compute the precision and recall formulas (3)
by taking E and T as the union of all text regions in all images.

We note that averaging method I suffers from higher sampling
noise and a negative bias compared to the other two, because it
gives equal weight to each image irrespective of the number of
recoverable text objects in it, and because the F-score is a non-lin-
ear function of the P and R ratios. In particular, the averaged F score
(method I) tends to be lower than the harmonic mean of averaged
P and R (method II). This point must be considered when compar-
ing F values reported by different authors, since it is not always
clear how they were averaged.

4.7. Detection test results

The text detection scores on the four image collections are
shown in Tables 1–4. In most cases, neither the program nor the
detected regions were available; therefore, we had to rely on the
scores reported by the authors. For the reasons above, we recom-
puted the overall F score ourselves (according to the averaging
method II), for all detectors, from the global P and R scores reported
by the authors. We could not use method III because, for most
competitors, the required data (the set of rectangles detected in
each image) was not available.
n system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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Fig. 14. The rectangle similarity score m(r,s) for various text regions s detected by SNOOPERTEXT (solid outlines) and the best-matching regions r from the reference file
(dashed).

Table 1
Text detection scores of SNOOPERTEXT and other detectors on the ITW dataset.

Detector Detection scores

P R F

SNOOPERTEXT 0.71 0.51 0.59
TESSFRONT + T-HOG 0.30 0.13 0.18
TESSFRONT 0.05 0.15 0.07

Table 2
Text detection scores of SNOOPERTEXT and other detectors on the SVT dataset.

Detector Detection scores

P R F

SNOOPERTEXT 0.36 0.54 0.43
Neumann et al. [10] 0.19 0.33 0.26
TESSFRONT + T-HOG 0.15 0.15 0.15
TESSFRONT 0.04 0.18 0.06

Table 3
Text detection scores of SNOOPERTEXT and other detectors on the EPS dataset.

Detector Detection scores

P R F

SNOOPERTEXT 0.60 0.51 0.55
Epshtein et al. [7] 0.54 0.42 0.47
TESSFRONT + T-HOG 0.21 0.10 0.13
TESSFRONT 0.02 0.14 0.04

Table 4
Text detection scores of SNOOPERTEXT and other detectors on the ICD dataset. The
competitors of the ICDAR 2003 and 2005 challenges are marked with �.

Detector Detection scores

P R F

Yi et al. [11] 0.73 0.67 0.70
Pan et al. [9] 0.67 0.70 0.69
SNOOPERTEXT 0.74 0.63 0.68
Yao et al. [1] 0.69 0.66 0.67
Chen et al. [8] 0.73 0.60 0.66
Epshtein et al. [7] 0.73 0.60 0.66
Hinnerk Becker� 0.62 0.67 0.64
Alex Chen� 0.60 0.60 0.60
Ashida� 0.55 0.46 0.50
HWDavid� 0.44 0.46 0.45
Wolf� 0.30 0.44 0.36
Qiang Zhu� 0.33 0.40 0.36
TESSFRONT + T-HOG 0.35 0.27 0.30
Jisoo Kim� 0.22 0.28 0.25
Nobuo Ezaki� 0.18 0.36 0.24
TESSFRONT 0.18 0.29 0.22
Todoran� 0.19 0.18 0.19

Table 5
The average execution time of SNOOPERTEXT.

Dataset Average speed (s)

ITW 14.9
SVT 8.9
EPS 12.3
ICD 7.7
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As can be seen from Tables 1–4 the performance of SNOOPERTEXT

is comparable to that of the best detectors described in the litera-
ture. In particular, Table 3 shows that it outperformed the Stroke
Width Transform detector [7] of Epshtein et al. on its own dataset.

4.8. Time analysis

The average execution time of SNOOPERTEXT for each dataset is
shown in Table 5. The tests were carried out on an Intel Core i7 ma-
chine (3.4 GHz) with 32 GB of RAM running Linux and Java.
Please cite this article in press as: R. Minetto et al., SnooperText: A text detecti
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5. End-to-end performance

To conclude this article, we report on the effectiveness of SNOOP-

ERTEXT as the front end for its motivating application, the iTowns
application.

In order to maximize the portability of their software, the
iTowns project chose the open-source TESSERACT package as the
OCR engine. As we observed in Section 1, TESSERACT on its own per-
forms rather poorly on the iTowns images. We obtained better re-
sults after replacing its built-in text detector (TESSFRONT) by
SNOOPERTEXT.
on system for automatic indexing of urban scenes, Comput. Vis. Image Un-
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Fig. 15. The OCR similarity scores m0(r,s) and m00(r,s) for various text regions r extracted by SNOOPERTEXT + TESSBACK (solid outlines), and the best-matching regions s from the
reference file (dashed).

Table 6
OCR performance scores of the TESSERACT back-end with the three text detectors on the
ITW dataset.

Detector OCR scores

Rigorous Tolerant

P0 R0 F0 P00 R00 F00

HANDCROP 0.29 0.29 0.29 0.50 0.50 0.50
SNOOPERTEXT 0.24 0.21 0.23 0.44 0.37 0.40
TESSFRONT + T-HOG 0.28 0.03 0.06 0.45 0.07 0.12
TESSFRONT 0.01 0.05 0.01 0.01 0.10 0.03
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Besides SNOOPERTEXT and TESSFRONT, we evaluated two other
detector algorithms, namely: the ‘‘best possible’’ detector
(HANDCROP), that returns the manually annotated text regions as
defined in the reference file; and the TESSFRONT module with its
output filtered by SNOOPERTEXT’s text region validation module
(TESSFRONT + T-HOG). Each of these detectors has a similar output,
namely a list of rectangular sub-images that are presumed to con-
tain the individual words in each image. Each of these rectangular
sub-images were fed to the TESSBACK module with option 8 (‘‘parse
single word’’). TESSERACT can use a list of valid words to improve its
accuracy, but we disabled that feature in order to make the test
language-independent.
Fig. 16. Some text regions

Please cite this article in press as: R. Minetto et al., SnooperText: A text detectio
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5.1. OCR performance metrics

For these comparisons, we used two scoring functions that take
into account the correctness of the OCR-extracted text. Both func-
tions assume that the strings are converted to lower case, because
it is often impossible to tell whether a text in urban signage is in
upper or lower case (for example, any text that uses only the let-
ters C, O, S, U, V, X, W and Z).

We assume that the OCR algorithm attaches to each rectangle r
reported by the detector the corresponding text string, denoted by
r.ocr. We define the rigorous OCR similarity score m0 for two rectan-
gles r and s as

m0ðr; sÞ ¼
1 if mðr; sÞP k and r:ocr ¼ s:ocr
0 otherwise

�
ð4Þ

where m is the rectangle similarity function defined by formula (1),
and k is a fixed threshold (0.2 in our tests).

The scoring function m0 may be considered too rigorous, be-
cause at the current state of the art one cannot expect that an
OCR algorithm will correctly read store and product names which
are missing from its spell-checking dictionary. Therefore, we also
defined a tolerant OCR similarity score m00 that gives credit for par-
tially correct OCR readings; namely,
missed by SNOOPERTEXT.
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m00ðr; sÞ ¼
1� distðr:ocr;s:ocrÞ

maxðjr:ocrj;js:ocrjÞ if mðr; sÞP k

0 otherwise

(
ð5Þ

Here juj denotes the length of string u, and dist denotes the
Levenshtein distance between strings [44]. The latter is defined as
the minimum number of edit operations needed to transform one
string into the other, where each operation is the insertion, deletion,
or substitution of a single character. Since the Levenshtein distance
does not exceed the length of the longest string, the metric m00(r,s)
ranges between 0 (when the strings have no characters in common)
and 1 (when the strings are equal).

As in Section 4.5, we extend the scoring function m0 to a set of
OCR-scanned rectangles S by the formula

m0ðr; SÞ ¼max
s2S

m0ðr; sÞ ð6Þ

We then define the rigorous OCR performance scores P0 (precision)
and R0 (recall) by the formulas

P0 ¼
P

r2Em0ðr; TÞ
#E

R0 ¼
P

r2T m0ðr; EÞ
#T

ð7Þ

where T is the set of manually identified text regions in all input
images, with the fields ocr set to the visually extracted text values,
as recorded in the reference file; and E is the set of text regions re-
ported by the detector, with the TESSBACK-computed .ocr fields. As
before, we combine the OCR precision and recall into a single OCR
score F0 = 2/(1/P0 + 1/R0). The tolerant OCR performance scores P00 R00,
and F00 are defined in the same way, using m00 instead of m0 in formu-
las (6) and (7). See Fig. 15.

5.2. End-to-end test results

Table 6 shows the end-to-end scores obtained with the various
front-ends on the iTowns dataset. We note in Table 6 that the rig-
orous OCR score F0 obtained with SNOOPERTEXT (23%), while low in
absolute terms, is 79% of the score obtained with TESSBACK on
hand-cropped word images (29%). The tolerant OCR score F00 of
SNOOPERTEXT (40%) is 80% of the hand-cropped score (50%). In both
aspects, SNOOPERTEXT is significantly better that TESSERACT’s front
end, even when the latter is combined with the T-HOG text region
validation module. Therefore, we can say that the OCR algorithm,
not the text detector, is the main bottleneck of the iTowns system
at present.

6. Limitations

SNOOPERTEXT’s errors seem to be mostly due to texts that are near
the low limit of legibility (small in size, blurred, partly obscured by
noise); to groups of two or more characters that cannot be sepa-
rated by the segmentation phase; to cursive or excessively dis-
torted fonts; and to isolated characters that are discarded by the
grouping module. Also, SNOOPERTEXT currently does not attempt to
detect vertical or extremely tilted text. See Fig. 16.

7. Conclusions

The experiments reported in Section 4 show that SNOOPERTEXT is
comparable to state-of-the-art text detection algorithms for
images of building façades. In particular, it can accurately locate
more than 60% of the text regions present the ICDAR Challenge
benchmark, with less than 30% of false positives, even though that
benchmark is not representative of the intended application. We
attribute SNOOPERTEXT’s good performance mainly to its use of mul-
ti-scale processing for segmentation and character detection, and
to its effective text region validation module based on the T-HOG
descriptor.
Please cite this article in press as: R. Minetto et al., SnooperText: A text detecti
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The SNOOPERTEXT detector was very effective also in the iTowns
project. On a sample of the iTowns images (which are somewhat
more difficult than those of the ICDAR Challenge) SNOOPERTEXT was
able to accurately locate about 50% of the legible text regions, with
less than 30% of false positives. As reported in Section 5, the end-
to-end performance of the system (including the external TESSBACK

OCR module) was rather low, with only 21% of those texts being
successfully parsed. However, that result was still 4 times the suc-
cess rate of the unaided TESSERACT reader, and more than 70% of the
success rate obtained by applying TESSBACK on the hand-cropped
texts.
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