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Tracking an unspecified number of people in real-time is one of the most challenging

tasks in computer vision. In this paper, we propose an original method to achieve this

goal, based on the construction of a 2D human appearance model. The general

framework, which is a region-based tracking approach, is applicable to any type of

object. We show how to specialize the method for taking advantage of the structural

properties of the human body. We segment its visible parts by using a skeletal graph

matching strategy inspired by the shock graphs. Only morphological and topological

information is encoded in the model graph, making the approach independent of the

pose of the person, the viewpoint, the geometry or the appearance of the limbs. The

limbs labeling makes it possible to build and update an appearance model for each body

part. The resulting discriminative feature, that we denote as an articulated appearance

model, captures both color, texture and shape properties of the different limbs. It is used

to identify people in complex situations (occlusion, field of view exit, etc.), and maintain

the tracking. The model to image matching has proved to be much more robust and

better-founded than with existing global appearance descriptors, specifically when

dealing with highly deformable objects such as humans. The only assumption for the

recognition is the approximate viewpoint correspondence between the different models

during the matching process. The method does not make use of skin color detection,

which allows us to perform tracking under any viewpoint. Occlusions can be detected by

the generic part of the algorithm, and the tracking is performed in such cases by means

of a particle filter. Several results in complex situations prove the capacity of the

algorithm to learn people appearance in unspecified poses and viewpoints, and its

efficiency for tracking multiple humans in real-time using the specific updated

descriptors. Finally, the model provides an important clue for further human motion

analysis process.
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1. Introduction

Human motion analysis is currently one of the most
active research fields in computer vision. It attempts to
detect, track and identify people, and more generally,
to interpret human behaviors, from image sequences
involving humans. It has attracted great interest from
computer vision researchers due to its promising applica-
tions in many areas such as visual surveillance, perceptual
user interface, content-based image storage and retrieval,
video conferencing, athletic performance analysis, virtual
reality, etc.

Event detection is the highest level for applications
aiming at achieving a semantic description of the scene.
Basically, low-level steps correspond to object detection
and/or classification. Tracking humans can thus be under-
stood as the intermediate level of the analysis process. Its
main challenge consists in facing the data association
problem, i.e. temporally linking features chosen to analyze
human behaviors. Tracking is thus of primary importance
since it has to fill the semantic gap between the brute
image descriptors and the high-level concepts.

Thus, intensive attention has been focused in the last
20 years to providing robust tracking algorithms able to
manage a wide variety of scenarios. The major challenges
encountered in real situations include cluttered back-
ground, noise, change in illumination, occlusion and scale/
appearance change of the objects. This paper addresses
the tracking problem by an original approach where
human detection, body part labeling, appearance model-
ing and people identification are interleaved. Moreover,
we concentrate on tracking approaches able to run in near
real-time, in the context of monocular sequences, and
with static and non-calibrated cameras.
1.1. Paper contribution

In order to track multiple people in real-time, we
propose an approach that relies on learning a specific
descriptor for each person detected in the sequence. This
feature is then used for identifying people in complex
situations, and maintaining the tracking. The main goal of
this work consists in building an articulated appearance

model (AAM) that is specifically adapted to learn the
appearance of humans. To achieve this aim, our contribu-
tion is twofold.

Firstly, we propose an efficient strategy for labeling
limbs from each extracted blob. This step is formulated as
a graph matching problem, where we make use of a
topological model of the human body to detect and label
each visible body part. The proposed approach encodes
the silhouette properties by means of the graph structure
in the most compact form. Indeed, the feature extraction
only relies on shape and topology, and is thus applicable
for any viewpoint/human pose. Importantly, the limbs
labeling approach makes it possible to classify the tracked
object between human/non-human, i.e. the graph match-
ing output is used as a people detector.

Secondly, the AAM encodes color, texture and shape
properties related to each tracked person. Once learned,
these features are used for identification. Importantly, the
appearance model learning is performed for each rigid
part of the articulated structure. Thus, the formed
descriptor capitalizes on the strength of the existing
features in terms of discriminability and robustness.
Finally, this appearance-based part of the tracking
approach includes a solution for tracking people during
occlusions that is carried out by means of an adapted
particle filtering technique.

To summarize, we claim that the proposed approach
can manage to learn human appearance in very generic
configurations, and provides a people-specific descriptor
adapted to the representation and the recognition of
humans. The remainder of the paper is presented as
follows. Section 2 gives a state of the art of the existing
approaches for detecting and tracking humans, and
Section 2.3 points out the specific shortcomings of the
existing human appearance descriptors that are addressed
in the paper. Section 3 proposes a brief overview of the
overall approach, while Section 4 details the limbs
labeling approach, and Section 5 explains how the AAM
is generated and used for recognition. Section 6 presents
results illustrating the approach efficiency for tracking
humans in various conditions, and proves that the AAM
outperforms both global templates and color histograms
for recognition. Finally, Section 7 concludes the paper and
proposes direction for future works.

2. State of the art

Detecting, tracking humans and inferring their pose in
videos is arguably one of the most challenging problems
in computer vision due to large variations in body shape,
appearance, clothing, illumination and background clut-
ter.

2.1. Existing approaches for human detection

We can classify approaches for detecting humans
between global methods and part-based strategies. Global
methods [36,18,51,52,10,11] try to detect humans with a
single template, essentially relying on a sliding window
mechanism. Gavrila and Philomen [18] extract edge
images and match them to a set of learned exemplars
using chamfer distance. Dalal and Triggs [10] introduce
the Histogram of Oriented Gradient (HOG) descriptor,
learned with a linear kernel SVM, that constitutes the
state of the art for pedestrian detector. In addition, many
authors combine motion features to the static edge
features, most of the time using optical flow [52,11].
Other motion-based approaches firstly use a foreground
pixel detector, and classify the extracted blobs as human/
non-human using a given shape descriptor, e.g. projection
histograms [20]. Realizing the difficulty to capture pose
and viewpoint variability with a single flat classifier,
other approaches rely on individually detecting body part
candidates, and modeling their assembly [31,14,37,35,39].
Top–down approaches estimate the whole human
position and the part location by modeling the limb
likelihood and their relative position jointly [14,37]. Other
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approaches adopt a two-stage strategy: a bottom–up
detector is applied on the image to extract candidate
parts, then a top–down procedure inference the config-
uration and finds the best assembly [31,35,39]. Most
approaches use the canonical tree model for body parts,
hence efficiently solving the assembly problem with
dynamic programming.

2.2. General tracking problem formulation

Roughly speaking, tracking can be regarded as the
problem of inferring the configuration of an object at time
t, given its previous position at time t � 1. It generally
consists in a two-step prediction/correction scheme.
Firstly, a model of the dynamic is applied to explore the
parameters space. Secondly, the object configuration is
updated over time with respect to a given image similarity
measurement. Formally, let us denote XðtÞ 2 RN

¼

ðy1; y2; . . . ;yNÞ
T the state parametric form of the object at

time t, the tracking task can be formulated as an inference
problem, where one aims at estimating the state eXðtÞ at
time t best explaining the image measurement
ðZt ; Zt�1; . . . ; Z1Þ up to time t, i.e. solving

eXðtÞ ¼ arg
ðy1 ;...;yN Þ2R

N

max½XðtÞ ¼ xtjðZt ; Zt�1; . . . ; Z1Þ (1)

Numerous approaches for tracking humans in video
sequences have been proposed in the last 20 years. An
exhaustive review of the existing strategies is beyond the
scope of the paper and the reader can refer to [17,32,55].
Regarding methodology, we can distinguish the methods
with respect to the following criteria: search strategies (in
relation with the data association problem and thus with
the detection), the chosen feature, and the use of a model.

When tracking multiple people, a crucial decision
consists in choosing which image measurement to
account for a particular human. In the radar tracking
literature, this problem is often referred to data associa-

tion. It can be performed by using a brute-force top/down
search, i.e. explicitly exploring the parameter space next
to the previous location. Alternatively, bottom/up detec-
tors (such as those presented in Section 2.1) can be used to
guide the data association process, identifying some
particular region of interest. In both cases, the data
association can be achieved with two different search

strategies. In deterministic search strategies, the corre-
spondence problem is solved by choosing the nearest
neighbor approach. For example, the Kalman filtering [25]
is a recursive linear estimator that is optimal in minimiz-
ing the covariance error, provided the conditional ob-
servation distributions are Gaussian. However, the
Gaussian assumption is violated in many situations when
tracking objects in image sequences, due to clutter or
occlusions, to name but a few. There are several statistical
data association techniques which tackle this problem.
Particle filters are approximate stochastic sampling
strategies that can explicitly deal with multi-modal
distributions. For that reason, they have intensively been
used since the pioneer work of Isard and Blake [21].

The chosen image feature that defines the similarity
measurement is another major aspect of the tracking
algorithms. Appearance-based methods track connected
regions that roughly correspond to the 2D visual aspect of
video objects based on their dynamic models. Appearance
refer to color, shape and texture, and related approaches
are generally known as visual tracking strategies. Motion-

based approaches depend on a robust method for grouping
visual motion consistently over time. Feature-based meth-
ods mainly rely on matching various image descriptors
from frame to frame, and clustering techniques are used
for detection and tracking. Finally, many approaches
perform people detection using background subtraction,
particularly in surveillance applications. This motion
segmentation step is then often directly used for perform-
ing data association, i.e. linking the different connected
component over time [20,57,19]. These strategies are
appealing since they provide a first solution to the
multiple people tracking issue, and are compatible with
real-time purpose.

Apart from the chosen feature, approaches for tracking
humans can be classified depending on the use of a model.
Model-based approaches try to impose high-level semantic
constraints by exploiting the a priori knowledge about
the object being tracked. 3D models are by essence
viewpoints independent, and 3D tracking approaches
have been investigated by directly minimizing an image
to model measurement (generative approaches) [46], or
by learning the features to pose mapping from exemplars
(discriminative approaches) [34]. However, 3D ap-
proaches are mostly not able to achieve real-time, and
mainly require manual initialization. Many methods
modeling the body part assembly with 2D models have
been proposed, for example cardboard models or pictorial
structures [14,37]. Model-Based approaches present im-
portant benefits when tracking in complex situation. As
they explicitly model the body part structure, they are
better armed to deal with occlusions than model-free
approaches.

Importantly, the most advanced approaches try to
combine advantages of the previous classes, leading to
hybrid methods. For example, Ramanan et al. [37] propose
an approach using a spatio-temporal pictorial model,
using motion, color and shape features for performing the
inference task with a partitioned sampling strategy.
Interestingly, the proposed approach is connected to ours
by the fact that the algorithm is firstly dedicated to
learning people appearance for providing a discriminative
person specific model. However, the approach tries to take
advantage of some particular configurations such as
lateral walking poses for learning appearance, making
the tracking efficiency limited by the availability of such
configurations. Moreover, the algorithm requires between
7 and 10 s processing per frame. We now give more details
on some recent works being the most related to ours, i.e.
approaches which explicitly model people appearance for
performing a real-time tracking in a monocular context.
2.3. Real-time, appearance-based tracking approaches

Appearance is among the most stable features when
tracking humans, and therefore makes this descriptor
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Fig. 1. Global appearance models limitations. (a) Segmentation errors

and occlusions. (b) Strong perspective effects.
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appealing for tracking algorithms. Basically, we can
distinguish approaches modeling appearance using prob-
ability density functions (PDF) [15,4,7,8,23,22,54,28,49],
and methods using templates [3,42,20,57].

Wren et al. [54] use small blob features statistics
(position and color) to track people. They represent
human shape as a combination of blobs representing
various body parts, such as head, torso, hands and legs.
Each blob is modeled by a multi-normal distribution
capturing position and color in the YUV space. Tracking all
the small blobs allows them to track the whole body of a
single human. However, their work is only adapted to an
indoor environment and is only intended to track a single
human, which is too limited for our purpose. McKenna
et al. [28] propose an adaptive background removal
algorithm that combines gradient information and color
features to deal with shadows in motion segmentation.
They differentiate three levels of tracking: regions, single
human and human groups. They manage to obtain good
results of tracking multiple persons even in the case of
occlusions by introducing an appearance model based on
a combination of color histogram and Gaussian mixtures.
However, the PDF modeling in both previous approaches
makes the spatial information to be completely ignored
during the feature extraction step. For example, a person
wearing a yellow tee-shirt and blue pants is represented
in the same manner as a person wearing a blue tee-shirt
and yellow pants.

Alternatively to statistical representations, appearance
can be modeled using templates. Thus, Haritaoglu et al.
[20] develop a system named W4 for a real-time visual
surveillance system operating on monocular grayscale or
on infrared video sequences. W4 makes no use of color
cues, but employs a combination of shape analysis and
tracking to locate people and their body parts. Moreover,
the method explicitly uses a template to identify people
after an occlusion. The appearance model represents
people globally, and the major difficulty in using such a
template for matching corresponds to the way the
appearance is updated over time to provide a relevant
descriptor. In [20], each image is registered to the
previously built template with respect to its median
coordinate. This strategy is not adapted to highly deform-
able objects such as humans, and the update commonly
fails at being properly carried out in typical situations
illustrated in Fig. 1. In Fig. 1(a), we point out the fact that
the model is very sensitive to segmentation errors or
partial occlusions of the limb. The two people enter the
scene at frame 100 and the models are initialized. At
frame 200, we can notice that their appearance models
have been wrongly updated. For the red-framed person, it
is due to segmentation errors. The legs were indeed not
detected at frame 100 and are extracted later: as the
model is registered with respect to the median coordinate,
the different body part appearance update is not properly
performed. For the green-framed person, the legs were not
detected at the beginning because hidden by the desk.
This leads to the same difficulties. Fig. 1(b) illustrates
problems to manage strong perspective effects. Indeed,
the person is walking in the optical axis direction, making
its apparent size in the image sensitively vary from frame
100 to 250. Again, this leads to badly update its corres-
ponding appearance model: for instance, the appearance
of the head detected at frame 250 is averaged with some
part of previously detected torso at frame 100.

Zhao et al. [57] build upon the work of Haritaoglu and
suggest a much finer system for tracking. They use an
ellipsoid model for the modeling of the 3D human
shape and track its parameters with a Kalman filter. They
make use of an appearance model that integrates a color
clue. The mask of the model is an ellipse instead of a
rectangle but this model still suffers from the former
drawbacks.

3. The proposed approach

3.1. Approach overview

We propose a hybrid approach, schemed in Fig. 2, that
can manage the tracking of multiple people in complex
situations. At the pixel level, people are detected by a
background subtraction algorithm, and a data association
step links connected moving regions over time. These
low-level steps, described in Section 3.2, are applicable to
any type of object. They are devoted to distinguishing
‘easy situations’ from other. Thus, non-ambiguous blob
associations (i.e. one-to-one) are capitalized on to learn
people appearance by building AAMs. The discriminative
generated features are then used to disambiguate the blob
tracking in complex scenario (occlusion, people leaving
the field of view, etc.) by identifying people, i.e. matching
appearance models.

3.2. Generic object system components

In this section, we give more details on how human
detection and data association is performed.

3.2.1. People segmentation

For isolating people in the video, we firstly compute a
binary map describing regions where motion occurs by
computing a difference between the current frame and a
reference one representing the static part of the scene.
This step involves building and updating the background
image. Many approaches have been proposed for estimat-
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ing the PDF of the gray-level (or color) value for each
pixel [47,33,12]. For optimizing the trade-off between
computational complexity and segmentation accuracy, we
choose to model each pixel PDF with a mixture of KG

Gaussians, using an adapted version of the Stauffer and
Grimson algorithm [47]:

PrðXtÞ ¼
XKG

i¼1

wi;t � ZðXt ;mi;t ;Si;tÞ (2)

where
�
 wi;t represents the weight of each distribution and
represents the portion of the data accounted for by this
Gaussian.

�
 ZðXt ;mi;t ;Si;tÞ is a normal distribution with mean mi;t

and covariance matrix Si;t . For a computational
purpose, we choose to model each distribution with a
diagonal covariance matrix which assumes that the
red, blue and green pixel values are independent. But
contrary to [47,33] we do not insist that they have
identical variances.

The main adaptation compared to the original approach
[47] consists in updating on-line the number of required
distributions for explaining the pixel history. Following
Carminati and Benois-Pineau idea [5], we choose to
automatically estimate the required number of distribu-
tions using an ISODATA algorithm [2]. To ignore shadows
during the segmentation stage, we detect them at the
pixel level by using the color features c1c2c3 proposed by
Salvador [41], which has the property of being invariant in
luminance. For more details on this part, the reader is
referred to [50].

At this stage, the motion segmentation outputs a
binary map where moving pixels have been isolated, and
no consideration of spatial coherence has been developed.
Morphological operations are applied in that sense.
Finally, a connected components labeling algorithm is
used to merge pixels into regions. We only keep the
significant ones by thresholding their area.
3.2.2. Blob tracking

A simple and computationally efficient blob tracker is
used to dynamically link extracted regions over time. We
used a two-pass forward/backward strategy inspired from
[54,20,19]. It aims at matching the M objects Oi detected at
time t to the N regions Rj extracted at time t þ 1. We use a
simple first-order motion model to predict object loca-
tions O0i at time t þ 1. Then, for each O0i and Rj, we compute
a M � N similarity matrix containing the set of area
overlap Aij ¼ O0i \ Rj. For each Rj we determine its
predecessors number npj and sort them with respect to
their Aij value (the most probable predecessor is supposed
to be the one with the greatest overlap surface). We obtain
a list of predecessors Pk; k 2 f1;npjg. Identically, for each
projected O0i we determine its successors number nsi and
sort them with respect to their Aij value, and obtain a list
of successors Sl; l 2 f1;nsig.

The algorithm output a set of five possible links that
can be exhaustively enumerated:
(i)
 If npj ¼ 0 a new object is created.

(ii)
 If nsi ¼ 0 the previously tracked object will be

ignored by the blob tracker at the next times steps.
In addition, it might be removed, if it is not active (see
the following remarks regarding temporal coher-
ence). Otherwise, the object is kept because it may
be identified later on, based on its learned appear-
ance model.
(iii)
 If npj ¼ 1 and nsi ¼ 1, the correspondence is one-to-
one. This is the easiest case, where a single object can
successfully be tracked by the region linking (see Fig.
2). Thus, we take advantage of these situations to
label body parts (Section 4) and learn people
appearance (Section 5.1).
(iv)
 If npj ¼ 1 and nsi41 a split is detected: a single
region that was previously tracked is now detected as
several blobs (see Fig. 2). In that case, we use
the previously learned appearance models for identi-
fying people and maintaining a robust tracking (see
Section 5.2).
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(v)
 If npj41 and nsi ¼ 1 a merge is detected: several
blobs that were previously individually tracked are
now only detected as a single region (see Fig. 2). This
suggests that an occlusion is occurring, and we use a
particle filter to manage this arduous situation
(Section 5.3).
It is worth mentioning that the blob tracker takes
advantage of temporal coherence for making the region
association robust to noise. Thus, we use an approach
connected to the Multiple HypoThesis Tracking strategy
[38], i.e. we only update links that are supported over
time. In particular, a blob is denoted as active if is has
continuously been matched one-to-one for a sufficient
number of frames Ncoh. Then, the split end merge
association are only considered if they are related to
active objects, heavily decreasing the segmentation errors
impact.

4. Body part labeling

Each time a region is one-to-one linked over time by
the algorithm described in Section 3.2.2, a morphological
and topological analysis of the silhouette is carried out to
detect and label the visible body parts. To achieve this
goal, we propose the following strategy, illustrated in
Fig. 3. Firstly, we extract a set of segments from the
silhouette (Section 4.1). Secondly, we form an image graph
from this set of segments and a model graph, generated
from a topological human skeleton model (Section 4.2).
Finally, we perform a node-to-node matching of the image
and model graphs (Section 4.3).

4.1. Getting a set of segments

For each ‘single human’ detected region, the limbs are
considered as parts of the silhouette skeleton.

4.1.1. Skeleton computing

The skeletonization process is an important stage in
our application. Several 2D skeletonization algorithms
have been reported in the literature, and they can be
classified into two categories: the discrete methods
[27,26], and the continuous methods, mainly based on
the Voronoi diagram computation [1,13]. The latter
approaches have several advantages in our context. Only
the contour points are necessary, which considerably
decreases the number of points to process. The obtained
skeleton and the initial shape are topologically equivalent.
And last, but not least, the obtained skeleton is isomorph
to a graph, which represents an important advantage
Fig. 3. Overview of the limbs labeling approach.
regarding the chosen representation for the recognition
(see Section 4.2). For these reasons, we use this contin-
uous strategy for computing the 2D skeleton of the shape.
However, the Voronoi diagram computation remains
relatively sensitive to the noise on the contour shape. To
overcome that shortcoming, we propose a pre-processing
step devoted to smoothing the initial shape, by computing
the Fourier descriptors (FD) [56] of its outer and
(potential) inner contours.

4.1.2. Skeleton polygonalization

The 2D skeletonization being performed, we aim at
extracting a set of N segments from the silhouette, i.e.
identifying N þ 1 extreme points. Each skeleton point
corresponds to the center of the Delaunay triangle circum-
scribed circle, and we take advantage of this neighbor-
hood information encoded in the data structure. Thus, we
can classify the skeleton points into two clusters, that we
denote as points of types 1 and 2. The formers contain
ending or branching points, i.e. points having either a
single neighbor or more than two neighbors. Points of
type 2 correspond to those having exactly two neighbors.
The set of segment extremities that we want to detect are
thus composed of points of type 1. In addition, we
polygonalyze the discrete curve formed by the skeleton
points between each couple of type 1 points. Let us
consider the discrete curve C, containing a sequence of K

points, and let us denote P0 its starting point. We define a
criterion gðiÞ, quantifying the non-linearity for the ist point
of the sequence:

gðiÞ ¼ 1

i

Xi

k¼1

PkHðPkÞ (3)

where
�
 HðPkÞ corresponds to the orthogonal projection of the
kst point on the line ðP0; PiÞ (see Fig. 4(a)).

�
 PkHðPkÞ is the signed distance from the point Pk to the

line ðP0; PiÞ. The distance is thus (arbitrarily) positively
counted if the point lies on a given side of the segment
½P0;Pi�, and negatively otherwise (see Fig. 4(a)).

The proposed polygonalization scheme consists in
computing a discrete approximation of the curvilign
integral of the curve C. For each point Pi of a given
skeleton branch, we match jgðiÞj against a given threshold
gS. If jgðiÞj4gS, we identify the skeleton point with the
maximum jPkHðPkÞj value (see Fig. 4(b)). The segment
½P0; Pkmax

� is thus extracted, and the algorithm is recur-
sively run from Pkmax

(see Fig. 4(c)). The proposed
polygonalization approach presents two main advantages
for our purpose. Firstly, the signed distance used in Eq. (3)
is robust to ‘oscillating curves’, that are common due to
the silhouette sampling before the skeleton computing.
Secondly, the algorithm is based on the points of type 1,
that are robust and accurate as resulting from the Voronoi
diagram computation.

Fig. 5 illustrates the segment extraction scheme,
processed at each frame. Fig. 5(a) represents an extracted
silhouette output by the background subtraction step
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Fig. 4. Skeleton polygonalization. (a) Defining a linearity criterion. (b)

Identifying breaking points. (c) Generated segments.

Fig. 5. Segments extraction from silhouette.

Fig. 6. Topological models used. (a) 3D skeleton model. (b) Model graph.
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(Section 3.2.1), Fig. 5(b) illustrates the silhouette smooth-
ing and the skeleton computation. Fig. 5(c) shows the first
set of segments after the polygonalization and the Fig.
5(d) presents the final set after removing small edges.

4.2. Skeleton model and graph generation

The segments being extracted from the silhouette, as
illustrated in Fig. 5(d), are supposed to be limbs that we
intend to label. To perform this task, we make use of a
skeleton model, illustrated in Fig. 6(a). We thus model 14
rigid parts of the body: torso (blue), head (yellow), arms
and shoulders (green), legs and ankles(red). The skeletal
model can be considered as a 3D model, as we consider
the connections between limbs in the 3D world. Indeed,
the 2D connections in a given image are often incomplete
due to occlusions. However, we only consider connections
between limbs, and the skeletal structure must be
regarded as a topological model.

4.2.1. Making use of a graphical model

Graphical models are widely used for representing
objects and dealing with structural information. For our
limbs labeling purpose, the graph representation is
particularly adapted to model the relationship between
the different body parts. Thus, we generate the graphical
model illustrated in Fig. 6(b) to encode the topological
structure of the skeletal model presented in Fig. 6(a). The
graph is actually a tree, rooted at the bottom of the torso
segment (node 0 in Fig. 6). For the sake of clarity, we will
herein always refer to the graphs with the vocabulary of
nodes and arcs, and to the set of segments with the
vocabulary of edges and vertices.

4.2.2. Generating the image graph

To generate a graph from the set of segments extracted
from the silhouette, we have to map each segment vertex
to a graph node, in order to match the model and image
graphs (Section 4.3). The first issue corresponds thus to
identifying the vertex of the set of segments that
corresponds to the root of the graph.

4.2.2.1. Root node identification. To achieve that goal,
we associate to each inserted segment its mean
radius Rm:

Rm ¼
1

K

XK

i¼1

ri (4)

where ri corresponds to the radius of the circumscribed
circle (of the Delaunay triangle) for each of the K skeleton
points corresponding to the segment. From the Rm

definition (Eq. (4)), we measure the mean distance
of the segment to the silhouette boundary. Thus, Rm

enables us to identify the torso as the segment with the
largest mean radius. As far as we tested, this image
feature is very efficient for localizing the segment corre-
sponding to the torso, and is robust to viewpoint and
human pose variations. As we want to generate a graph
with nodes corresponding to segment vertices, an ambi-
guity between two nodes Ni remains after the torso lo-
cation. To properly identify the vertex corresponding to
the root, we generate the two possible trees Gi, rooted at
the torso Ni (i 2 f1;2g). We then compute the distance
DðGi;GMÞ between the two graphs and the model graph
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GM, in the following way:

DðGi;GMÞ ¼ wTo
� DTopðGi;GMÞ þwTr

� DTrackðGiÞ

DTopðGi;GMÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
j¼1

½wðNiðjÞÞ � wðGM0ðjÞÞ�
2

vuut
DTrackðGiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Nx

i;t � Nx
r;t�1�

2 þ ½Ny
i;t � Ny

r;t�1�
2

q
(5)

The distance DðGi;GMÞ contains two terms DTop and
DTrack, weighted by wTo

and wTr
. DTop only uses the

structural information of the graphs to estimate the
closest image graph to the model. This similarity mea-
surement is the heart of the proposed graph matching
approach, and is detailed in Section 4.3.1.1. Basically, it
corresponds to computing the Euclidean distance be-
tween the topological signature vector (TSV) of the two
roots. Fig. 7 illustrates the root identification. The max-
imal mean radius segment detection, leading to find the
torso, is presented in Fig. 7(a). The two possible graphs
resulting from rooting the image graph at the two possible
torso vertices are shown in Figs. 7(b) and (c), respectively.
The root TSV computation is presented in Fig. 7(d), mak-
ing it possible to compute the topological distance with
respect to the model DTopðGi;GMÞ for each graph (Fig. 7(e)).
As we can notice in this example, the chosen root for the
image graph corresponds to the node 0.

The tracking distance, DTrack, is only evaluated if the
limb tracking is activated (see Section 4.3.2.3.3). In that
eventuality, we determine the geometrical Euclidean
distance, in the image, between each candidate Ni;t for
being the image root at time t and the previously labeled
root Nr;t�1 at time t � 1 (see Eq. (5)).

4.2.2.2. Managing inner contours. The extracted set of
segments after the skeletonization might be cyclic if inner
contours exist in the silhouette. We recall that we aim at
generating a graph with a tree structure, i.e. an acyclic
graph. If a loop is detected during the graph generation
process, we determine the arcs to remove by the following
Fig. 7. Root identification in the image graph.
reasoning. If the cycle contains the arc corresponding to
the segment detected as the torso (as computed in
Eq. (4)), we remove an arc linking one of the nodes
corresponding to the torso vertices. The choice between
the two possibilities is performed by minimizing the to-
pological distance DTop (Eq. (5)). This makes it possible to
use the a priori structural information contained in the
model, where no loop exists. If the cycle does not contain
the torso, we choose to remove the arc corresponding to
the minimal mean radius in the loop. The proposed ap-
proach for generating a tree from the loopy graph is si-
milar to the minimal spanning tree algorithm (see [40]),
with the weight corresponding to the invert of the mean
radius. However, our method is much faster as it is local,
and requires a single minimization for each cycle.

4.2.2.3. Performing human detection. A very interesting
property of the image graph generation corresponds to its
capacity to behave as a human detector. Until now, the
approach is applicable to any kind of object. As we want to
track humans and build an appearance model for them, an
essential step consists in initializing the model, i.e. being
able to classify the detected object as human/non-human.
The topological distance DTopðG

r
I ;G

r
MÞ between the root of

the image graph Gr
I and the model graph Gr

M, as defined in
Eq. (5), is used to perform that task. Indeed, computing
the Euclidean distance between the root’s TSV of two gi-
ven graphs makes it possible to compute a global simi-
larity measurement between their associated skeletons,
and has been applied in the shape indexing context
[43,44]. Therefore, thresholding the topological distance
DTopðG

r
I ;G

r
MÞ between the image graph and the model

graph is a powerful way to build a human detector. Thus,
if DTopðG

r
I ;G

r
MÞ is below a predefined threshold DT

Top, the
detected object is recognized as a human, and we use the
graph matching strategy proposed in Section 4.3 to label
the different nodes of the image graph. Otherwise, the
process stops at this stage. That is, there is no attempt at
labeling the silhouette segments, and no AAM for the
object is built at this time step. In order to take advantage
of temporal coherence, and to make the parameter DT

Top

setting related to the tracking step, DT
Top is made time

dependent, i.e. we multiply it by the factor e�NTt (NT being
the number of frames that the blob has been tracked).

4.3. Graph matching

Once the image graph is generated, we aim at
performing a node-to-node matching with respect to the
model graph in order to identify the visible body parts of
the people present in the scene. There is a plethora of
graph matching strategies present in the literature. An
exhaustive review of the topic is far beyond the scope of
the paper, and the reader can refer to [6,29,24]. For our
purpose, we can classify the approaches regarding the
chosen similarity measurement, and between exact/
inexact matching strategies. In exact matching algorithms,
the most used concept is the graph isomorphism
and a many works are dedicated to searching for the
best isomorphism between two graphs or sub-graphs.
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Fig. 8. Topological signature computation. (a) TSV computation, from

[48]. (b) TSV model graph.
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However, in a number of cases, the bijective condition is
too strong, and the graph isomorphism does not exist.
Therefore, the problem is rather expressed as an inexact
graph matching problem, leading to optimize some
objective function measuring the adequacy between
vertices and edges of both graphs. Approximate methods
may be divided into two groups of algorithms. The first
group is composed of methods which use spectral
representations of adjacency matrices, while the second
group is composed of algorithms which work directly
with graph adjacency matrices, and typically involve a
relaxation of the complex discrete optimization problem.

4.3.1. Spectral graph matching: the shock graphs

The shock graph method [45] is dedicated to indexing
shape by skeletal graph matching and is thus closely
connected to our purpose. Regarding methodology, the
graph matching approach is an approximate method that
makes use of the spectral representation of the adjacency
matrices. Basically, the approach consists in encoding the
graph structure in each node by a spectral characteriza-
tion (Section 4.3.1.1), and in performing a node-to-node
matching (Section 4.3.1.2).

4.3.1.1. Encoding graph structure. In the shock graph ap-
proach, a powerful way to encode the structure of a DAG
consists in turning to the domain of spectral graph theory
to compute a topological feature in each graph node. Let
us consider a graph G of order L, and let us denote its
nodes Ni (i 2 f1; Lg). The main property, established for
trees in [45] and generalized to arbitrary DAGs in [44],
states that it is possible to represent G by its adjacency
matrix AG (of size L� L), with 1’s (�1’s) indicating a for-
ward (backward) edge between adjacent nodes in the
graph, and 0’s the absence of link. The graph spectrum
GðAGÞ is defined as the set of the N eigenvalues magni-
tudes of AG. A descriptor, called TSV and denoted wðNiÞ, is
thus extracted at each node Ni of the graph. Its compu-
tation processes as follows. Let us consider a node Ni of
the graph G, having k children Cj (j 2 f1; kg). For each child,
we consider the sub-graph rooted at Cj, with order NCj

.
The adjacency matrix AGj

i (of size NCj
� NCj

) of this sub-
graph is then diagonalized. We compute the sum of the
eigenvalue magnitudes of AGj

i. This value corresponds to
the jst element of the TSV wðNiÞ for the node Ni. At the
end of the computation wðNiÞ is sorted in decreasing order.
Fig. 8(a) illustrates the computation of the TSV.

wðNiÞ is the feature vector that is used for performing
the matching between the model and image graphs, by
computing the Euclidean distance between each node
TSVs. Thus, all wðNiÞ’s must have the same dimension so
that the distance computation is feasible. Thus, XðNiÞ is
defined as a M-sized vector, M being the maximum
between the maximum degrees of the image and model
graphs. As the majority of the sub-graphs rooted at a given
node Ni have a degree oM, we have to set a default value
for elements that are not computed (i.e. from kþ 1 to M, k

being the number of children of Ni). In [45,30], the TSV is
thus padded with 0’s. Alternatively, we prefer padding
the TSV with the �1 value. We justify this choice in
Section 4.3.2.3. Fig. 8(b) illustrates the result of the TSV
computation for each node of the model graph presented
in Fig. 6(b).

4.3.1.2. One-to-one nodes matching. Let us consider the
model graph GM ¼ ðVM; EMÞ, and the image graph GI ¼

ðVM; EMÞ to match, and let us denote d GMð Þ and d GIð Þ their
maximal degrees. d is then defined as the maximum de-
gree between the two graphs: d ¼ max d GMð Þ;d GIð Þð Þ. For
each node vM (resp. vI) of the graph GM(resp. GI), we define
wðvMÞ 2 Rd (resp. wðvIÞ 2 Rd) as the only vector which cor-
responds to the topological signature introduced in Sec-
tion 4.3.1.1, and illustrated in Fig. 8.

Then, the matching algorithm starts by forming the
matrix P of size n1 � n2, whose elements ðvM; vIÞ are
computed as follows: PðvM; vIÞ ¼ wðvMÞ � wðvIÞ

�� ��2
. Then,

the bipartite graph G VM;V I; EGð Þ is formed, where the arcs
are weighted using the matrix PðGM;GIÞ. Using the scaling
algorithm of Goemans [16], the maximum cardinality,
minimum weight matching in G is determined. The result
is a set of node matching between GM and GI called M1,
which can be sorted in a descending order of similarity.
From M1, ðv1

M; v
1
I Þ is chosen as the pair which has the

smallest weight among all the pairs in M1. ðv1
M; v

1
I Þ is then

removed from the list and added to the solution of the
matchings. The same depth-first search strategy is
recursively applied for the two sub-graphs rooted in v1

M

and v1
I , and it stops when one leaf of the two trees is

reached. Then, a backtracking scheme starts, and the
branches are dynamically recomputed: all the sub-trees of
the graphs GM and GI whose roots have been matched
are removed (reinforcing the one-to-one matching).
The processing terminates when all nodes are in the
solution set.

4.3.2. Shock graphs: discussion and adaptation

4.3.2.1. Spectral representation strengths. For our limbs la-
beling purpose, the shock graph matching strategy is a
very powerful way to analyze the silhouette shape and
match it against the skeleton model.

Firstly, we point out the fact that the TSV offers a
hierarchical and fine description of the skeleton. For
example, it makes it possible to discriminate graphs much
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more accurately than using global statistical features, such
as minimal/maximal/mean/standard deviation degree
(see [44]). Secondly, the TSV strength corresponds to its
robustness to shape variations. We recall that the TSV is
computed from the adjacency matrix graph AG, and it is
thus clear that the extracted feature only encodes the
topological information of the graph. In particular,
geometrical or appearance features are discarded.
Moreover, some important theoretical properties have
been established regarding the TSV. The interlacing
theorem, established by Cvetkovi [9], states that the
eigenvalues difference of the two graphs can be bounded,
if one graph is a sub-graph of the other. This smooth
variations of eigenvalues makes the skeleton matching
robust to occlusions. This is an essential result for our
purpose, because there must be missing nodes between
the model graph (which encodes all connection between
limbs) and the image graph (which corresponds to a
viewpoint specific instance of the skeleton, with a
particular joint configuration between limbs). Some other
interesting properties have been established by Wilkinson
[53], Stewart and Sun [48], and Shokoufandeh [44]. The
reader is referred to their works for a detailed description
of the study. For us, the main interesting results that must
be pointed out correspond to the stability of the TSV
under insertions or deletions of nodes (see [44]). In
addition to the robustness to occlusions, this property
makes it possible to manage insertions or suppressions of
nodes that are likely to arise due to low-level step errors:
background subtraction, skeleton computing, segment
extraction, etc. As a result, we can state that the TSV
constitutes a descriptor that captures discriminative
features of the shape, without being sensitive to small
perturbations.

Apart from the TSV strength, the node-to-node match-
ing strategy proposed in the shock graph approach is very
efficient in our limbs labeling context. Firstly, the depth-
first search strategy, inspired by the Reyner algorithm
[40], makes it possible to output a set of correspondences
that respect the hierarchical order of the nodes, which is
primordial for our application. The algorithm recursively
finds matches between the nodes of the sub-trees, starting
from the tree root and proceeding to the bottom in a
downward direction. Secondly, the backtracking of the
matching algorithm is much more efficient than in
standard depth-first strategies, where this step is made
statistically. Here, the algorithm dynamically recomputes
the branches at each graph node, and chooses the
following branch to go down by minimizing the TSV
distance between the remaining nodes.
4.3.2.2. Approach limitations. There are, however, some
important shortcomings when applying the shock graph
matching strategy in our context of limbs labeling, mainly
because the considered graphs have a small number of
nodes. We can classify the approach limitations with
respect to the three following criteria:
(i)
 Some nodes of the graphs are indistinguishable from
their TSV while their sub-graphs have a different
structure. There is thus a problem of specificity: when
dealing with small graphs, the TSV is not able to
discriminate between different structures.
(ii)
 The cost for matching to nodes when using the
weighted matrix PðG;HÞ of the bipartite graph mainly
relies on the Euclidean distance between TSVs.
Indeed, the cardinality is only used to sort the
correspondences with equal TSV distances. Intui-
tively, it would seem preferable to select large groups
having small differences in terms of TSV than to
select small groups with identical structure. In
addition, the depth of the two matching nodes is
not accounted for when forming correspondences.
There is thus a problem of hierarchical ordering: the
influence of the size of the matching nodes and their
depth is marginally taken into account.
(iii)
 The method only provides one solution that is
considered as the best at the current step of the
algorithm. In case of ambiguity, the process is thus
arbitrarily run from one (randomly) selected match.
4.3.2.3. Approach adaptations. To overcome the three
shortcomings previously stated, we adapt our algorithm
as follows.

4.3.2.3.1. TSV Padding. In the original approach [45], we
recall that when the TSV is not computable, it is padded
with zeros. However, this solution does not make it
possible to discriminate terminal nodes T from nodes BT

having an unspecified number of children that are
terminals. Indeed, the 0 eigenvalue magnitude sum of a
leaf node is indistinguishable from the padded 0 of the
TSV. This is the origin of the lack of specificity of the
descriptor for small sub-graphs. To overcome this short-
coming, the TSV is padded with the �1 value in our
approach. Another negative value would also be possible
(as the TSV elements are necessary positives). With our
proposed encoding, the number of 0 values for a BT node
makes it possible to determine its number of terminal
nodes. Shokoufandeh et al. [44] already note this problem
and suggest to add as extra dimension the eigenvalue
magnitude of the root node sub-graph. In our context, we
believe that this solution unnecessarily increases the
dimension of the TSV. We think that our representation
has the same specificity potential, and is more compact.

4.3.2.3.2. Bipartite graph matching. We propose a
matching criterion that gives a stronger impact than in
the initial approach to the size and the depth of the
matching nodes. Thus, we compute the cost CMðu; vÞ of a
matching between two nodes u and v in the following
way:

CMðu; vÞ ¼ kwu � wvk þ PGroup þ PDepth

PGroup ¼ �a � Nu � Nv (6)

PDepth ¼ b � jDu � Dvj

Thus, matching two nodes u and v with the criterion
defined in Eq. (6) depends on the topological distance
between their respective TSVs kwu � wvk, on the number of
nodes Nu and Nv of the sub-graphs rooted in u and v, and
on the difference in depth jDu � Dvj between the nodes.
PGroup is defined to overcome a shortcoming of the initial
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Fig. 9. Overview of the appearance learning and processing approach.
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approach when dealing with small graphs. Indeed, as the
original algorithm looks for exact matching between TSVs,
the algorithm tends to preferentially match small groups
that do not contain much structural information. In the
extreme, terminal nodes (i.e. leaves) do not contain any
structural information: we can match a given terminal
node of a given graph to any terminal node of another
graph, so that the matching is meaningless. As we look for
an inexact match between graphs (due to noise, view-
point variations, occlusions, etc.), we claim that it is
relevant to allow small variations between TSVs while
supporting matchings between large groups. Regarding
PDepth, we can note that weighting the matching cost
proportionally to the depth difference between two nodes
has been proposed by the authors [45] as a direction for
future works.

a and b are weights that determine the importance of
each term in the similarity, that have been experimentally
set up. Learning a and b from training data could be
possible for more complicated applications, but we find
it sufficient for our purpose. It must be pointed out that
both terms PGroup and PDepth must have a small weight
compared to the topological distance between nodes’ TSV.
Indeed, the TSV is the feature that makes the algorithm
robust to occlusions, and node insertions/deletions.
Therefore, it has to remain the feature guiding the
matching process. However, we claim that is preferable
in our context to match nodes that have slightly diverging
TSVs but a large number of children and that are at a close
hierarchy level than nodes with an exact TSV match but
that are far away in the hierarchy and that contain no
structural information because they are close to the leaves
of the tree.

4.3.2.3.3. Polygamous graph matching. The last impor-
tant adaptation with respect to the initial shock graph
approach corresponds to the ability to output several
matching solutions instead of one. Our algorithm can be
considered as a polygamous graph matching method.
Thus, each time multiple matches having a similar score
(as defined in Eq. (6)) exist, we create a new set of
correspondence, that we denote ‘branch’. We define the
global cost of each branch as Costbranch ¼

P
i2branch

CMiða; bÞ. When the algorithm terminates, we sort all the
generated branches by increasing order of cost. Matching
each branch cost with a specified threshold makes it
possible to output a set of probable correspondences.

4.3.2.3.4. Top/down verification. At this stage, the ap-
proach only uses the structural information of the graph
to label the visible body parts. This strategy has been
chosen because it only models the body part assembly,
leading to an approach that is invariant to the viewpoint
and the pose of the person. However, there are corre-
spondences that are topologically consistent but that are
not satisfying regarding geometry of temporal coherence.
Thus, we propose to solve the graph matching ambiguities
using a top/down verification step. In our context, there
are two kinds of ambiguities that are common. Firstly, the
head might be confused with an arm, in case of a single
segment being extracted in the image. Then, the verifica-
tion step uses the geometrical information of the model,
by assuming that the head should be the segment the
most parallel to the torso. Thus, for each candidate NI for
the head (which father is FNI), we compute the projection
PR on the segment being identified as the torso, with
image nodes denoted N0 and N1:

PR ¼ Ni � FNI
�����!

� N1 � NO

�����!
(7)

The head is supposed to be the node for which PR is
maximum. This assumes that the head and torso slopes
are close to each other (which is a reasonable hypothesis
whatever the configuration), while arms and torso slopes
are not. Finally, the head is supposed undetected in the
image if the maximum PR value is below a given threshold.

A second common topological ambiguity case corre-
sponds to left/right configurations between legs and arms
that are indistinguishable only regarding the structure of
the image and model graphs. These ambiguities cannot be
resolved by using simple geometrical reasonings either.
Thus, we propose to track each node over time. After
initialization, for each node candidate for an left/right
arm/leg that have previously been detected, a tracking
score is estimated by computing the distance in the image
between the current candidate and the previously
detected node. This computation is performed in a similar
manner as defined in Eq. (5) for disambiguating the root
identification. Finally, we compute a score relating the
appearance of a given candidate and the appearance of its
previously corresponding limb. How this appearance
update and matching are performed are detailed in
Section 5. Globally, the verification step processes as
follows. All remaining branches are re-ranked using the
geometrical, tracking and appearance feature described
above. The set of correspondence with the smallest cost
gives the body part labeling result at the current time
step.

5. Tracking people with AAMs

In the previous section, we explain how a set of
segments is extracted and labeled from the silhouette, in
order to identify the visible body parts in the image. By
now, we attempt at capturing an appearance model for
each limb so that a robust descriptor of each human in the
sequence can be learned on the fly, and used latter on for
recognition. the block diagram shown in Fig. 9 illustrates
the main component of this section, i.e. how learning and
using the appearance model for recognition.

We choose to model each body part with an ellipse,
with the parameters ðC;W ; L;aÞ, corresponding to center
position, length, width and angle between the length and
the x-axis, respectively. Although we could think directly
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Fig. 10. Articulated appearance model generating. (a) Ellipse from

segments. (b) Labeling using Eq. (8). (c) Model geometry. (d) Final

labeling.
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using the segment labeling results to estimate each limb
ellipse parameter, this option actually presents two
drawbacks. Firstly, we judge the accuracy of the joint
position estimation insufficient, particularly for the neck,
because the segment extraction is performed after
smoothing the silhouette. This is illustrated in Fig. 10(a).
Moreover, we want to generate an AAM for which the
segments detected as the shoulders and the hip are part of
the torso template. Thus, we use initial contour extracted
after the background subtraction scheme (before smooth-
ing), and we determine for each of its point Pi the closest
previously labeled segment. Formally, we compute, for
each Pi (i 2 f1;Ng) the distance dðPi; SjÞ to each labeled
segment Sj (j 2 f1;Mg) with vertices E1ðSjÞ and E2ðSjÞ. Let us
denote HðPiÞ the orthogonal projection of Pi on Sj, dðPi; SjÞ

can thus be computed in the following way:

dðPi; SjÞ ¼

kPiHðPiÞ
����!

k if HPi 2 Sj

and ½Pi;HPi� \C ¼ ;

min
k21;2
ðkPiEkðSjÞ
����!

kÞ if ½Pi;EkðSjÞ� \C ¼ ;

1 otherwise

8>>>>>><
>>>>>>:

(8)

Eq. (8) makes it possible to match each contour point to
a given labeled segment. This is illustrated in Fig. 10(b).
The AAM consists in a 10-part body model, as illustrated
in Fig. 10(c). Thus, each contour point identified as being
part of one of the torso, hips or shoulders segments is
associated to the torso template. The final labeling using
this constraint is illustrated in Fig. 10(d).

5.1. Learning people appearance: textural and shape

template generation

Once the silhouette contour points are partitioned to
match one human body model template, we determine
the best fitting ellipse for each limb. It is thus translated,
rotated and scaled to match the geometrical model shown
in Fig. 10(c). Thus, this registration to a fixed articulated
structure makes the appearance update invariant to affine
transforms. Note that the ratio between the different
limbs in Fig. 10(c) has been fixed by consulting anthropo-
metrics data, and corresponds to a front view. However, it
must be highlighted that this choice has no consequence
on the articulated model update. For example, the size of
the different body parts for a side view will be warped to
those corresponding to a front view, without altering the
quality of the templates update nor on the possible
matching process (see next sections).

Once the registration is performed, we use a temporal
appearance model inspired from Haritaoglu et al. [20], and
that has been extended by Zhao et al. [57] for integrating
color. The main strength of this appearance modeling
corresponds to its ability to combine the people appear-
ances seen over time to build a template that fully exploits
the temporal aspect of the video sequence. As pointed out
in Section 2.3, performing this averaging is only relevant
for rigid objects. It is thus completely violated for the
whole human body. However, we claim that this assump-
tion is reasonably fulfilled for each body part being a rigid
part of the articulated structure, and we then update the
appearance for each of the detected limb.

Thus, each limb appearance model is constituted of
two templates having the same meaning as those
previously introduced in [20,57] for the whole body. The
weight template W captures shape information. It repre-
sents the foreground probability, i.e. the probability for a
given pixel of the bounding box to be part of a limb. The
textural templates T captures color and textural features
and gives a discriminative description of the objects’
appearance. Updating templates proceeds as follows. Let
us denote It

ðx; yÞ to be the transformed current image
patch at time t, after aligning detected and model
bounding boxes, and Pt

ðx; yÞ as

Pt
ðx; yÞ ¼

1 if ðx; yÞ is inside current body part

0 otherwise

�
(9)

Pt
ðx; yÞ corresponds thus to the binary map of the

silhouette after the geometrical transformations. Then,
the update equations for W and T are thus given by

Wt
ðx; yÞ ¼Wt�1

ðx; yÞ þ Pt
ðx; yÞ

Tt
ðx; yÞ ¼

Tt�1
ðx; yÞWt�1

ðx; yÞ þ It
ðx; yÞ

Wt�1
ðx; yÞ þ 1

(10)

Note that Tt
ðx; yÞ is a 3D vector containing color

components treated independently.
5.2. People identification: matching AAMs

So far, we learned each people appearance when it was
easily visible (i.e. when a one-to-one dynamical region
liking is observed). We now explain how the updated AAM
can be used to identify people and maintain a robust
tracking in complex situations. We make an attempt at
recognizing people in two usual scenarios (see Fig. 2).
Firstly, when a new person enters the scene, we want to
decide whether the person has already been tracked in
the past. This application is particularly interesting in
multi-camera settings. Secondly, when a split is detected
for a merged blob at the region level. This commonly
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Fig. 11. Particle filtering for tracking during occlusions, adapted

from [21].
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occurs in case of occlusions, when people are crossing or
interacting.

In both cases, the previously learned AAMs are used to
identify people by their color, textural and shape proper-
ties. Basically, the recognition is carried out by computing
a similarity measurement between AAMs. Formally, let us
denote Ak

ðPiÞ ¼ fT
k
ðPiÞ;W

k
ðPiÞg the kth AAM for the kth

limb of the person Pi as the concatenation of the weight
and textural templates defined in Eq. (10). As in [20], we
propose to compute the distance DaðA

k
ðPiÞ;A

k
ðPjÞÞ between

the kth body part appearance models of two people Pi and
Pj in the following way:

DaðT
k
ðPiÞ; T

k
ðPjÞÞ

¼

P
ðx;yÞ2Lk�Hk

kWk
ðPiÞðx; yÞ � T

k
ðPiÞðx; yÞ �Wk

ðPjÞðx; yÞ � T
k
ðPjÞðx; yÞkP

ðx;yÞ2Lk�Hk
½Wk
ðPiÞðx; yÞ þWk

ðPjÞðx; yÞ�

(11)

Lk and Hk correspond to the kth template width and
height, respectively (see Fig. 10(c)). Then, we define a
distance DaðPi; PjÞ between the AAMs of people Pi and Pj as
follows:

DaðPi; PjÞ ¼

P8
k¼1ok � DaðA

k
ðPiÞ;A

k
ðPjÞÞP8

j¼1ok

(12)

The weights ok determine the relative importance of each
body part in the similarity measurement. ok is setup
proportionately to the number of times the given body
part has been updated. This seems to be a astute choice, as
the learned appearance confidence is directly related to
the amount of data collected for performing the averaging.

In the case of a new person PN entering the scene, we
perform the recognition by minimizing the distance
between the newly formed appearance model and the M

previously learned ones, i.e. we determine j0 such that

Pj0 ¼ arg
j

minfDaðPN; PjÞgj2f1;Mg

Matching DaðPN; Pj0 Þ to a given threshold DT
a makes it

possible to identify a new person entering the scene.
When we are trying to recognize a given person PS

after a sequence of merge/split at the region level (see
Fig. 2), the strategy differs slightly. Indeed, the split blob
comes from a given merge region containing a known
number M0 of people among the total M number of people
learned by the system over time. Thus, the people
identification is carried out by minimizing the distance
DcðPS; PjÞ, j 2 f1;M0g:

DcðPS; PjÞ ¼ wa � DaðPS; PjÞ þwt � DtðPS;PjÞ

where DtðPS; PjÞ ¼ kCðPSÞ � CðPjÞk (13)

The distance DcðPS; PjÞ contains two terms Da and Dt

with associated weight wa and wt that have been set
experimentally. In addition to the appearance term Da

defined in Eq. (12), the people recognition involves a
tracking term Dt , that measures the distance between the
centers of the two people bounding boxes CðPS) and CðPjÞ.
Indeed, as we detail in the next section, we propose an
approach for tracking people during an occlusion. Thus,
the tracking output for each of the M0 people inside a
single blob is used for specifying the people identification
when the blob splits.
5.3. Tracking during occlusion

So far, the proposed algorithm is able to learn people
appearance as soon as a region-based tracking can easily
be achieved, and use the people-specific appearance
model to identify humans. In this section, we explore
the problem of tracking people during an occlusion, i.e.
when a merge is detected at the region level (see Fig. 2).

Tracking object during occlusions is among the most
challenging problem in computer vision. In visual track-
ing, the problem consists in using appearance feature for
recovering the object position. The case of occlusion is
particularly difficult because each object likelihood often
becomes multi-modal during the occlusion. Thus, tracking
estimators modeling the likelihood with Gaussian
distributions (like Kalman filtering [25]) are likely to fail
and make the tracking drift irreversibly. To overcome this
shortcoming, particle filters have been proposed, the
CONDENSATION (Conditional Density Propagation) algo-
rithm [21] being considered as pioneer work. The
principle consists in trying to approximately estimate
the likelihood density instead of finding an optimal
solution only valid when the Gaussian assumption is
fulfilled. Basically, the approach can be separated into
three steps: motion modeling for prediction position,
weighting each candidate position, and re-sampling, as
illustrated in Fig. 11.

Formally, the particle filtering principle consists in
approximating the distribution of the considered state
vector X of the object by a set of N samples xðiÞ with
associated weights pðiÞ:

X ¼ fðxðiÞ;pðiÞÞ; i ¼ 1; . . . ;Ng with
XN

i¼1

pðiÞ ¼ 1 (14)

The PDF estimation is based on the importance sampling

principle, i.e. consists in associating to each sample or
particle a weight pðiÞ that measures its likelihood. For
tracking during occlusions, we propose here to use an
hybridization of the CONDENSATION algorithm, that is
only applied in that situation, i.e. only when sophisticated
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statistical filtering are required for estimating people
positions. We claim that this strategy is optimal when
attempting to maximize the accuracy/computational time
ratio. The state vector X ¼ fC; Sg that aims at being
estimated corresponds to the bounding box center posi-
tion (C ¼ ðCx;CyÞ) of each person inside the merged blob,
as well as its scale factor S. It is initialized with the
parameters of each individual person before the merge
occurs. We use a very simple first-order motion model,
followed by a Gaussian noise diffusion to explore the
search space. The weighting consists in computing a
simple color correlation measurement between the
propagated particles and the observed image data. The
main specificity of the hybridization in our context
corresponds to the possibility to bound the search space,
i.e. to discard some particles that are outside of the
merged region containing several people. This both
improves the accuracy of the estimation and decreases
the required computation time. A standard re-sampling
strategy is used to support particles with large
‘importance’, or likelihood. Finally, the algorithm outputs
the estimated state bx corresponding to the weighted
average of the particle set: bx ¼ E½X� ¼

PN
i¼1pðiÞxðiÞ.
6. Results

6.1. Body part labeling results

We present here some results illustrating the efficiency
of the proposed limb labeling strategy from the extracted
silhouette.

Fig. 12 focuses on results corresponding to the graph
matching part of the system. The coloring convention
used is related to Fig. 6: head is drawn in yellow, torso in
blue, arms in green and legs in red. Note that the
distinction between the two potential segments in arms
and legs is illustrated with a difference of intensity. These
results prove the ability of the approach to manage
unspecified viewpoints or human postures, illustrating
the invariance of the topological features extracted from
the graphs. In Figs. 12(a) and (b), the body part identi-
fication is presented for a standing posture with a back
view and a side view, respectively. We can notice that
the head labeling is properly performed in both
cases although arms are formed by a single segment.
Fig. 12. Labeling results in various poses and viewpoints.
This is a result of the geometric reasoning presented in
Section 4.3.2.3.4, where the verification step makes it
possible to disambiguate similar topological configura-
tions. Figs. 12(c), (d) and (e) show the results for sitting,
falling and lengthened poses, respectively. We can notice
that the torso is properly identified as the largest mean
radius segment in each case, illustrating the fact that the
image feature proposed in Section 4.2.2 is robust to
viewpoint and posture variations. In addition, we can note
that the head is localized in Figs. 12(c) and (e) because of
the geometrical verification step (the head being the
segment whose slope is the closest to the root). At the
opposite, in Fig. 12(d) the graph topology is sufficient to
conclude as the two segments for the arms are detected.
Finally Fig. 12(f) shows an example where someone is
walking on the hands. Arms and legs are properly labeled,
because the TSV encoded from the graph is totally posture
invariant and because the segments connectivity is here
sufficient to provide an unambiguous labeling.

In addition, we can see in these examples that padding
the TSV with �1’s, as described in Section 4.3.2.3.1, makes
our topological matching approach much more accurate
than the original shock graph method [45]. As an example,
let us consider Fig. 12(b). With the original approach, the
topological matching with respect to the model is quite
uninformative: for instance we can match the three nodes
of the arms to any of the nodes 2,3,4,5,6,7 of the model!
Such ambiguities do not occur with our proposed
encoding of the terminal nodes: we match the node of
the elbow to nodes 3 or 6 of the model and the nodes of
the hands to nodes 4 or 7 (only left/right ambiguities
remain, they are resolved as explained in Section
4.3.2.3.4).

Fig. 13 presents results where a significant number of
silhouette image segments is missing. In these examples,
at least one branch starting from one of the two root
nodes (torso) is absent. These missing visible body parts
can come from various situations. There may be partial
occlusions in the image: in Fig. 13(a) only a sub-part of the
body is visible in the image and in Fig. 13(b) the legs
are occluded by the table. In addition, we have to face
limbs auto-occlusions, making the corresponding segment
extraction from the silhouette impossible. For example in
Fig. 13(c), the two legs merge in the silhouette and a single
segment is extracted. In Figs. 13(c)–(e), the arms and the
torso are not separated in the image. Finally, in Fig. 13(f),
Fig. 13. Matching robustness to limb occlusions.
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Fig. 14. Tracking results as a top/down verification example.

Fig. 15. Articulated appearance model updating.
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the left arm is not detected because of a background
subtraction inaccuracy, but the algorithm is, however, able
to properly label the remaining visible parts. These results
illustrate the capacity of the algorithm to match graphs
with a different number of nodes, and to identify
topologically similar groups of segments.

Finally Fig. 14 points out the results of the tracking part
of the system, that is the most important aspect where the
verification step takes place. Indeed, symmetrical indis-
tinguishable left/right ambiguities inevitably occur when
only relying on topology, and a top/down verification is
required to obtain a unique labeling. The color convention
has been changed in this example to differentiate left/
right arms/legs: green for the right arm, red for the right
leg, cyan for the left arm, and magenta for the left leg. In
Fig. 14(a), the person is detected for the first time in the
sequence. The two legs are properly detected, but a single
segment is extracted for the right arm.

At the top/left frame, the person is tracked and graph
matching is performed. The left/right limbs are then
initialized randomly. After that, each ambiguous config-
uration is checked against the tracked nodes, making it
possible to enforce a unique coherent labeling over time.
From this time step, each time a topological ambiguity
appears, the set of correspondences are re-ranked using
the tracking cost explained in Section 4.3.2.3.4. As
illustrated in Figs. 14(b)–(f), the tracking is properly
performed all along the sequence, making it possible to
disambiguate the left/right labeling of the body parts.

6.2. Articulated appearance results

In this section, we present results illustrating the final
goal of the proposed approach, i.e. how an AAM is learned
and used to track people in video sequences.

Fig. 15 illustrates how the model is being updated. Each
detected and labeled limb is rotated and scaled to update
the geometrical model shown in Fig. 10(c). The generated
appearance is presented in the third row. In the shown
frames, all the body parts of the model are detected.
Obviously, this is not always the case. This is actually a
goal of this module to be robust enough not detecting
limbs when the segmentation yields poor results because
it prevents wrong updating of the model. For instance,
between frames 130 and 160 the legs are often not
detected because the man is squatting himself, resulting
in a single blob. As we can see, the model update results
are very good. The textural template will provide an
interesting feature for recognition.
6.2.1. Experimental validation, comparison and discussion

We evaluate the proposed tracking algorithm on a
sample of 40 sequences, containing manually collected
videos and sequences downloaded from public datasets.
The samples correspond to videos acquired from eight
different indoor sites and from six different outdoor
sites, with different viewpoints and lighting conditions.
Each sequence contains from two and five people
simultaneously present in the sequence, with complex
interactions making the tracking challenging: strong
occlusions (with people crossing and coming back to their
paths), people going out of the field of view and possibly
re-appearing, etc. We propose here to evaluate the
tracking performances by estimating the recognition rate
using the learned AAM, i.e. how many times the human
identification is properly carried out when a split is
detected at the blob level (or when a new person enters
the scene). Thus, in our overall dataset, 212 identifications
have to be made by the algorithm. The same set of
parameters for learning and recognizing appearance
(Sections 4 and 5, respectively) has been used for the
overall testing. The performances are shown in Table 1. We
compare the performances with methods modeling
appearance in a more simplistic way, such as global
templates or PDF models. The recognition rates have been
evaluated with the global template proposed by Zhao et
al. [57] that extends Haritaoglu et al. [20] approach by
integrating color in the appearance model. For PDF, we
propose a comparison with a color histogram (in the RGB
space) modeling, as proposed in [22,54,28]. As the low-
level steps (background subtraction and blob tracking) are
very similar in our algorithm than in the compared
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Table 1
Tracking performances: evaluating recognition rates

# Split # Identified people Recognition rate (%)

AAM 212 197 93

Global template 212 170 80

Color histograms 212 151 71

Fig. 16. The articulated appearance model captures a spatial information

that makes it possible to discriminate different textures. See text.

Fig. 17. Scale invariance of the model.

N. Thome et al. / Signal Processing: Image Communication 23 (2008) 769–787784
methods, we claim that the comparison between the
strategies for modeling human appearance is meaningful.

As we can see in Table 1, the proposed AAM
significantly outperforms both global templates and PDF
models: the global recognition rate is about 93%, since it
reaches 80% and 71% for the global template and color
histograms, respectively. This experimental validation
confirms our intuition (presented in Section 2.3) that
our approach is more adapted to learn human appearance
than global templates or PDF. Indeed, PDF modeling
ignores spatial information, and are thus not accurate
enough to discriminate different humans. On the other
hand, global templates are not adapted to learn human
appearance due to the complex articulated structure of
the human body, and commonly suffer from update errors
in common cases such as those illustrated in Fig. 1. We
now give examples from the studied dataset illustrating
these points.

Fig. 16 illustrates how people appearance can success-
fully be learned and used for recognition with our
approach, as it would have failed using a PDF modeling.
This sequence has been downloaded from Duric’s web
page (http://www.cs.gmu.edu/�zduric/Demos/) and was
used to validate his work dedicated to combining color
and edge information to perform background subtraction
[22,28]. It must be pointed out that the goal of their
approach was to provide a segmentation mask for people,
not to detect them individually, track or recognize them.

In this sequence, our algorithm processes as follows. At
frame 40, the red-framed and green-framed persons enter
the scene. They are detected by the background subtrac-
tion algorithm and tracked by the dynamical region liking
and the temporal coherence enforcement, without any
ambiguity until the frame 100. Thus, AAMs are learned for
each person. At frame 100, an occlusion is detected by a
merge at the region level. At frame 150, the people
separate from each other, and a split is detected at the
region level. The identification is successfully performed
by matching the previously learned AAMs. Contrarily, the
recognition fails when using a color histogram as input
feature, because this descriptor is not discriminative
enough. Indeed, the two color histograms are essentially
the same, and present modes next to the dark and light
blue region in the color space. On the other hand, the
AAMs can be discriminated by the torso, faces and arms
templates, that significantly differ. Moreover, the textural
features encoded in the appearance template are here
very useful to model the checked shirts by its ability to
capture its periodical pattern. Thus, the AAM can
efficiently discriminate the two torsos, since the red-
framed person template is texture free. In this sequence,
we can note that using a global template makes it possible
to successfully identify the two people, because their
apparent sizes remain the same, and because the template
update is easy to achieve.

Fig. 17 illustrates how our strategy for model updating
can manage difficult situations such as a person’s partial
occlusion, and important changes in size due to perspec-
tive effects.

At frame 50, the two people enter the scene, one being
far away from the camera with respect to the viewing
direction, the other one being very close to it. Let us define
P1 being the red-framed, and P2 the green-framed one.
From frames 50 and 110, P2 is partially occluded. At the
beginning only its torso, head and legs are visible.
Progressively its legs appear until frame 110 where he is
entirely inside the field of view. The third column shows
how its appearance model is being robustly built at frame
100, meaning that the body parts have been properly
identified and only visible parts have been updated.
Between frames 110 and 180, P1 and P2 walk in opposite
directions, resulting in a large variation in size of their
silhouette due to perspective effects. As we can notice, the
AAMs shown in the third column are properly updated.
Indeed, each time a limb is detected, it is rescaled to
match its model size, resulting in a proper update of
the corresponding template. Oppositely, using a global
template with an approach similar to [20] or [57] makes
the template update poor, as illustrated in Fig. 1. Indeed,

http://www.cs.gmu.edu/zduric/Demos/
http://www.cs.gmu.edu/zduric/Demos/
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the global templates with a fixed size are neither robust to
apparent changes in size nor to partial occlusions of the
limbs. Thus, in the same sequence, P2 goes out of the field
of view and re-appear later: the learned template with a
global model makes the identification fail, since it
succeeds with our AAM. The recognition using color
histogram manages to properly discriminate P1 from P2

in this specific case. However, we again point out the fact
that spatial information is lost when using histograms.
Thus, P2 may be confused with another person (e.g.
wearing a blue shirt and yellow pants) in a more complex
sequence.

Fig. 18 shows an example in an outdoor environment. It
illustrates the ability of the approach to track people
during an occlusion, and how this occlusion handling
improves the identification performance and the overall
tracking robustness. The first row shows the results as the
two isolated people enter the space. We can notice the
quality of the textural templates, presented in the last
column, although the silhouette is very small in the
image. At frame 300, the people start crossing and a single
region is now extracted by the background subtraction
algorithm: a merge is thus detected at region level. The
third row illustrates the use of the particle filter for
tracking during occlusion. At the three successive times,
thin rectangles represent the particles propagated for each
person, and the thick rectangle is the estimated position
output by the filter, corresponding to its mean state. As we
can see, even with the simplistic assumption carried out
(simple state vector, 1st order motion model, simple
weighting measurement, etc.), the tracking is surprisingly
satisfying. The probabilistic framework of the filter indeed
enables flexibility, and illustrates the fact that it is
particularly adapted for tracking during occlusions. The
main reason is that when the likelihood becomes multi-
modal, because the people occlude each other, the particle
filter makes it possible to explore the search space at a
large scale. When the people separate, the likelihood
Fig. 18. People recognition for a side view and tracking during occlusion.
shows strong peaks around the people appearance. Then,
the filter is able to densely re-sample particles around the
right position, and the tracking can be properly main-
tained. Finally, frame 360 shows how the matching
between AAMs again makes it possible to recognize
people. It can be noticed that the people recognition is
actually performed by the conjoint use of the appearance
models and the positions estimated by the particle filter,
as explained in Section 5.2. We can point out the fact that
the people were walking on a side view, as illustrated by
the shown textural templates. It has neither altered the
appearance model generation nor the matching, as
explained in Section 5.1. In this example, the recognition
fails using color histograms and global templates. Indeed,
some segmentation errors occur from 200 to frame 300,
making the global updates inadequate. However, using the
particle filter output (in addition to the appearance
learned) makes it possible to properly identify the two
persons.

In the 40 analyzed sequences, our algorithm only fails
at identifying 15 people. We can classify the observed
recognition errors in the following way. Most of them
come from sequences where many people have very
similar clothing, making the different AAMs very confus-
ing. In these sequences, the different people are mainly
recognizable by their face. However, the matching score
defined in Eq. (11) for the head template does not pretend
to be competitive for face recognition with respect to the
state of the art standards. Moreover, the difficulty of the
recognition is exacerbated by the low resolution images
extracted in our context. The second type of error is
related to the recognition of people re-entering the scene.
The parameter DT

a for thresholding the dissimilarity Da

between appearance models (Eq. (12)) has been difficult
to setup in the experiments. Indeed, we have to set DT

a so
that a new person entering the scene is not identified as
the most similar previously tracked one, but we must be
able to recognize the same person in a different view-
point. As the AAM is by essence 2D, it has difficulties in
managing such situations. A solution would be to estimate
the viewing direction, as proposed in the conclusion (see
Section 7).
6.3. Processing time

Table 2 gathers the complexity of the main steps of the
proposed tracking algorithm. The experiments were
carried out on a Pentium IV at 2:66 GHz, with 512 MB of
RAM. The software was built in Cþþ using Microsoft
Visual studio 2005 (version 7.0). The video sequences
were composed of image sequence with CIF resolution (i.e.
of size 320� 240).

As we can see, the background subtraction is the most
computational demanding step. Indeed, it is performed for
each image pixel. In addition, we fix the maximal number
of Gaussian distribution (see Section 3.2.1) to Kmax ¼ 3 in
our experiments. The data association corresponding to
the blob tracking presented in Section 3.2.2 only requires
some ms. Thus, the two previous low-level steps require
around 22 ms to be carried out. This processing time is
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Table 2
Computation time for the main steps of the tracking approach

Motion

detection

Blob

tracker

Limbs

labeling

Learning

appearance

Particle

filtering

Time

(ms)

20 2 4 1 10
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constant, i.e. it does not depend on the content of the
video sequence. Oppositely, the processing time for the
next three steps (limbs labeling, learning appearance and
particle filtering) is given per tracked person. Thus, we can
notice that the body part labeling using the graph
matching algorithm detailed in Section 4 only requires
4 ms. As previously mentioned, the complexity of the
graph matching algorithms is actually not a problem in
our context: as we usually extract few segments from the
silhouette, the proposed approach is computationally
efficient. Learning appearance as detailed in Section 5.1
is insignificant. Finally, the particle filtering approach
requires approximately 10 ms to track to people inside a
single region. It is worth mentioning that the tracking
algorithm can be successfully achieved without the
particle filtering. This step is indeed used for tracking
during occlusion, and provides additional information for
performing the recognition, as explained in Section 5.2.
Therefore, the tracking of k people with the learning/
identification proposed algorithm requires: 22þ 5 � k ms.
The proposed approach can thus be used for tracking up to
five person in real-time. If we only request 10 images per
second to be analyzed, which can be sufficient for
appearance learning and identification, up to 15 people
can be handled. However, it must be noted that the
algorithm is not dedicated to managing very crowded
environments, because the limbs labeling and appearance
model updating require individual person to be detected.

7. Conclusion and future works

We propose an hybrid tracking approach, that is able to
deal with several people and run in real-time. The
algorithm firstly uses a simple blob tracker dedicated to
detecting easy situations, and takes advantage of them to
learn people appearance. For properly updating the
appearance models over time, we chose to detect and
label the different limbs from the silhouette, that
constitute rigid parts of the articulated structure. This
task is managed by a graph matching strategy. Impor-
tantly, the approach only encodes topological information
for performing the labeling, making it possible to label
body parts for any pose (standing, lying, sitting, etc.) and
viewpoint. The limbs labeling enables us to generate a
person-specific appearance model, that provides a dis-
criminative feature used to identify people and maintain
the tracking in complex situations. We propose two main
directions for future works. Firstly, building a 3D appear-
ance model would make the identification step comple-
tely viewpoint independent, and is therefore appealing.
However, it would require to estimate the person viewing
direction, and is not straightforward. Secondly, tracking
body parts individually seems to be a very promising way
for increasing the system robustness. At the moment, this
step is mainly dedicated to disambiguating the body part
labeling. It could be interesting to use each body part
appearance to improve the tracking performances. It
would include occlusion detecting, and the ability to keep
tracking limbs during self-occlusions (arms and torso for
example). More generally, additional top–down verifica-
tions may be thought to analyze the blob tracker errors.
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