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Abstract

This paper addresses the problem of absolute visual
ego-localization of an autonomous vehicle equipped with
a monocular camera that has to navigate in an urban en-
vironment. The proposed method is based on a combina-
tion of: 1) a Hidden Markov Model (HMM) exploiting the
spatio-temporal coherency of acquired images and 2) learnt
metrics dedicated to robust visual localization in complex
scenes, such as streets. The HMM merges odometric mea-
surements and visual similarities computed from specific
(local) metrics learnt for each image of the database. To
achieve this goal, we define some constraints so that the
distance between a database image and a query image rep-
resenting the same scene is smaller than the distance be-
tween this query image and other neighbor images of the
database. Successful experiments, conducted using a freely
available geo-referenced image database, reveal that the
proposed method significantly improves results: the mean
localization error is reduced from 12.9m to 3.9m over a
11km path.

1. Introduction

The problem tackled in this paper is the visual geo-
localization of a vehicle operating in an urban environment.
Visual ego-localization is a key function for autonomous ve-
hicles such as personal service vehicles, self-driving cars,
and unmanned aerial systems, as it allows these systems
to navigate autonomously within their environment in or-
der to perform their mission. Visual geo-localization or vi-

Figure 1. Our system aims at answering the following question:
knowing a roughly position of the vehicle in a street and the scene
being observed by the vehicle’s camera, can we determine where
is it exactly along the street?

sual place recognition is a challenging task because two im-
ages of the same place acquired at different times and with
different cameras may show huge appearance differences
due to illumination and colorimetry variations (e.g. sunny
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or cloudy days), camera viewpoints changes, scene modi-
fications (e.g. seasonal changes, building construction) and
occlusions (e.g. by cars) (Fig. 2). Robustness to large vari-
ability in scene appearance is required for all autonomous
systems aiming at long-term operations in both indoor and
outdoor environments. It has to be noted that, even if it ex-
ists absolute localization systems like GPS, such systems
are not robust and precise enough. Furthermore, even if
odometric systems, IMU based or visually based, are able
to provide relative localization information at low cost, their
information is relative to a given position and suffers from
drift especially on complex trajectories. It can only be used
reliably on small portions of a trajectory and can’t be the
only source of measurement for absolute localization. We
propose a visual geo-localization solution including a novel
similarity estimator dedicated to applications for which ge-
ographical positions (GPS) of database images are available
and an a priori approximate localization of query image is
known. The solution aims at localizing precisely the vehicle
so that it can follow the trajectory that has been previously
defined (Fig. 1).

Figure 2. Vehicle images (a) and Google Streetview images (b).
Note the impact of different focal lenses, weather conditions,
viewpoint changes and the presence/absence of cars in the scene.

2. Related work
Visual geo-localization methods are mainly based on im-

age retrieval (IR) algorithm [26] [12] [14]. Most of them
rely on the extraction of features, that are compared directly
(kNN vote) or indirectly (Bag Of Words model) [27][13][1]
to geo-referenced features database using a distance. Meth-
ods mainly differ on the type of features extracted on-
line, the matching method, and the a priori information
used (geo-referenced database image, 3D model, 2D road-
map,...). Three different targeted types of application can be
distinguished, depending on the targeting localization preci-
sion, i.e. world scale localization ([12][8]), city scale local-

ization ([26][11]) and street scale localization ([30][28][2]
[3][22][19]).

Some examples of visual geo-localization methods are
briefly described hereafter. Schindler et al. [26] presented
a method for city scale localization based on the Bag
Of Words signature (BOW) using a dataset of street side
images. They proposed a greedy algorithm in order to
improve the accuracy of image retrieval for large scale
database image by optimizing vocabulary trees. Zamir et
al. proposed in [30] a hierarchical method to localize a
group of images. SIFT descriptors from database images
are indexed using a tree. A nearest neighbor tree search is
then computed for each SIFT query image feature. Weak
votes are removed and each reliable feature votes for a
location. All accumulated spatial votes are then filtered
by a Gaussian kernel. The geo-referenced image with the
highest number of votes determines the location. In [28],
the method described in [30] is improved by interpreting
the 2D map votes as a likelihood. This likelihood is then
used in a Bayesian tracking filter to estimate the temporal
evolution based on the previous state. Both solutions are
dedicated to web video annotation, and localization is not
realized on the fly. In [2], the vehicle localization algorithm
uses simple visual features and 3D features. The solution
requires that a compact map described as a graph is built in
a preliminary phase. Nodes include vehicle position at fixed
distance interval and visual and 3D features. At runtime,
a Bayesian filter is used to estimate the probability of the
vehicle position by matching the features extracted from
sensors with database features. Their solution uses two lat-
eral cameras and two lateral LIDARs. The same sensors are
used during the map building step and the localization step.
In contrast, our solution is monocular and uses different
cameras for acquisition and reference database. In [22], the
localization is achieved by recognizing temporal coherent
sequences of local best matches. These local best matches
are based on a Sum of Absolute Difference (SAD) on
resolution-reduced and patch-normalized images between
last acquire image and M previous images. The proposed
solution is robust to extreme perceptual changes. In [23],
the solution has been improved to provide invariance to
vehicle speed, but remains sensitive to important point of
view variations. Our solution adresses this problem by
learning. In [19], authors work on visual similarity for UAV
ego-localization. They propose to generate artificial views
of the scene in order to overcome the large view-point
differences. Nevertheless, spatio-temporal constraint is not
taken into account. Loop closure algorithms include place
recognition functionnality. One state-of-the-art example
is FAB-MAP [6] [7]. Authors propose a probabilistic
model on the top of bag of visual words to compute the
probability that two observations are collected from the
same location. The model takes into account the correlation



between visual words. Their solution remains sensitive
to strong perceptual changes, and the same camera is
used for database images and query images. Odometry
information has been incorporated into FAB-MAP [18].
Another type of approach is to learn specificities of each
place, as our solution that learns a visual similarity measure
for each place. In [11], the problem is cast as a classifi-
cation task, a classifier for each image in the database is
trained using per-exemplar SVM approach. In [21] the
authors propose to learn a bank of detectors for each place,
to identify specific scene structures instead of local features.

Our solution is dedicated to street scale localization. As
in [30] [28] [2] [22] [23], our solution uses spatio-temporal
coherency thanks to the use of a Bayesian filter enabling
to take into account visual similarities and odometrics mea-
surements. No assumption is done concerning the constant
velocity of the vehicle, but as in [31] we consider coarse po-
sition estimates provided by an odometric sensor and their
uncertainties. As in [19], we generate artificial view from
available geo-referenced database images. Our similarity
visual solution, Exabal, uses these artificial views to learn
offline, in a supervised way, a local similarity measure dedi-
cated to robust visual localization in complex scenes such as
street images. Exabal learns a local pseudo-distance matrix
for each image of the database, so that the distance between
a database image and the given query acquired from the
same scene is smaller than the distance between this query
and other (close) images in the database.

Our method encompasses the following contributions:

• We propose a novel local visual similarity measure in-
cluded within a HMM. The learning of a local metric
for each dataset image is cast as a convex optimization
problem, which is efficiently solved with a projected
gradient descent scheme. Once this off-line procedure
is carried out, computing the similarity at test time is
very efficient, e.g. much faster than methods based on
descriptor votes like [30]. It can benefit from exist-
ing fast indexing structures (e.g. inverted files, search
trees).

• During training, we generate sensible geometric and
photometric transformations to model images similar
to unknown query images. This makes possible the
learning of features able to discriminate a given dataset
image from its neighbors, and at the same time to
learn invariance to common transformations occurring
at test time.

• Successful experiments reveal the ability of the
method to localize the vehicle within complex street
scene. We show that the model learns sensible invari-
ances and discriminating features for localization.

The effectiveness of our approach has been evaluated
over a 11 km path using two kinds of images: Google
Streetview images [4] simulating images acquired online by
the vehicle camera and Google Pittsburgh image dataset [5]
as geo-referenced image database.

3. Exabal-HMM solution
The learnt local visual similarities, provided by Exabal,

are included within a Bayesian based solution, a HMM,
which is described in details in section 3.1, while our sim-
ilarity measures based on an exemplar-based metric learn-
ing solution is described in section 3.2. The HMM used is
similar to the one described in [17]. It enables to filter out
some wrong matches provided by standard image retrieval
algorithms, by finding the trajectory that best explains the
M past observations and, therefore, current vehicle posi-
tion. Such solution is an hybrid framework allowing to take
into account uncertainties of estimated position, odometric
measurements, and visual similarity measurements.

3.1. Position tracking with HMM

3.1.1 General principle

At each time t the vehicle acquires an image Ok and re-
ceives an estimate of its current position S̃k from the odo-
metric system. The goal of the absolute localization al-
gorithm is to produce a better estimate Ŝk of the current
vehicle position from the past observations and odometric
measurements (Fig. 3). The estimator is a function of the
M past observations Ok = {Ok−M+1, . . . Ok} (i.e. the
current location estimate exploits a set of observations in a
sliding window based approach of length M ) and the es-
timated position S̃k. Estimation is realized in a classical

Figure 3. System overview: from the M past observations and
associated odometrics measurements as well as a rough position
estimate S̃k the system combines within a HMM all information
to determine the corrected position Ŝk.

random variable setting where the vehicle location at time t



is considered as a random variable qt taking values in a dis-
crete set of possible location Sj with j ∈ {1, ..., N}. The
main modelling hypothesis is that its random behaviour is
represented by a HMM.

Using the classical notations of [24], the use of a
HMM requires the definition of the adequate model λ =
{N,M,Π, A,B} where N is the number of states, M is
the number of observations, Π is the prior on the initial state
(i.e. the estimated position), A is the transition probability
matrix between the states and B is the observation proba-
bility matrix given some states.

The HMM approach provides a standard way to esti-
mate the most likely state sequence Ŝk, i.e the M succes-
sive places, explaining the sequence of observations Ok =
{Ok−M+1, ..., Ok−1, Ok} :

Ŝk = arg max
S

P (S|Ok, λ) (1)

This can be solved with the Viterbi algorithm.
The question is now to design the HMM adapted to the

estimate of the absolute vehicle location. This will be de-
tailed in two steps: construction of the state transition ma-
trix A and initial state vector, and computation of the con-
ditional observation matrix B.

3.1.2 State transition matrix and initial state vector

The state transition matrix A and initial state vector are
built from knowledge of the odometric system behaviour
and vehicle kinematics. From the vehicle kinematics, im-
ages are approximately acquired every D meters 1 with an
odometric uncertainty of ∆ meters. The image database
consists of overlapping images acquired every D

′
meters

with D
′ ≤ D. In this setting, the database is therefore as-

sumed to have a bigger sampling rate than the online image
acquisition rate. Each possible state location Sj is uniquely
defined by a geo-referenced database image Ij .

The filtering capacity of the HMM depends on the num-
ber M of past observations. One critical parameter is the
localization uncertainty U which defines the area where the
vehicle is supposed to be. This localization uncertainty can
be, for example, the initial position uncertainty when the
vehicle starts its planned trajectory.

The number of states N , i.e. the number of potentially
matching images in the database, the initial state probability
Π and the state transition probability matrixA depend onU ,
D, ∆ and M . They are defined the following way:

• N : Given the putative position of the vehicle S̃k, the
localization uncertainty U , the approximate displace-
ment D, and the observation number M , the potential
states, i.e. the set of database images to consider for
matching can be easily determined.

1For simplicity, D is supposed to be constant, but it could be variable.

Figure 4. Observation matrix B : the HMM enables to find the
trajectory among these visual similarities taking into account un-
certainties of initial estimated position (Π vector) and odomet-
ric measurements, i.e. possible transitions (A matrix). Red color
means high similarity, while blue color means low similarity.

• Π: Π = {πj}j=N
j=1 where πj = P [q1 = Sj ]. It depends

on initial position estimate (i.e. estimated position by
previous HMM) and localization uncertainty U . We
use uniform uncertainty on interval of size F = 1 + 2 ·
dU/D′e.

• A: A = {aij} where aij = P [qt+1 = Sj |qt = Si],
1 ≤ i, j ≤ N : To take into account odometric uncer-
tainty ∆ for a displacement D, we defined A as:

aij =
1

d2∆/D′e
rectd∆/D′e(i− j − (dD/D′e)) (2)

3.1.3 Observation matrix

The observation matrix B = {bj(k)}, where bj(k) =
P [Ok at t|qt = Sj ], 1 ≤ j ≤ N and 1 ≤ k ≤ M is
the probability of observing Ok when location is Sj . The
observation matrixB is computed from visual similarity be-
tween the M past observations Ok = {Ok−M+1, ..., Ok−1,
Ok} and the set of potentially matching database images Ik
associated to state/position Sj (Fig. 4). Visual similarity is
a critical module for such solution. We propose to com-
pute this probability from the similarity measure using the
following formula:

bj(k) = α · exp(−a · D2
j (Ok, Ij)) (3)

where a is a constant, Dj(Ok, Ij) is the local visual simi-
larity measure for image Ij and α is a normalization con-



stant to impose
∑j=N

j=1 bj(k) = 1. The determination of
Dj(Ok, Ij) is explained in section 3.2.

A summary of the general estimation scheme is pre-
sented in algorithm 1.

Algorithm 1: Vision based absolute localization from
odometric measurements and acquired images

Input: M last past observations
O = Ok−M+1, ..., Ok, M odometrics
measurements dk−M+1, ..., dk, Estimated
position of the vehicle S̃k and localization
uncertainty U , Odometric uncertainty model to
compute ∆, Geo-referenced database images
Ij and associated metrics Mj .

Output: M corrected vehicle positions
Ŝ = Ŝk−M+1, ..., Ŝk.

1 Compute A and Π from S̃k, U and ∆ and M as
explained in section 3.1.2;

2 Select relevant geo-referenced database images from
S̃k, U , D, and M ;

3 Compute similarities between the M past observations
and relevant database images as explained in
section 3.1.3;

4 Compute B from similarities with Eq.(3);
5 Apply Viterbi algorithm to solve Eq.(4) to estimate the

latest vehicle position Ŝk;

Given λ = {N,M,Π, A,B}, Eq. 4 can be solved.

Ŝk = arg max
S

P (Ok|S, λ) · P (S, λ)

= arg max
S

(
k=M∏
k=1

P (Ok|S, λ)

)
·

(
π1 ·

k=M∏
k=2

ak−1,k

)
(4)

The first term of Eq. 4 refers to visual similarities be-
tween observations and the image database, whereas the
second term refers to the dynamics of the vehicle and mod-
els spatio-temporal constraints.

3.2. Local visual similarity learning

We detail in this section our Exabal module that makes
it possible to compute off line, i.e. in a pre-processing step,
the local distance Dj that is required to compute Eq. 3.

We consider here the widely used Mahalanobis distance
metric Dj = DMj that is parameterized by the positive
semi-definite matrix (PSD matrix) Mj ∈ Sd+ such that
the distance between vectorial representations (xj ,xi) ∈
Rd × Rd of the images (Ij ,Ii) is written as follows:

D2
j (xj ,xi) = D2

Mj
(xj ,xi) = (xj−xi)

>Mj(xj−xi) (5)

Figure 5. Creation of simulated similar and dissimilar examples in
order to learn for each geo-referenced image database Ij a metric
Mj .

Exabal learns from artificial examples a local distance
matrix Mj , as defined in Eq. 5, for each image of the
database Ij , leading to an exemplar-based metric learning
scheme. The overall pipeline of the proposed metric learn-
ing scheme is described by algorithm 2 and the examples
generation is illustrated by Fig. 5.

3.2.1 Exemplar-Based Constraints

Basically, we impose that the distance between each im-
age signature xj and other neighbor image signatures of the
database xj′ , j′ 6= j, is larger than the distance between xj

and a query signature xq representing the same scene as Ij .
Images, which are representative of the unknown query im-
ages, are required during training. To this end, we propose
to apply geometric and photometric transformations on Ij
to generate proxies for potential test query images.

We note Ts(xj) and Td(xj′) the vectorial signature of,
respectively, T (i)

s (Ij) and T (i)
d (Ij′) ,where T (i)

s and T (i)
d are

a set of image transformations. During training, we enforce
the following constraints:

DMj
(xj , Td(xj′)) ≥ DMj

(xj , Ts(xj)) + 1 (6)

The constraints in Eq. 6 promotes matrices Mj that discrim-
inate Ij images from Ij′ images, at the same time as taking
into account potential transformations. An interesting prop-
erty of our constraint generation approach is the ability to
produce a large number of constraints by sampling differ-
ent T (i)

s and T (i)
d transformations, making the optimization

of Mj (with a potentially large number of parameters) ro-
bust to over fitting. In this paper, we focus on rotations and
cropping operations, but some other modes of scene vari-
ations could be explored, as lighting, shadow and seasonal



variations.
Each image Ij is described by a feature xj correspond-

ing to a BOW vector [27] encoding spatial information [16].
We validate in the experiments (section 4) that the method
learns a distance and selects discriminative and spatially lo-
calized features, making the similarity measure much more
powerful than the distance in the input space.

3.2.2 Optimization

To minimize the number of misclassified constraints in
Eq. 6, we introduce a standard hinge loss function `d
for penalizing the violation of each constraint in Eq. 6:
`d(xj , Ts(xj), Td(xj′)) =
max

[
0, 1−

(
DMj

(xj , Td(xj′))−DMj
(xj , Ts(xj))

)]
, as

well as the following convex loss `s for each pair
(Ij ,T (i)

s (Ij)): `s(xj , Ts(xj)) = DMj
(xj , Ts(xj)). `s aims

at minimizing the distance between each image and its
transformed version, i.e. between similar images. It can
be interpreted as a regularization prior. It is to be noted that
other regularization schemes could also be used, e.g. based
on the Frobenius, nuclear norm [20] or methods giving an
explicit control of the matrix rank as [15].

Our final objective P(Mj) function combines the loss `s
and `d over the whole set of constraints, with a weighting
parameter µ:

P(Mj) = (1− µ)
∑
Ts∈T

`s(xj , Ts(xj))

+ µ
∑
j′ 6=j,

(Td,Ts)∈T ×T

`d(xj , Ts(xj), Td(xj′)) (7)

Eq. 7 is convex with respect to Mj . We can use a
stochastic projected gradient descent scheme to solve it. Af-
ter each gradient computation, the matrix Mj is updated
and projected onto the PSD cone if necessary. The algo-
rithm is guaranteed to converge to the global minimum, up
to a well-chosen gradient step. In practise, the optimization
is fast with reasonable number of constraints and quickly
converges.

3.2.3 Similarity measure within the HMM

Once a metric Mj is learnt for each image Ij of the
database, it becomes possible for a given observation Ok to
compute bj(k) thanks to Eq. 8, where xk is the visual sig-
nature for observation Ok and xj are the visual signatures
of considered geo-referenced images.

bj(k) = α · exp(−a · (xj − xk)TMj(xj − xk)) (8)

When computing similarities with Eq. 8, there is no obvious
guarantee that the different distances DMj

(xj ,xk) for dif-
ferent Mj are comparable, since each optimization has been

Algorithm 2: Local metric learning module
Input: Database geo-referenced image Ij
Output: Local metric Mj for geo-referenced database

image Ij .

1 Select database geo-referenced neighbor images Ij′
(j 6= j′);

2 Generate simulated images by applying some
transformations on images Ij and Ij′;

3 Compute visual signatures of all simulated images, i.e.
Ts(xj) and Ts(xj′);

4 From all visual signatures, learn metric Mj by
optimizing cost function (Eq. 6).

performed independently. To alleviate this problem, we nor-
malize each Mj , as a post-processing learning step, so that
the Frobenius norm of Mj is equal to 1. We could use more
advanced normalization schemes as proposed in [10], but
we found it sufficient in our experiments.

4. Experimental results

4.1. Experimental setup

We built an image corpus from Google Pittsburgh dataset
[5] for image database, and from Google Streetview images
for query images [4]. These image dataset have been ac-
quired at different time, resulting in strong visual changes
for the same scenes (Fig. 2). Camera fields of view are also
different. Pittsburgh dataset images have been resized to
640x480, so that their resolutions match the query image
resolution. From the original corpus, we keep one image
everyD′ = 5m resulting in a corpus of 2215 images. Query
images are downloaded from Google Streetview website
(resolution of 640x480, field of view of 100o, camera tilt
of 5o.) We requested one image every D = 15m resulting
in 846 query images.

BOW are computed from SIFT descriptors densely ex-
tracted [29]: four scales are used 1, 1.5, 2, 2.5 and the step
between each SIFT descriptor is 4. BOW parameters are the
followings: Hard assignment, Sum pooling, L2 Normaliza-
tion, no tf-idf weighting. Spatial Pyramidal Matching con-
figuration for BOW is 1x1, 2x2. The size of the codebook
has been chosen to be 100.

Concerning the parameterization of our software, local-
ization uncertainty U is set to ±100m, which is equivalent
to an uncertainty error of ±20 database image. Image re-
trieval is thus performed among N=41 database images. The
odometric uncertainty is set to ∆ = 10m for a mean dis-
placement between two queries of about 15m. The trade-off
parameter µ between the two terms `s and `d of the objec-
tive function, was set to 0.5.



4.2. Results

We compared our solution (Exabal+HMM) including the
similarity measure described in section 3.2 used within a
HMM filter described in section 3.1 with two state of the
art IR solutions. The first one is a similarity measure based
on L2 norm between query and database BOW (L2+HMM),
and the second one is based on a similarity computed thanks
to the number of SIFT descriptors that matches between the
query image and each database images after a RANSAC [9]
geometric filter (Vote+HMM). We also report achieved per-
formances when no HMM filter is used and for different
BOW spatial configurations. Performances, i.e. mean lo-
calization error, IR accuracy an time to process one query,
using the previously described setup, are given in Tab. 1.

These results show the interest of exemplar based local
metric learning for visual geo-localization. Compared to
(L2+HMM) method, our solution (Exabal+HMM) achieves
a substantial accuracy gain of 8% (from 46% to 54%). At
the same time, the mean localization error is reduced from
4.9m to 3.9m. Without HMM filter, achieved performances
by our solution remains better than a standard IR solution
based on BOW compared with Euclidean distance. In that
case, Exabal improves performances by 8% (from 40% to
48%).

Achieved performances validate our objective function
defined by Eq. 7, as well as the way we generate the con-
straints, i.e. by applying various transformations to database
images in order to build representative images that likely
look like to potential query images. The processing time is
a slightly higher as the Mahalanobis distance is more com-

Method Spatial conf. Loc.
error Acc. Time

L2 +
HMM

1x1 8.0m 42%
7.2s1x1, 2x2 5.3m 44%

1x1, 2x2, 1x3 4.9m 46%
Exabal
+
HMM

1x1 4.5m 52%
8.6s1x1, 2x2 4.1m 54%

1x1, 2x2, 1x3 3.9m 54%
Vote +
HMM 4.1m 50% 55,6s

L2
1x1 17.4m 34%

6.8s1x1, 2x2 14.6m 38%
1x1, 2x2, 3x1 12.9m 40%

Exabal
1x1 12.0m 42%

8.2s1x1, 2x2 11.3m 46%
1x1, 2x2, 1x3 10.1m 48%

Vote 11.8m 50% 55,2s
Table 1. Mean localization error, accuracy and time to process one
query with and without HMM for our solution compared to state
of the art IR algorithms.

plex to compute than an Euclidean distance, but at the same
time it is less complex than a vote solution. Compared to a
vote solution, the time to process one query (measured with
Matlab) is roughly reduced by a factor 10.

The use of the HMM reduces significantly the mean er-
ror localization, because HMM enables to filter out absurd
match, i.e. those that do not respect spatio-temporal co-
herency of the query image sequence. It has to be noted
that for the vote experiment, whereas mean error localiza-
tion is reduced, IR accuracy is not improved: even if absurd
matches are removed, correct matches are not found due to
a bad similarity measure. The improvement provided by
the HMM use confirms that exploiting the spatio-temporal
constraint is essential. Furthermore, when the dimension of
the visual signature increases (from 100 to 800 in our ex-
periments), then results are slightly better, but this is not the
main improvement factor.

Fig. 6 are some examples where (Exabal) without HMM
filtering makes it possible to find the database image (b) that
depicts the same scene as the query image (a), whereas (L2)
solution can’t (c).

Figure 6. (a) Query images - (b) Images retrieved with (Exabal)
solution - (c) Images retrieved with (IR-L2) solution.

4.3. Further insight

Thereafter, we analyze the reasons of performance im-
provements by (Exabal) only. We first illustrate that learnt
metrics make it possible to retrieve the good image database
if the query image is close to one of the generated image.
Then, we show that improvements are due to the selection
of discriminative features and the learning of invariance to
photometric and geometric transformations.

• Learnt metrics during training

Fig. 7 shows the distances between all similar generated ar-
tificial BOW Ts(xj) and xj as well as xj′ BOW. The learnt
metric enables to discriminate all potential generated query
images from neighbor images, whereas it was impossible
with the Euclidean norm. Indeed, whatever the query sim-
ulated image Ts(xj), DMj (Ts(xj),xj) remains inferior to
DMj

(Ts(xj),xj′). This means that if the signature of the
effective query at test time is close to one of the generated



queries, then we will be able to retrieve the good image
database thanks to the learnt metric.

Figure 7. L2 and learnt Mahalanobis distances between potential
query signatures Ts(xj) and xj signatures as well as xj′ , i.e. sig-
nature of neighbor images Ij′ (j′ 6= j).

• Selection of discriminative features and discriminative
image area(s)

The first advantage of our method is that it selects rele-
vant, i.e. discriminative visual features. To visualize the
most discriminative word for a given database image, we
compute the eigenvector v1 of the largest eigenvalue λ1

of Mj that represents the importance of each visual word.
M

′
= λ1v1v

T
1 is the nearest rank-1 matrix of M in the `2

norm. ThusD2
M (xj , xk) ≈ λ1(vT

1 (xj−xk))2 and therefore
v1 weights the importance of visual words. Fig. 8 shows
the visual word having the highest value in vector v1. This
visual word ”window corner” makes it possible to retrieve
the good image (b), although many features (the bricks of
the wall) were common between the query image (a) and a
neighbor image (c). What’s more, as the BOW hold spa-
tial information, we also check that Exabal is able to learn
where are located the most discriminative features in the
image.
• Learning invariance to photometric and geometric

transformations
Another advantage of our method is that we learn invari-
ance to photometric and geometric transformations. To
demonstrate it, we selected randomly 1000 database im-
ages on which various transformations have been applied
(i.e. various rotations from−18◦ to +18◦ around the 3 axes
and various crops from 6 to 35 pixels). Thus we gener-
ate 10000 query test images Iq = T

(i)
s (Ik), that have not

Figure 8. The visual word ”window corner”, that has been learnt
to be discriminating, improves image retrieval task.

been used during training. The mean classification rates for
these simulated query images are reported in Tab. 2 for (L2)
and (Exabal) solutions. A classification rate of more than
99% when learnt Mahalanobis distance is used confirms our
claim concerning invariance to photometric and geometric
transformations.

Mean classification rates
L2 94.8%
Exabal 99.1%

Table 2. Mean classification rates computed for simulated test im-
ages.

5. Conclusion
We proposed a new visual geo-localization solution for

autonomous vehicle adapted to applications for which geo-
graphical positions (GPS) of database images are available
as well as an a priori approximate localization of the vehi-
cle. The proposed solution includes exemplar-based learnt
metrics within a HMM. Similarities are simple and fast to
compute: for each observation, only one BOW has to be
computed and N Mahalanobis distances. Learning method
is generic: depending of the final application, transforma-
tions used during training can be easily adapted. We demon-
strate that learnt similarities select discriminating features,
and are able to gain invariance to meaningful transforma-
tions. We compared our framework with state of the art
image retrieval algorithms evaluated on a corpus of 846
queries and 2215 database images. Our solution improves
accuracy from 40% for a traditional BOW solution to 54%,
while maintaining the same processing time. At the same
time, the mean localization error is reduced from 12.9m to
3.9m. Finally, even if we use BOW as visual signature,
other visual signatures can be easily used, as the recently
deep features [25] which have been demonstrated to be ef-
ficient.

6. Acknowledgment
This work results from a collaboration between UPMC

University, Onera and Thales Services SAS.



References
[1] S. Avila, N. Thome, M. Cord, E. E. Valle, and A. D. A.
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