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ABSTRACT
Training deep ConvNets requires large labeled datasets. However, collecting pixel-level labels for
medical image segmentation is very expensive and requires a high level of expertise. In addition, most
existing segmentation masks provided by clinical experts focus on specific anatomical structures. In
this paper, we propose a method dedicated to handle such partially labeled medical image datasets.
We propose a strategy to identify pixels for which labels are correct, and to train Fully Convolutional
Neural Networks with a multi-label loss adapted to this context. In addition, we introduce an itera-
tive confidence self-training approach inspired by curriculum learning to relabel missing pixel labels,
which relies on selecting the most confident prediction with a specifically designed confidence net-
work that learns an uncertainty measure which is leveraged in our relabeling process. Our approach,
INERRANT for Iterative coNfidencE Relabeling of paRtial ANnoTations, is thoroughly evaluated on
two public datasets (TCAI and LITS), and one internal dataset with seven abdominal organ classes.
We show that INERRANT robustly deals with partial labels, performing similarly to a model trained
on all labels even for large missing label proportions. We also highlight the importance of our it-
erative learning scheme and the proposed confidence measure for optimal performance. Finally we
show a practical use case where a limited number of completely labeled data are enriched by publicly
available but partially labeled data.

1. Introduction
Abdominal organ segmentation is a major challenge in

medical imaging and computed-aided diagnosis. Good lo-
calization and segmentation of internal structures are impor-
tant for radiologists, which helps them to compare physical
changes in response to a treatment. It also offers important
tools for surgeons in planning treatments and interventions
in addition to other computer-assisted applications, e.g.Aug-
mented Reality.

Currently, state-of-the-art methods for visual recognition
rely on deep learning. Convolutional Neural Networks (Con-
vNets) [25] and more precisely Fully Convolutional Neural
Networks (FCNs) [31] have become standard solutions for
semantic segmentation of generalist images. In the context
of medical image segmentation, specific architectures such
as U-Net and variants [39, 9, 32, 29] are standard choices
showing optimal performances.

However, an important issue when training deep Con-
vNets is the need of having a large amount of labeled data.
The problem is particularly pronounced for medical image
segmentation, where the label process is extremely time-
consuming and requires highly qualified professionals. As a
consequence, large-scale and clean medical image datasets
are rarely available. In abdominal organ segmentation, the
manual label process often focuses on specific anatomical
structures, e.g. the liver and its pathologies. Thus, large
datasets containing partially labeled images are easier to ob-
tain by aggregating smaller labeled datasets with different
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amounts of labels compared to a complete dataset contain-
ing all the abdominal organs.

In this paper, we address the problem of training deep
ConvNets with partially labeled datasets. Our training con-
text is illustrated in Figure 1: in this example, the input slice
is partially labeled with 3 organ classes out of 7 for the un-
known complete labeling. Aswe verify experimentally, naively
applying state-of-the-art models such as U-Net to these par-
tial labels leads to bad performances, since it includeswrongly
labeled background pixels for missing organs.

To specifically handle the partial labeling problem, we
introduce a method which encompasses two main contribu-
tions:

• Firstly, we propose a specific loss to train the seg-
mentation network dedicated to include only correct
labels, i.e. it selects pixels that could be learned and
those that should be ignored during training (white vs
black pixels in Figure 1). The general motivation is to
eliminate all pixels that are wrongly labeled as back-
ground for missing organs.

• Secondly, we propose a self-supervised scheme to iter-
atively relabel themissing organs by introducing pseudo-
labels into the training set, in order to estimate the
unknown complete ground-truth labels. For that, we
add a confidence network that helps to select the best
pseudo-labels and thus reduce the introduction ofwrong
predictions.

Our overall approach is called INERRANT, Iterative coNfi-
dencE Relabeling of paRtial ANnoTations.

Our proposed method strongly relies on the medical na-
ture of the considered images. We leverage import priors
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Figure 1: The 3D CT-scan is partially labeled: in this slice, only 3 out of 7 organs
are labeled. Naively using such partial ground-truth (GT) labels is inappropriate since it
includes wrong background labels for missing organs. INERRANT is based on identifying
pixels for which labels are correct, and ignoring others. The segmentation network is
trained on those data and a confidence network outputs confidence scores for each pixel
to incrementally add pseudo-labels to the training set and recover the unknown complete
ground-truth labels.

about the organ labels such that every organ is present, even
if non-labeled, in the input volume at only one place (a class
is assigned to only one object in the volume). It allows us
to deduce the unlabeled organs for each volume and thus,
which classes should be ignored during training.

INERRANT builds upon the preliminary work proposed
in [38]. We extend [38] by:

1. Using a better confidence estimation for generating
pseudo-labels. The confidence is learned via a dedi-
cated network best suited for distinguishing errors from
correct predictions, which enables tomaximise the num-
ber of correct labels introduced during pseudo-labeling.

2. Providing a comparisonwith recent state-of-the-art semi-
supervised methods for learning with partial labels. In
addition, we include ablation studies highlighting the
importance of the new confidence measure and the it-
erative pseudo-labeling process.

3. Providing amuchmore thorough evaluation by report-
ing performances on two public datasets (TCIA and
LiTS) and one internal dataset containing seven organ
classes (vs 3 in [38]). Moreover, we show the generic-
ity of our approach by using a U-Net as our backbone
model whereas [38] uses a simple FCN model.

4. Showing a practical use casewherewe combine amulti-
organ dataset with a single-organ public dataset (TCIA).
This shows that we can exploit large amounts of la-
beled images by gathering heterogeneous data.

2. Related Work
2.1. Abdominal CT Organ Segmentation

Automatic organ segmentation has been widely studied.
Early works used for instance atlas-based segmentation [24,
20, 41, 45, 21, 44] or statistical shapemodels [33, 40, 35, 17].

Over the last decade, deep learning has made dramatic
breakthroughs in machine learning. Since their historical

success for image classification [25], deep ConvNets have
been used in every visual recognition problem including se-
mantic segmentation [31, 8, 39, 1].

In themedical imaging field, deep learning has been adapted
to answer various types of problems. For organ segmenta-
tion, U-Net [39] is the most popular for 2D images. Then
equivalents have been proposed for 3D segmentation [9, 32,
13] based on the same encoder-decoder, skip connections ar-
chitecture. Other networks aim to compensate the memory
issue of the 3D networks by composing the 2D and 3D seg-
mentation into a single model [29].

State-of-the-art approaches segment a specific organ or
a limited number of structures. Using them directly on a
partially-labeled dataset implies learning with noisy labels
due to the default background label assigned for the missing
organs. Thus, we need a specific method for training deep
learning models with partially labeled data.
2.2. Semi-supervised learning and self-training

In the context of partially labeled data, some image pix-
els are incorrectly labeled, i.e. there are incorrect "background"
labels when an organ is missing. As we explain in section
3, our approach is based on distinguishing pixels for which
labels are certain from those for which labels are ambiguous.
Ambiguous pixels are first ignored (Section 3.1) and then re-
garded as unlabeled (Section 3.2). Therefore, our approach
is cast as a Semi-Supervised Learning (SSL) problem [7] and
we discuss here the approaches most related to ours. Basi-
cally, SSL approaches inmedical image segmentation can be
classified into generative models, teacher-student networks
and pseudo-labeling methods [7].

Generative models can be leveraged to incorporate train-
ing signals on unlabeled data for medical image segmenta-
tion. For example, [42] uses a variational autoencoder (VAE)
to learn representations on all images, and then train a de-
coder only on labeled data. In the same idea, [11] applies
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a generative model based on a VAE, where the encoder is
trained to reconstruct input images, and the decoder to re-
construct unpaired segmentation masks. Adversarial train-
ing [14] is another appealing direction for semi-supervised
semantic segmentation. The overall idea initially applied
to generalist images in [19], is to consider the segmenta-
tion network as a conditional generator given input images,
which output distribution should be similar to the ground
truth distribution of segmentationmasks. The appealing fea-
ture in SSL is that this adversarial loss can be applied on
unlabeled data to improve segmentation performances. Re-
cently, the approach has also been successfully applied for
medical image segmentation [34, 48]. In those methods,
when an image is unlabeled the output of the discriminator
is used as a confidence map to compute a segmentation loss
between the encoder prediction and its binarized counterpart
for the most confident pixels.

Teacher-student networks have also been used in SSL to
enforce desirable behaviours on the segmentation models,
where the teacher is learned only on the labeled data and the
student is subsequently trained on all data. Some methods
introduce an auxiliary task that does not need the segmenta-
tion ground truth. In [23] and [49], the authors proposed to
regress the region size and use a consistency term that pe-
nalizes non-realistic sizes. In the same way, the fact that the
same image under different transformations should get the
same output is used to create a consistency term. For exam-
ple in [43, 4, 6, 46] this idea is applied by defining two losses,
the first is the classic segmentation loss and the second the
consistency loss which does not need ground truth labels. In
[46], the authors proposed an advanced method by introduc-
ing a confidence estimation based on monte carlo dropout to
select the most certain predictions in the consistency term
for the unlabeled images.

Although these SSL methods show good results, the in-
corporation of the unlabeled data in the final results is im-
plicit. Pseudo-labeling [15, 28] consists in using the model’s
predictions as ground truth training signals on unlabeled data.
In our context of partial labels, the goal of these approaches
is to automatically relabel unlabeled data from amodel trained
on a labeled set. Recently, this strategy has been extensively
applied for semi-supervised semantic segmentation, [30, 53,
52], leading to state-of-the-art performances. This strategy
has also recently been applied for medical image segmen-
tation [2, 50, 47]: the idea is to first learn a model on the
labeled data. Then, enlarge the training set with the union
of the labeled data and the model’s predictions for the unla-
beled data. Finally, either the same model or a new model is
trained on the new training set.

Our approach is based on pseudo-labeling. In contrast
to previous works [30, 53, 52, 2, 50, 47], which perform a
complete pseudo-labeling of unlabeled data in a single re-
labeling iteration, we use a smoother and more progressive
way of introducing new labels by selecting more confident
labels first to control the rate of miss-predictions added to
the training set. This approach could be seen as a curricu-
lum learning strategy [3] or self-paced learning [26], where

the easy examples have the most confident predictions and
the hard examples have the least confident ones.
2.3. Confidence estimation in Deep Learning

Confidence estimation in deep learning is a crucial yet
complex problem. The most naive confidence estimation
for deep neural networks consists in using the probability
of the predicted class, i.e. the Maximum Class Probability
(MCP) [18]. Although this baseline is widely used in prac-
tice, it also suffers from fundamental drawbacks, e.g. the
probabilities are known to be non-calibrated [16]. In the last
few years, there has been an extensive revival of Bayesian
deep learning, especially by the connections drawn between
variational inference and stochastic regularization in deep
learning, e.g.Monte-Carlo Dropout [12]. However, this con-
fidence measure is computationally demanding since it re-
quires several forward passes, and does not yield accurate
uncertainty measures when aleatoric uncertainty is crucial.
In contrast, misclassification approaches design confidence
estimates targeted to properly separate correct predictions
from errors, e.g. trust score [22] or ConfidNet [10].

In pseudo-labeling, the chosen confidencemeasure should
prevent incorporating wrong labels to improve the final pre-
diction. It is worth mentioning that most recent approaches
for semantic segmentation rely on MCP for selecting target
labeled pixels [30, 53, 52, 2, 50, 47], although MCP by de-
sign assigns overestimated confidence values to prediction
errors. In this paper, we train an auxiliary network to design
a relevant confidence measure, which is based on misclassi-
fication detection and explicitly assigns low confidence val-
ues to prediction errors. We verify experimentally that this
confidence measure leads to better final segmentation per-
formances than MCP.

3. Training from partial labels with
INERRANT
In this section we detail INERRANT for training deep

ConvNets on partially labeled data.
Firstly, we introduce in section 3.1 a learning scheme that

only leverages correct labels. More precisely, INERRANT
is trained not only with the true positives (TPs), i.e. the posi-
tive labels which are actually positive in the complete ground
truth, but also with the true negatives (TNs), i.e. the back-
ground labels which are actually background in the ground
truth. As mentioned in section 1, a naive method that learns
directly with partial labels incorporate false negatives (FNs),
which negatively impact performances. We also provide a
statistical analysis of the ratio of correct labels used by our
method vs the naive baseline.

Then, we introduce in section 3.2 a self-supervised scheme
which iteratively adds pseudo-labels for the missing organs,
in order to recover themissing ground-truth labels. Since the
pseudo-labeling is automatic, the challenge is to maximise
the number of correct label predictions, denoted as true pos-
itives (TPs), while minimizing the number of wrong predic-
tions denoted as false positives (FPs). Ultimately, we aim at
maximizing the relabel precision TP∕(TP + FP ).
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Figure 2: Training INERRANT on a partially labeled dataset. Each organ is predicted
by a common FCN. Depending on the missing organs deduced by the available labels, an
ambiguity map wk is created to ignore potential wrong labels in the loss. It acts as a
weighting in the final loss function.

Since our method is iterative, INERRANT0 is the first
step which consists in learning on the partially labeled data
without relabeling, and INERRANT corresponds to themethod
after training the model on the incorporated pseudo-labels.
3.1. Learning on a partially labeled dataset

We address the issue of learning on partially labeled data
by a simple yet effective method, which is shown in Figure 2.
The first step consists in extracting the maximum of infor-
mation from the partially labeled data, by deducing from the
labeled organs where there are ambiguities that should be
handled.
3.1.1. Training exclusively with correct labels

We know by construction that if an organ is unlabeled,
then it is the case for the entire volume, i.e. no intermediate
slice contains this label. Thus, we can deduce beforehand the
missing classes for every patient. However, we do not know
where they are located and thus where the wrong labels are.

However, if we want to exclusively use correct labels, we
cannot use a classic softmax activation function and a multi-
class loss. Indeed, in that configuration when only one organ
is missing no background label can be used. To address this
problem, we transform the (K + 1) multiclass classification
problem into K binary classification problems where each
organ is learned independently. The rationale behind this is
to control the classes that are labeled and can be learned and
those that are unlabeled and have to be ignored. By doing
that we can learn features from the labeled classes for both
the positives (the organs) and the negatives (the background)
whereas for the unlabeled classes, both positives and nega-

tives are ignored.
In practice, we replace the final softmax by a sigmoid

activation function in the last 1 × 1 convolution layer. How-
ever, we still want to keep the exclusive aspect of the soft-
max, i.e. only one class is predicted for a given voxel. Thus,
our class prediction is computed by taking, for each voxel,
the class with the highest probability among all K classes -
and the background label is assigned if all probabilities are
lower than 0.5.

TrainingK binary classifiers requires adjustments, espe-
cially on the loss function. Actually, we have K losses, one
for each class. We choose the binary cross entropy to train
our model defined in Equation 1 for each voxel i and class k:

li,k(ŷi,k, yi,k) = −(yi,k log(ŷi,k)+(1−yi,k) log(1−ŷi,k)) (1)
Let us denote as Ŷ ∈ ℝH,W ,K the dense prediction of

our model and Y ∈ ℝH,W ,K as the ground truth. Then the
K losses are aggregated to obtain one final loss in Equation
2:

ce(Ŷ,Y) =
K
∑

k=1

N
∑

i=1
wi,k li,k(ŷi,k, yi,k) (2)

whereW ∈ ℝH,W ,K composed of K maps wk ∈ ℝH,W ,
is a binary matrix which selects or discards the voxels that
should be learned for class k, for which back-propagation is
applied.

W is an ambiguity map since it represents the pixels’ lo-
cation where we cannot decide if the label is correct or not.
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Table 1
TP/ FP training label analysis

(a) Naive
PPPPPPPGT

Used
Pos Neg

Pos (1 − �) ⋅ �k � ⋅ �k
Neg 0 1 − �k

(b) INERRANT0

PPPPPPPGT
Used

Pos Neg

Pos (1 − �) ⋅ �k 0
Neg 0 (1 − �) ⋅ (1 − �k) + �

W is built beforehand based on the missing organs of each
patient. As shown in Figure 2, if an organ is labeled, we fill
wk with ones to learn the associated model. On the other
hand, when an organ is missing wk is set to zeros to ignore
this organ during training. However, we can still use extra
information from other organs, which are assigned as nega-
tive labels.

In the example of Figure 2, three organs are labeled. How-
ever, when learning a missing organ like the spleen (bottom
branch), we use an ambiguity map containing zeros every-
where except where the other organs. In that case the label
of the organ is used to fill the ambiguity map of the spleen
with ones.
3.1.2. Statistical analysis of the training labels

To quantify the quality of the labels used during training,
let us consider the binary classification problem for the ktℎ
organ class. We denote as �k the number of pixels for this
organ and � the ratio of missing organs on the whole dataset.
Table 1 shows confusion matrices for two different methods:
naive consists in learning directly with the partial labels, and
our method INERRANT0. We can see that the naive method
has � ⋅ �k FNs. Meanwhile, INERRANT0 completely dis-
cards FNs but also reduces the number of TNs.

The naive approach learns with (1 − �k) TNs whereasINERRANT0 learns with (1 − �)(1 − �k) + � TNs, where
� =

∑

k′≠k �k′ corresponds to the other organ labels. In med-
ical image segmentation, organs represent usually a small
proportion of the total volume of labels, which induces a
high class imbalance between positives and negatives, such
that � << 1, e.g. � = 0.05. As a consequence, we still have
largely enough information to properly learn the background
class with INERRANT0.
3.2. Self-supervision and pseudo-labeling

The number of TPs linearly decreases with the ratio of
missing organs �. To recover missing labels in training im-
ages, we propose to iteratively add new positive labels yi,t =
1 in an image with missing labels xi for each class k1, usinga curriculum strategy [3].

1We drop the dependence of class in yi,t for clarity.

3.2.1. Iterative relabeling
Initially, themodel is trained on all correct labels that can

be regarded as “easy positive samples”. Let us denote as ŷ+i ,the pixels predicted as positive for a given unlabeled image
xi. The idea of INERRANT is to recover positive labels,
y+i,t by selecting the top scoring pixels among ŷ+i . Then, themodel is retrained with the new labels added to the training
set.

This procedure is iteratively performed T times, by se-
lecting a ratio t = t

T max of top scoring pixels among the
positives. The pseudo-labels incorporated at each step are
the “hard examples” since they come from a pseudo-labeling
scheme that could introduce errors.

Algorithm 1: Training INERRANT for class k
Data: {(xi, yi)}, max, T , m0
Result: mT
Nu ← number of unlabeled images;
yi,0 = yi;
for t← 1 to T do

t =
t
T max;

for i = 1 to Nu do
ŷ+i ← mt(xi) // Take predicted⊕;
y+i,t ← s(ŷ+i , t) // Assign new⊕ target
labels;
yi,t = yi,t−1∪ y+i,t // Augment training set;

mt = train({(xi, yi,t)}) // Re-train model

3.2.2. Uncertainty estimate for collecting
pseudo-labels

Our pseudo-labeling approach in Algorithm 1 is based
on selecting the most confident pixels of the segmentation
model. We therefore seek an accurate confidence criterion
for our deep FCN in semantic segmentation.

Measuringmodel uncertainty in deep learning is an open
and difficult problem, as detailed in Section 2. Although the
MaximumClass Probability (MCP [18]) gives decent perfor-
mances in practice, it also suffers from important conceptual
limitations (see Section 2). Especially, misclassified pix-
els (failures) receive an unjustified high confidence. In our
pseudo-labeling approach, this presents the risk of including
wrong labels and negatively impacting performances.

Therefore, we propose to use a more relevant uncertainty
measure. Our target confidence criterion is the True Class
Probability (TCP [10]), from which guarantees can be de-
rived for discriminating correct from incorrect predictions
(TCP is able to assign small confidence values to misclassi-
fications). Since TCP requires the knowledge of the ground
truth class for each pixel, which is not accessible at test time,
we need an auxiliary network specifically dedicated to pre-
dict the TCP value computed by our segmentation model,
e.g. U-Net. For each pixel i ∈ {1, ..., N} and each class
k ∈ {1, ..., K}, we want the predicted confidence ĉi,k to
match TCPi,k = ci,k: learning the confidence network is
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Figure 3: The confidence network part is included at the end
of the segmentation network by taking the features before the
final 1 × 1 convolutional layer

a regression task where we use the following L2 loss:

conf = 1
K

1
N

K
∑

k

N
∑

i
(ĉi,k − ci,k)2 (3)

The confidence network is illustrated in Figure 3. It is at-
tached to the segmentation model in order to leverage latent
representations learned for the segmentation task. In prac-
tice, we connect it to the antepenultimate layer, i.e. before
the final 1 × 1 convolutional layer.

The confidence network is thus initialized with parame-
ters from the segmentation model. During training, we can
freeze these parameters or fine-tune them, which we find su-
perior in practice. If the entire model is fine-tuned, a dupli-
cate of the original FCN allows to keep the same segmenta-
tion predictions.

The confidence network is trained before relabeling and
after training the segmentation network. Algorithm 2 shows
the different steps of training our model by using pseudo-
labels generated iteratively.

Algorithm 2: Relabeling the missing organs with
the confidence network
Train the FCN on partially labeled data;
for t← 1 to T do

Train the confidence network;
Relabel the t

T max pixels with the highestconfidence score;
Fine-tune the initial FCN with the new labels;

4. Experiments and Results
4.1. Experimental setup
4.1.1. Datasets

We use three datasets for abdominal organ segmentation:
Liver and Tumour Segmentation challenge2 (LiTS), TCIA

2https://competitions.codalab.org/competitions/17094

pancreas segmentation dataset3 and a private multi-organ
dataset.

LiTS dataset contains 131 CT-scans with the segmen-
tation of livers and tumors. We focus on the task of liver
segmentation and discard the tumors. Each CT-scan is com-
posed of 74 ∼ 987 slices of 512 × 512 pixels and a voxel
spatial resolution of ([0.56 ∼ 1.0] × [0.56 ∼ 1.0] × [0.70 ∼
5.0])mm3.

The TCIA dataset contains 82 CT-scans with the pan-
creas completely labeled in each image. Each CT-scan is
composed of 181 ∼ 466 slices of 512 × 512 pixels and a
voxel spatial resolution of ([0.66 ∼ 0.98] × [0.66 ∼ 0.98] ×
[0.5 ∼ 1.0])mm3.

The private multi-organ dataset is composed of 90 CT-
scans where the liver, gallbladder, pancreas, spleen, right
and left kidneys and stomach are completely labeled. Each
CT-scan is composed of 57 ∼ 500 slices of 512×512 pixels
and a voxel spatial resolution of ([0.42 ∼ 0.98] × [0.42 ∼
0.98] × [0.63 ∼ 4.00])mm3.
4.1.2. Simulating partially labeled datasets

Large datasets for organ segmentation are tedious and
expensive to obtain. Depending on the medical center and
the patient’s pathology only some organs are labeled for a
given case. Consequently, it is easier to gather data with
heterogeneous labels but the resulting dataset will be par-
tially labeled. To reproduce this context and analyse how to
model performed under different amounts of missing labels,
we start from fully labeled datasets and randomly remove
the labels at a volume level. Thus, we reproduce real clinical
conditions and keep control over the exact quantity of avail-
able information. Moreover we can evaluate the method on
a completely labeled test set. The proportion of labeled or-
gans in each volume is denoted as �. When � = 100%, all
the organs are labeled and when � = 0% no label is available
in each volume.

For the multi-organ dataset, the label proportion � is ap-
plied to every organ, independently. It means that �% of the
cases have a labeled liver, �% a labeled spleen, etc. Thus,
a case could have between 0 and 7 labeled organs. More-
over, we paid attention to incrementally remove labels. The
same labeled organs are found through the different propor-
tions, i.e. with � = 70%, the dataset contains all the labels
of a dataset with � = 50% but with more of them. In the
labels point of view, we can say that D(10%) ⊂ D(30%) ⊂
D(50%) ⊂ D(70%). This allows fair comparisons between
the different proportions as they are trained with the same
labeled images.
4.1.3. Implementation details

We use a U-Net as our main FCN which is well-known
for 2D medical image segmentation. This model is still ex-
tensively used as it gives competitive results though it re-
quires reasonable memory cost and can be trained on stan-
dard GPUs.

The standard U-Net used in our experiments is around
3https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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Table 2
Quantitative results for the TCIA pancreas dataset. The scores are the mean DSC (± std)
for every missing label proportion (�). In bold the highest results that pass a t-test with
p-value < 0.05 compared to the other methods.

Proportion (�) 100% 70% 50% 30% 10%
Naive 76.13 (± 0.94) 49.75 (± 5.58) 28.99 (± 6.07) 10.75 (± 5.71) 1.16 (± 0.77)
INERRANT0 - 72.12 (± 2.01) 70.43 (± 3.38) 64.48 (± 2.13) 44.57 (± 5.24)
INERRANT - 75.52 (± 1.74) 74.23 (± 2.50) 71.10 (± 1.52) 56.19 (± 6.22)
INERRANT0 3D 78.76 (± 1.91) 77.22 (± 2.41) 75.59 (± 1.69) 71.73 (± 1.93) 52.98 (± 8.83)
INERRANT 3D - 77.35 (± 1.67) 76.02 (± 0.88) 73.41 (± 1.00) 57.77 (± 7.53)

Table 3
Quantitative results for the LiTS dataset. The scores are the mean DSC (± std) for every
missing label’s proportions (�). In bold the highest results that pass a t-test with p-value
< 0.05 compared to the other methods.

Proportion (�) 100% 30% 10% 5% 1%
Naive 94.72 (± 1.22) 14.10 (± 6.28) 0.41 (± 0.18) 1.14 (± 2.47) 0.31 (± 0.53)
INERRANT0 - 93.12 (± 1.41) 89.70 (± 2.51) 88.22 (± 2.87) 51.08 (± 13.80)
INERRANT - 93.51 (± 1.15) 90.05 (± 1.41) 88.88 (± 2.48) 58.76 (± 10.94)

31M parameters. The confidence network only adds 0.8M
parameters but this network is only used for the relabeling
step and is discarded for the final prediction network which
is simply the U-Net, thus our method does not add any com-
putational nor memory overhead compared to the baseline in
test (See Table 11 for a detailed overview of the network used
in the study including the layers’ parameters). The models
are trained with the Adam optimizer and an initial learning
rate of 10−4 which exponentially decreases to 10−5 at the end
of the training. Standard data augmentation techniques are
used including random translations, random rotations and
random scales. The models are implemented with the Ten-
sorflow library and the training is performed on RTX 2080Ti
GPUs. We perform 5 fold cross-validation for every dataset
and proportion. The results shown in section 4.2 give the
mean Dice Similarity Coefficient (DSC) and standard devi-
ation across the folds.

The overall quantitative evaluation carried out in sec-
tion 4.2 gives the results for the naive baseline, i.e. when
the model is trained directly on the data. Then with the pro-
posed INERRANT0. And finally with INERRANT that it-
eratively adds pseudo-labels using the previously introduced
confidence network. Then, a finer analysis of the impact of
curriculum iterations and confidence measures is provided
in section 4.3.

4.2. Quantitative results
To highlight the problem of training on partially labeled

data, we evaluate the naive approach which consists in learn-
ing on the partially labeled data with the background label
assigned to missing pixel labels. Then, we show the re-
sults using our method, first with the ambiguity map only
(INERRANT0) and then using pseudo-labels (INERRANT).
4.2.1. TCIA pancreas

Results for the TCIA pancreas dataset are given in Ta-
ble 2. As we can see, the naive approach quickly deterio-
rates when the number of missing labels increases, i.e. �
decreases. For example, with � = 70%, we already observe
a drop of about 26.4pts in DSC. By assigning the background
label to missing organ labels, this naive baseline makes the
model trained with many wrong labels of an already over-
represented class. So, it naturally tends to predict “back-
ground” for the entire image.

INERRANT0 gives better results as the model is trained
only on correct labels. We can see that even with � = 30%,
which is less than the third of the labels, we lose 11.6pts
when the naive baseline is at less than 11% in DSC.

Next, INERRANTwhich introduces pseudo-labels helps
to improve the mean DSC for every proportion. We can
even see that the gain increases when � decreases. At � =
10% INERRANT has improved the results by 10pts. The
gains are significant and shows the relevance of the proposed

Table 4
Quantitative results on multi-organ dataset. The scores are the mean DSC (± std) for
every missing label proportion (�). In bold the highest results that pass a t-test with
p-value < 0.05 compared to the other methods.

Proportion (�) 100% 70% 50% 30% 10%
Naive 86.03 (± 2.16) 66.85 (± 4.89) 45.32 (± 2.67) 19.51 (± 2.39) 2.82 (± 1.30)
INERRANT0 - 84.19 (± 2.85) 81.25 (± 5.51) 76.58 (± 7.15) 67.69 (± 5.34)
INERRANT - 85.36 (± 2.70) 84.43 (± 3.56) 82.60 (± 3.40) 73.49 (± 3.08)

O. Petit et al.: Preprint submitted to Elsevier Page 7 of 14



Iterative Confidence Relabeling for Organ Segmentation

Figure 4: Per patient DSC scores analysis for the multi-organ dataset. First row with
� = 70%, second � = 50%, third � = 30% and fourth � = 10%. In blue the naive method,
red INERRANT0 and green INERRANT with pseudo-labeling.

method and how using pseudo-labels can improve the final
scores.

Finally, Table 2 also reports results with a 3D backbone.
In INERRANT0 3D and INERRANT 3D we replace the 2D
U-Net with its 3D counterpart to show that our method is
agnostic to the chosen backbone FCN. In this setup, we have
an input patch size of 144 × 144 × 96 which is cropped in
the center of the image. This could also explain the per-
formance boost compared to the 2D U-Net, however this
method could not be applied to the multi-organ setup where
one should perform predictions with, for example, a sliding
window. Nevertheless, the same trends are observable: the
relabeling step INERRANT 3D outperformed INERRANT0

3D for every proportion and the highest gain is at � = 10%
with +4.79pts.
4.2.2. LiTS

Contrary to the pancreas, the liver is easier to segment,
since it is one of the largest organs in the abdomen, lead-
ing to more pixel labels. In addition, its boundaries are less
ambiguous.

Table 3 shows the results on the LiTS dataset. We ob-
serve that the performance of the baseline U-Net for � =
100% is high, i.e. more than 94% DSC. It is worth men-
tioning that for � = 30%, the naive baseline already gives
terrible results.

The interesting point here is the fact that INERRANT0

gives very high results even with very few examples. As we
can see the result with � = 5% loses only 6.5pts compared to
the model trained on 100% of data. In this dataset, � = 5%
correspond to only 5 labeled cases which correspond to a

reduction in labels by a factor of 20.
Moreover, the relabeling step helps to consistently im-

prove the results. The most important gain is again with the
lower � (i.e. � = 1%) with a difference of 7.7pts.

With this dataset, the overall conclusion is similar to TCIA,
but the regime is different. As described above, the scores of
our approach without relabeling are very high even with few
labels. However, introducing pseudo-labels still improves
the model, with the largest gain at � = 1%.
4.2.3. multi-organ dataset

Figure 4 shows the results on this dataset detailed per
organ and Table 4 the average DSC for all proportions and
the different methods (scores per organ are detailed in Ta-
ble 9). As we can see, all the methods give better results
compared to LiTS and TCIA. This can be explained by two
important points. Firstly, the background class is less repre-
sented because we have multiple organs. Secondly, consid-
ering INERRANT, for one particular case only 1 or 2 organs
could be unlabeled especially for high proportions like 70%.
It implies that a lot of background labels could be correctly
learned even without the organ label thanks to the other or-
gans. This shows that our method is actually strengthened
in the case of multi-organ with missing labels. We can see
in Figure 2 an example of an ambiguity map for a missing
organ (bottom branch) in a case where some labels are avail-
able. We can notice that a wide part of the image can be
used to learn a negative label where all the other organs are
located.

Considering the naive baseline, as for the two previous
datasets, the scores quickly fall until reaching a very low
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Table 5
State-of-the-art comparison on the TCIA pancreas dataset

Proportion (�) 70% 50% 30% 10%
Naive 49.75 (± 5.58) 28.99 (± 6.07) 10.75 (± 5.71) 1.16 (± 0.77)
INERRANT0 72.12 (± 2.01) 70.43 (± 3.38) 64.48 (± 2.13) 44.57 (± 5.24)
Pseudo-labels ([2]) 75.12 (± 1.91) 73.71 (± 2.59) 69.00 (± 2.04) 51.91 (± 7.77)
Adversarial ([34]) 75.41 (± 1.78) 73.91 (± 2.27) 67.60 (± 1.84) 52.09 (± 6.00)
Consistency ([46]) 74.53 (± 2.10) 72.68 (± 3.05) 66.99 (± 1.38) 46.04 (± 3.70)
INERRANT (Ours) 75.52 (± 1.74) 74.23 (± 2.50) 71.10 (± 1.52) 56.19 (± 6.22)

value of 2.8% when � = 10%. For our method, however, it
gives good performances even with few labels. But depend-
ing on the organ, the behavior is different. The liver, spleen
and kidneys, stay with high scores even with few labels with
an impressive result for the liver that only loses 3pts between
100% and 10%.

On the other hand, the gallbladder, the pancreas and the
stomach fall more quickly than the other organs. Those or-
gans are the smallest and in general more difficult to seg-
ment. For instance with the gallbladder, the segmentation
model tends to segment it as the liver because it is located
close to it in addition to being very small. The pancreas is
also difficult to segment due to its complex boundaries and
pixel intensities which are very close to the connected struc-
tures. Finally, the stomach is difficult to segment because
of its shape, size and position variability in addition to the
presence of air which makes holes in the structure that add
randomness about the organ visibility.

INERRANT0 gives 48.96% for the gallbladder, 37.04%
for the pancreas and 44.05% for the stomach at � = 10%. But
after adding the pseudo-labels the most important gains are
with those 3 organs. Respectively, 57.93% (+9pts), 50.25%
(+13.2pts) and 56.03% (+12pts).

The curriculum learning approach combined with the
learned confidence boosts the results for every organ and
every proportion. The most impressive gains are for the
most difficult organs which are the gallbladder, pancreas and
stomach. It could be explained by the fact that those organs
need more labels due to their complexity, and we show that
our pseudo-labeling approach greatly helps to comply with
this requirement.
4.2.4. State-of-the-art comparison

Wecompare INERRANTwith three other semi-supervised
methods representing three different types of approaches.
Firstly, [2] which consists in using all the predictions as pseudo-
labels. Then, [34] which is an adversarial training where the
output of the discriminator allows to select pseudo-labels on
the fly by adding them to the segmentation loss during train-
ing. And finally [46] which is a mean teacher model based
on [43] that uses unlabeled data through a consistency loss.

We implemented the above mentioned methods with the
same backbone FCN (i.e. 2D U-Net) to segment the pan-
creas from the TCIA segmentation dataset. Each experiment
is evaluated with a 5-fold cross-validation. The models are
trained with the same procedure, i.e. with the same dataset,
the same folds, the same missing labels and with the appro-

priate hyper-parameters. Table 5 shows the results for every
approach compared to the baselines that didn’t use unlabeled
images.

With [2] all the predictions for the missing organs are
used as pseudo-labels. It gives better results than INERRANT0

as it injects more information with the correct pseudo-labels.
However, though it performswell with high � values, it tends
to add a lot of wrong labels with low � values which reduces
the gains. We can see that using a better pseudo-label selec-
tion scheme, we can prevent this effect while preserving the
performances with high � values.

Concerning the adversarial training [34], themethod gives
comparable results to [2]. We can see that the results are bet-
ter than INERRANT0 but INERRANT still outperformed it
for every proportion. This model can leverage a meaningful
loss applicable to unlabeled data, but is hard to train due to
instabilities in the adversarial approach.

The consistency method based on mean teacher [46] still
improves over INERRANT0, but is not the best performing
strategy for handling unlabeled data in our context. For � =
10%, the performance drop is significant compared to the
other approaches. It can be explained by the fact that the loss
function does not explicitly exploit predicted segmentation
masks on unlabeled data.

In all cases, we can see that INERRANT performs better
that the other methods, with a gain being more pronounced
for low � proportions.
4.3. Model analysis

This section aims to provide an analysis of the relabel-
ing. First, we discuss the differences between the uncertainty
evaluation methods and how they impact the relabeling and
final score. Then, we show the impact of the curriculum
learning and how it behaves depending on the number of
performed relabeling steps.
4.3.1. Uncertainty methods evaluation

Weevaluate the performances of the proposed confidence
network as described in section 3.2.2, and compared it with
MCP,which corresponds to the previouswork of SMILE [38],
on the TCIA pancreas dataset.

The confidence network can be trained with two different
configurations, by transfer learning: the U-Net is frozen dur-
ing the confidence training, or by fine-tuning: the U-Net and
the confidence network are both trained. For the last con-
figuration, it is necessary to duplicate the U-Net part of the
model which adds complexity to the final model. However,
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(a) Prediction (b) MCP (c) Learned Conf.

Figure 5: Confidence maps for MCP and our confidence network for the stomach. The
prediction in (a) gives the TPs in cyan and FPs in red. For both MCP (b) and the learned
confidence (c), a confidence map is given with values between 0.5 (red) and 1.0 (blue) and
the selected pseudo-labels with the TPs in cyan and the FPs in red. In (b), MCP gives
low confidence only at the boundaries. As a contrary in (c) the confidence network gives
low confidence values to the model errors and thus prevents relabeling wrong predictions.

we found in practice that fine-tuning gives better results, thus
the following results are obtained with this method.

A detailed analysis of the impact of the two uncertainty
estimation methods is provided in Table 6 on the TCIA pan-
creas dataset (Additional results for the multi-organ dataset
could be find in Table 10). We evaluate how the confidence
score ranks the pixels considered for relabel (We relabel only
the positives and never the background). Three metrics are
shown: the AUC (area under the ROC curve), the Average
Precision of the success (AP_success), and the AP of the
errors (AP_error). The first metric gives a measure of the
overall ranking of the predictions. The second, measures
the method’s capacity of assigning high values to the cor-
rect predictions. Finally, the AP error gives a measure of
the method’s capacity of assigning low values to the wrong
predictions.

Table 6 shows significant improvements for all the met-
rics and for the different proportions. At 10%, the relative
gain is the more important. We observe an improvement of
1.53pts inAUC, 0.75pt inAP_success and 2.65pts inAP_error.
It means that we have a better ranking of the candidates in
addition to a better error detection which translates into an
improvement of the final DSC after training the model on the
pseudo-labels of 1.5pts. At this proportion, the absolute gain
is equivalent to the one at 70% but the relative gain is higher
in the way that it will impact much more the final results.

Qualitatively, Figure 5 shows uncertainty maps for both
methods. We can notice that the learned confidence has a
more detailed result than MCP. In fact, MCP concentrates
the low confidence values at the border whereas the confi-
dence network assigns lower confidence values to the model
errors. In this example a part of the segmentation, at the
bottom right, is wrong and we can see that the confidence
network has assigned lower values at this place than MCP.
This illustrates how our confidence network helps to prevent
the relabeling of wrong predictions and thus the incorpora-
tion of errors in the training set.

Table 6
Analysis of ranking metrics for uncertainty estimation with
MCP, equivalent to SMILE [38],

and the learned confidence method. The metrics are
computed only on the pixels that are considered for

relabeling, i.e. predicted as
positive and not already relabeled. The values are percentages.
Method AUC AP_success AP_error Final DSC
70%
MCP 73.86 (± 1.02) 92.00 (± 0.71) 34.99 (± 2.34) 73.97 (± 1.28)
L. conf. 75.50 (± 1.77) 92.66 (± 0.83) 38.17 (± 3.86) 75.52 (± 1.74)
50%
MCP 72.67 (± 1.05) 90.51 (± 1.97) 36.50 (± 3.06) 73.82 (± 2.15)
L. conf. 73.94 (± 0.94) 91.06 (± 1.60) 38.69 (± 4.55) 74.23 (± 2.50)
30%
MCP 71.55 (± 1.95) 90.58 (± 1.43) 34.29 (± 2.68) 69.72 (± 1.75)
L. conf. 73.06 (± 2.00) 91.25 (± 1.24) 36.80 (± 4.11) 71.10 (± 1.52)
10%
MCP 68.68 (± 2.28) 84.97 (± 3.91) 41.11 (± 4.85) 54.66 (± 6.53)
L. conf. 70.21 (± 3.46) 85.72 (± 4.09) 43.76 (± 7.70) 56.19 (± 6.22)

4.3.2. Curriculum learning analysis
Curriculum learning consists in introducing easy exam-

ples before adding more complex ones. In our application,
the easy examples are the available labels and the more com-
plex, the pseudo-labels which contain wrong labels. The
pseudo-labels are introduced incrementally by first taking
the most confident predictions and ending by the less con-
fident that would by definition contain more wrong labels.

As we can see in Figure 6, using an iterative approach
allows us to relabel progressively the missing organ from the
center to the border. In fact, we noticed that the most certain
predictions were located in the center and that the confidence
decreases as we move closer to the border (see Figure 5).

Table 7 presents a quantitative evaluation of the iterative
relabeling, and shows the relabeling precision and recall for
each step of the curriculum learning method with the final
DSC after fine-tuning the model on them. Overall, using
T = 2 relabeling iterations is the best strategy, although dif-
ferences can be observed for different levels of missing la-
bels �. For � > 50%, the relabeling precision is higher and
thus the best results are with the last step. On the other hand,
with � < 30%, the best results are for an intermediate step
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(a) Ground truth (b) t = 0 (c) t = 1 (d) t = 2

Figure 6: Complete relabeling of a pancreas with INERRANT, T = 3 iterations, max = 1.0
and � = 50%.

Figure 7: Relabeling of TCIA images with a model trained with only 9 completely labeled
images from the private multi-organ dataset.

Table 7
Complete organ relabel detailed for 3 steps on the multi-organ
dataset. Information given are the percentage of added pix-
els, the relabeling precision and recall and the final DSC after
training on the updated dataset. Values are percentages.

�/step Added pixels Relal. P Relab. R Final DSC
50%
0 0% - - 79.81
1 33% 98.14 19.99 84.93
2 66% 95.11 25.89 85.15
3 100% 89.04 25.87 85.53

30%
0 0% - - 72.27
1 33% 96.62 18.37 82.17
2 66% 93.62 25.58 83.79
3 100% 85.20 25.81 83.30

10%
0 0% - - 58.98
1 33% 94.44 15.57 72.89
2 66% 81.80 23.70 74.26
3 100% 65.09 23.96 72.01

because performing the last iterations adds too many wrong
predictions and thus deteriorates the model performances.
However, it is worth noting that for every proportion the re-
labeling improves the final score.
4.3.3. Qualitative results

To illustrate the previous results, Figure 8 shows an ex-
ample of a segmentation result for the multi-organ dataset
for INERRANT0 and after training on the pseudo-labels,

INERRANT. We can notice that INERRANT helps by seg-
mentingmore pixels and thus fill organs that have beenmissed
by INERRANT0.

Figure 6 is an example of a complete relabel of a missing
pancreas. It illustrates how the method progressively adds
more pixels from the most certain (in the center) to the least
certain (at the border).
4.4. Fusion of heterogeneous data from multiple

datasets
Completely labeled data for abdominal organ segmenta-

tion are expensive and tedious to obtain. In this experiment,
we show that with INERRANTwe can build a good segmen-
tation model by starting with few completely labeled exam-
ples and leveraging public datasets with few labeled organs.
Thus, we use 9 cases from the multi-organ dataset with the
7 organs completely labeled and add the 82 cases from the
TCIA datasets which are partially-labeled compared to the
multi-organ cases (only the pancreas is available). Then we
evaluate on the remaining 81 multi-organ examples. In Ta-
ble 8, we evaluate a model trained only on the completely
labeled 9 cases. Then we add the 82 cases from TCIA and
follow the INERRANTmethod. We can see a large improve-
ment for every organ, especially for the small ones, i.e. the
gallbladder, +9.5pts, the stomach, +10.5pts and obviously
the pancreas, +25.6pts. It is worth noting that even if both
datasets are abdominal CT-scans, there is a slight domain
shift. In fact, we have two different sources that acquire data
under different parameters, then the quality of the annota-
tions could be very different. For instance in TCIA we can
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(a) Ground Truth (b) INERRANT0 (c) INERRANT

Figure 8: Segmentation results for INERRANT0 and INERRANT, � = 30%.

Method Multi-organ TCIA Liver Gallbladder Spleen Kidney (L) Kidney (R) Pancreas Stomach Avg.
INERRANT0 9 0 89.43 48.09 84.72 78.39 80.78 32.55 48.13 66.02
INERRANT 9 82 89.85 57.63 87.46 85.22 85.33 58.15 58.85 74.64

Table 8
Results in DSC (%) when combining 9 completely labeled examples from the multi-organ
dataset with the 82 partially labeled examples (only the pancreas) of the TCIA dataset
with INERRANT. The models are evaluated on the remaining 81 multi-organ examples.

assume that the pancreas’ annotations are more precise as
they focus on this very organ. A qualitative evaluation is
provided in Figure 7. It shows how we relabel the TCIA
examples based on a model trained only on 9 completely la-
beled images.

This experiment points out that even with a little domain
shift we can build a better model by enriching a small dataset
with external sources of images.

Discussion
The disposal of large-scale labeled and publicly avail-

able datasets has increased recently, e.g. CT-ORG [5]. Hav-
ing access to such large-scale public datasets is very valu-
able and can help to provide more powerful prediction mod-
els. However, collecting large-scale datasets that are "uni-
versal" and could be useful for any medical image segmen-
tation task arguably remains elusive. For example, themulti-
organ dataset used in our paper contains 90 CT-scans with
7 abdominal organs, while CT-ORG is larger in terms of
cases (140 CT-scans) but with fewer labeled organs: 6 organ
classes, and only 3 in common with ours (liver, gallbladder
and kidney). This illustrates the challenge addressed in this
paper: despite the existence of massively annotated datasets,
it is very difficult to compile a complete, exhaustive and ho-
mogeneous dataset for any medical problem. Heterogeneity
in medical imaging can have various sources. Firstly, gran-
ularity between studies might substantially differ: datasets
on the entire body will focus on large structures (e.g. bones,
lungs, liver), a study focusing precisely on the abdomen will
try to get finer structures (e.g. . pancreas, spleen, stom-
ach), while finer tasks could even include the vascularisation
with vein/artery networks. Secondly, there are commonly
strong variabilities in the acquisition process between stud-
ies: images are acquired with different devices and different

protocols: images depend on the injection time of the con-
trast media which is chosen depending on the targeted struc-
ture [51, 27, 37].

Our method is complementary with the access of large
datasets by leveraging various types of labels and granulari-
ties to build a more exhaustive dataset and thus amore robust
segmentation model. Moreover, it opens up the possibility
to add a new organ class which is less represented in public
and private datasets to enrich an existing one.

5. Conclusion
This paper introduces INERRANT, a method dedicated

to address the challenging problem of learning with partial
labels. The approach is based on a specifically designed
loss for ignoring ambiguous labels coupled with an iterative
pseudo-labeling scheme. We introduce a confidence net-
work that learns an uncertainty criterion leveraged by the
relabeling process which iteratively adds new labels to the
training set. In our experiments we show very good results
on three abdominal organ segmentation datasets. Moreover,
we observe that our method is even more relevant and effi-
cient with low label proportions.

Our approach is agnostic to the prediction model, and we
generalize the results in [38] that uses a simple FCN with a
U-Net model. We show the good performances obtained by
INERRANT compared to state-of-the-art semi-supervised
methods. Last but not least, we provide a showcase illus-
trating INERRANT’s capacity to combine real datasets with
different labeling and how it improves segmentation perfor-
mances.

For future work, an interesting perspective is to explore
how to leverage different ways of using unlabeled data into
our training method, e.g. combining pseudo-labeling with
other semi-supervised approaches in section 2. We could
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also include prior knowledge about the organs to improve
the relabeling, e.g. using attention mechanisms [36].
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Table 9
Results on the multi-organ dataset detailed per organ

Method Liver Gallbladder Spleen Kidney (L) Kidney (R) Pancreas Stomach
70%
Naive 83.37 (± 5.64) 58.36 (± 5.22) 74.60 (± 12.05) 72.64 (± 13.93) 71.11 (± 12.60) 43.26 (± 4.76) 64.63 (± 6.45)
INERRANT0 96.14 (± 0.45) 72.25 (± 8.90) 95.31 (± 0.70) 90.33 (± 2.97) 91.83 (± 2.07) 64.06 (± 6.16) 79.42 (± 8.30)
INERRANT 96.22 (± 0.50) 72.95 (± 9.91) 95.37 (± 1.12) 92.51 (± 1.95) 92.69 (± 1.49) 67.25 (± 4.32) 80.57 (± 8.23)
50%
Naive 57.23 (± 9.00) 35.87 (± 10.13) 54.90 (± 12.90) 52.61 (± 13.05) 48.66 (± 6.89) 24.36 (± 6.27) 43.65 (± 5.36)
INERRANT0 95.81 (± 0.62) 70.09 (± 9.77) 94.27 (± 0.84) 87.76 (± 5.83) 90.16 (± 3.33) 55.59 (± 16.37) 75.05 (± 9.56)
INERRANT 95.93 (± 0.79) 72.75 (± 9.54) 94.99 (± 1.17) 91.59 (± 3.26) 92.14 (± 1.75) 64.15 (± 8.23) 79.49 (± 8.80)
30%
Naive 19.07 (± 4.66) 15.51 (± 3.53) 27.48 (± 9.63) 24.95 (± 9.08) 21.36 (± 10.75) 10.26 (± 4.35) 17.95 (± 2.75)
INERRANT0 95.34 (± 0.79) 60.75 (± 15.37) 92.56 (± 1.91) 84.53 (± 7.69) 86.81 (± 5.66) 48.78 (± 13.83) 67.26 (± 9.01)
INERRANT 95.38 (± 0.81) 67.23 (± 11.34) 94.57 (± 0.97) 90.69 (± 1.89) 92.09 (± 1.58) 61.99 (± 7.10) 76.25 (± 5.67)
10%
Naive 0.56 (± 0.58) 1.12 (± 0.64) 4.03 (± 3.28) 3.41 (± 1.49) 7.03 (± 9.12) 1.62 (± 1.37) 1.99 (± 1.25)
INERRANT0 93.56 (± 1.07) 48.96 (± 10.03) 89.41 (± 2.82) 78.00 (± 14.13) 82.84 (± 9.87) 37.04 (± 5.87) 44.05 (± 11.67)
INERRANT 92.45 (± 1.35) 57.93 (± 11.59) 87.20 (± 3.87) 82.12 (± 7.06) 88.46 (± 3.18) 50.25 (± 3.63) 56.03 (± 9.57)

Table 10
Analysis of ranking metrics for uncertainty estimation with MCP and the learned confidence
method. Results are given per organ for the multi-organ dataset in average across the folds.

Method Liver Gallbladder Spleen Kidney (L) Kidney (R) Pancreas Stomach
70%

MCP
AUC 86.09 79.37 91.89 83.69 86.46 75.55 75.70
AP_success 99.15 97.26 99.48 98.03 98.81 94.87 95.25
AP_error 27.21 23.63 29.17 30.80 29.96 28.13 25.32

Learned conf.
AUC 89.99 81.83 92.78 87.41 88.18 77.97 81.82
AP_success 99.43 97.72 99.67 98.35 98.91 95.53 96.22
AP_error 33.89 29.22 26.69 33.31 32.58 32.26 37.65

50%

MCP
AUC 87.55 82.93 93.61 78.26 83.84 72.66 71.82
AP_success 99.24 97.91 99.81 97.36 98.59 93.84 94.69
AP_error 29.20 27.70 23.64 24.80 24.69 27.35 22.33

Learned conf.
AUC 91.11 85.76 94.38 83.96 85.59 77.38 81.24
AP_success 99.49 98.37 99.87 98.03 98.73 95.03 96.71
AP_error 39.60 39.65 27.17 37.12 31.08 37.67 44.28

30%

MCP
AUC 87.04 83.04 91.27 79.91 83.21 69.06 75.07
AP_success 99.04 97.27 99.69 97.33 98.80 90.27 96.11
AP_error 31.50 36.41 20.92 25.66 20.62 30.94 20.50

Learned conf.
AUC 90.89 82.57 90.92 84.30 87.49 72.21 74.51
AP_success 99.39 97.31 99.72 98.10 99.12 91.55 96.20
AP_error 39.29 34.34 18.15 31.70 28.82 36.08 21.71

10%

MCP
AUC 85.41 76.35 87.34 82.75 85.58 68.59 71.49
AP_success 98.41 96.42 98.79 96.39 98.42 83.85 90.31
AP_error 31.40 24.69 27.49 39.79 30.63 42.57 32.98

Learned conf.
AUC 88.50 75.61 89.00 82.34 86.05 69.48 70.81
AP_success 98.88 96.41 99.09 96.83 98.56 84.39 90.19
AP_error 34.21 27.39 32.15 39.07 34.16 44.77 32.32
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Table 11
Details of the network’s blocks and layers used in the study. This architecture comes
from U-Net [39]. Convolutions are given by conv(kernel_size, filters). The final two
blocks: output_probabilities and confidence_network, are connected to the last block
of the network, i.e. final_prediction. The overall number of parameters reaches 32M
parameters including the confidence network which is around 0.8M parameters.

block name output size layer’s parameters
input 512 × 512 × 1

encoder_block_1 256 × 256 × 64
conv(3 × 3, 64) + relu

conv(3 × 3, 64) + BN + relu → res_1
max_pool(2 × 2)

encoder_block_2 128 × 128 × 128
conv(3 × 3, 128) + relu

conv(3 × 3, 128) + BN + relu → res_2
max_pool(2 × 2)

encoder_block_3 64 × 64 × 256
conv(3 × 3, 256) + relu

conv(3 × 3, 256) + BN + relu → res_3
max_pool(2 × 2)

encoder_block_4 32 × 32 × 512
conv(3 × 3, 512) + relu

conv(3 × 3, 512) + BN + relu → res_4
max_pool(2 × 2)

decoder_block_4 64 × 64 × 1024

conv(3 × 3, 1024) + relu
conv(3 × 3, 1024) + BN + relu

upsampling(2 × 2)
conv(2 × 2, 512) + BN + relu

concat(res_4)

decoder_block_3 128 × 128 × 512

conv(3 × 3, 512) + relu
conv(3 × 3, 512) + BN + relu

upsampling(2 × 2)
conv(2 × 2, 256) + BN + relu

concat(res_3)

decoder_block_2 256 × 256 × 256

conv(3 × 3, 256) + relu
conv(3 × 3, 256) + BN + relu

upsampling(2 × 2)
conv(2 × 2, 128) + BN + relu

concat(res_2)

decoder_block_1 512 × 512 × 128

conv(3 × 3, 128) + relu
conv(3 × 3, 128) + BN + relu

upsampling(2 × 2)
conv(2 × 2, 64) + BN + relu

concat(res_1)

final_prediction 512 × 512 × 64 conv(3 × 3, 64) + relu
conv(3 × 3, 64) + relu

output_probabilities 512 × 512 × nb_classes conv(1 × 1, nb_classes) + {softmax;sigmoid}

confidence_network 512 × 512 × nb_classes

conv(3 × 3, 400) + relu
conv(3 × 3, 120) + relu
conv(3 × 3, 64) + relu
conv(3 × 3, 64) + relu

conv(1 × 1, nb_classes) + sigmoid

O. Petit et al.: Preprint submitted to Elsevier Page 16 of 14


