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Abstract

We propose a bottom-up human detector that can
deal with arbitrary poses and viewpoints. Heads, limbs
and torsos are individually detected, and an efficient as-
sembly strategy is used to perform the human detection
and the part segmentation. Firstly, a topological model
is used to represent the structure of the human body,
and the topologically equivalent configurations are ranked
with additional priors. Promising results prove the ap-
proach efficiency for detecting people in low-resolution
and compressed images.

1. Introduction

Detecting humans in images and inferring their pose
is arguably one of the most challenging problem in com-
puter vision due to large variations in body shape, ap-
pearance, clothing, illumination and background clutter.

Top-down approaches use global models of the human
body for inferring the part location and/or detecting hu-
mans, by minimizing a given model to image criterion.
Exemplar-based approaches [1] propose to learn discrim-
inatively the mapping between image features and model
parameters. Realizing the difficulties of using 3D mod-
els, many researchers have used of 2D assembly of parts,
such as cardboard models or pictorial structures [4]. The
main shortcoming related to pictorial structures corre-
sponds to the fact that the geometrical relationship be-
tween parts is strongly view-dependent. More generally,
top-down strategies are sensitive to occlusions, as they
attempt to represent the assembly of body parts with a
single model.

Bottom-up approaches typically adopt a two-stage
strategy: a bottom-up detector is applied on the image
to extract candidate parts, then a top-down procedure
makes inference about the configuration and finds the
best assembly. Mori et. al. [7] propose to use Normal-
ized Cuts to find a few salient body parts, and then solve
the assembly problem by brute-force search. However,

the bottom-up detectors rely on very specific features
like focus, that are validated for a set of base-ball im-
ages, but that do not seem appropriate in another con-
text. Mikolajczyk et. al. [6] propose to represent indi-
vidual parts by co-occurrences of SIFT features, that are
learned from training images using AdaBoost. Although
the part recognition rates are impressive, the system is
specially dedicated to recognizing faces, upper body and
legs learned form frontal and profile viewpoints. There-
fore, and it is not clear how well the method will gener-
alize for detecting humans in arbitrary poses and view-
points. The work of Ren et. al. [8] is the most relevant
to us. They propose to model body parts as pairs of
parallel straight lines, and to solve the assembly prob-
lem using Integer Quadratic Programming.

Our contribution for providing a bottom-up human
detector is three-fold. Firstly, we build part detectors
that are robust to (self)-occlusions and that are compu-
tationally efficient (section 2). Secondly, we make use of
a topological model for the assembly (section 3.1), pro-
viding a view-point invariant human detector. Finally,
we incorporate additional priors for ranking the topolog-
ically equivalent configurations (section 3.2).

2. Detecting Body Part Candidates

We attempt here at detecting heads, legs, arms and
torsos. We want our detectors to have high recall per-
formances, i.e. able to detect most of the limbs present
in the images. We can, however, tolerate a relatively
low precision, as we use the body model assembly pre-
sented in section 3 to filter out the spurious detections,
and provide a human detector.

2.1 Head Detector

The head is identified by a combination of a face de-
tector and a circle template matching. The face detec-
tion is performed by means of the Viola-Jones cascade
detector [10]. We use both front and side views detectors,
and setup the detection with a maximum sensitivity. In



order to identify head facing back the camera, we use a
template shape matching approach dedicated to locat-
ing circles. We use an algorithm based on the Distance
Transform (DT) matching [5]. Let us consider the orig-
inal image I, and let us denote IE the binary image
obtained by applying a Canny edge detector. Basically,
the DT matching consists in computing a dissimilarity
between a segmented template Tc representing the prior
shape (e.g. a circle). Computing the DT of IE leads to
a non-binary image, that we denote I ′E . The template
Tc is mapped onto I ′E after different affine transforma-
tions. The matching measure DTTc(I) is determined by
the pixel values of I ′E which lie ”under” Tc:

DTTc
(I) =

1
|T ′c|

∑
t∈Tc

I ′E(t) (1)

where |Tc| denotes the number of edge points in Tc and
I ′E(t) denotes the chamfer distance between edge t in Tc

and the closest edge in IE .

2.2 Limbs Detector

Legs and arms are modeled as parallel lines of con-
trast. This is clearly a simplistic representation, but that
remains valid for a wide range of poses and viewpoints,
as discussed in section 1. Roughly speaking, there exits
two different kinds of strategies to detect pairs of parallel
segments. Top-Down strategies [4] process similarly as
the method described in section 2.1 for our shape-based
head recognition. However, the algorithm requires to ex-
haustively search for rotations and foreshortening when
detecting limbs, and is therefore very time consuming,
even with a coarse discretization of the parameter space.
Alternatively, some authors take advantage of the struc-
ture of the image and directly use the edge map IE ,
decompose it into segments, and apply pair-wise con-
straints based on parallelism to identify the candidates
[8]. However, it is difficult in unspecified conditions to
detect both segments for parts in IE , mainly due to clut-
ter, occlusions and loose clothing.

In this work, we propose an intermediate solution.
Firstly, we extract a set of straight line segments from
IE . Then, we apply a template matching by searching for
parallel segments having a low dissimilarity when com-
puting the chamfer distance DTG stated in equation 1.
The well known non-maxima suppression method is ap-
plied to only keep the largest response candidates. This
hybrid strategy provides a scale invariant limb detector,
that is able to detect arms and legs with a single seg-
ment extracted from the edge map, without being time
consuming: for a given segment, the parameter space is
reduced to one parameter, i.e. the width of the limb.

2.3 Detecting Torsos

The torso identification is arguably the most difficult
task when using bottom-up detectors, due to strong oc-
clusions by the other parts like arms. Therefore, our ex-
periments prove that is not reasonable to expect detect-
ing torsos by identifying even a single segment, due to
these strong self-occlusions. For that reason, we choose
to use a parallel line template Tl, and to detect torsos
by using the chamfer matching technique stated in equa-
tion 1. To make the torso detection view point invariant
(its width is sensitively larger for a front view than for
a side view), the dissimilarities are computed by vary-
ing the aspect ratio of the template. We tolerate torso
candidates with a quite large dissimilarity threshold θ,
since the template poorly explain the image evidence in
case of self-occlusions. We come back to that point in
section 3.2.1. In addition, to make the approach com-
putationally efficient, we propose to infer the possible
torso dimensions from the detections of the other parts,
using anthropometric data [2]. Thus, once the different
candidates for the limbs are extracted, we cluster them
depending on their width value, that gives a good esti-
mate of the size of the part (contrary to its height, due to
foreshortening). Then, we run the mean-shift algorithm
[3] for clustering the different limbs into an unspecified
number of classes. The center of each class is used to
guide the torso detection. Our strategy takes advantage
of the previous limbs detection results (less sensitive to
the occlusions) to specify the torso search area in the
parameter space. It makes the detection more accurate
without increasing its computational cost.

3. The Part Assembly Process

Once the different candidates detected, we form a set
of configurations by merging ”loosely neighboring” parts
in the image. For each configuration, we compute its
dissimilarity DH of being a human as follows:

DH = wgDg + wtDtop + waDapp + wlDlg (2)

Dg is a term dedicated to pruning configurations
that are not physically valid. We use a strategy in-
spired from [7], using anthropometric data [2] for check-
ing the size compatibility between limbs. Formally, we
have Dg = 0 if the configuration is physically valid and
Dg =∞ otherwise.

3.1 Topological Human Body Model

Dtop corresponds to a topological matching between
the part assembly and a model of the human skeleton.
This score is estimated by using a graph matching strat-
egy inspired from the ”shock graphs” [9]. Thus, we gen-
erate off-line a topological model graph, denoted GM ,



representing the human body structure, i.e. the connec-
tions between parts. For each formed configuration in
the image, we generate on-line a graph from the part
assembly, denoted GI . Matching the part assembly to
the topological model is formulated as the problem of es-
timating the dissimilarity between the structures of the
graphs GI and GM . For that purpose, we compute a
Topological Vector Signature (TSV) for the roots of the
two graphs, denoted χ0

M and χ0
I , as detailed in [9]. The

dissimilarity Dtop between GI and GM is estimated by
computing the euclidean distance between the TSVs of
the two roots:

Dtop =

√√√√ 1
N

N∑
i=1

[χ0
M (i)− χ0

I(i)]2 (3)

where N = max (∆(GM ),∆(GI)), ∆(GM ) and ∆(GI)
being the maximal degree of GM and GI , respectively.

The major strength of the graph matching consists
in only using the topological information for performing
the correspondence, i.e. the connection between limbs,
leading to a viewpoint invariant human detector.
Thresholding Dtop to DT

top makes it possible to seek for
assemblies having a structure in accordance to the hu-
man body connections and to efficiently filter out spuri-
ous configurations. Note that if no configuration scores
below DT

top, the detection process concludes that the im-
age does not contain any human. In that case, we have
DH = ∞. We insist here on the fact that our topolog-
ical matching scheme is much more robust to missing
parts than top-down approaches trying to determine the
model parameters that best explain the image evidence.
Indeed, although we use a single model for modeling
the part assembly, we can take advantage of the strong
background of the shock graphs: for example, theoretical
properties have been derived regarding the robustness of
the TSV to minor perturbations (see [9]) such as noise,
insertion/suppression of node, etc.

3.2 Incorporating additional Priors

When a human is effectively present in the image,
there are usually many assemblies that are topologically
equivalent, and that have to be ranked with another
strategy. There are, indeed, dependencies among the
body parts that cannot be captured by a tree. The terms
Dapp and Dlg of equation 2 are defined for that purpose.
Dapp is a term that encodes prior about symmetry in

clothing and support assemblies for which the appear-
ance of left and right limbs is similar. Let us consider
Hl and Hr the color histograms of two left and right
detected limbs. The dissimilarity between Hl and Hr is
determined using the χ2 distance:

Dapp = χ2(Hl, Hr) =
1
2

B∑
i=1

[Hl(i)−Hr(i)]2

Hl(i) +Hr(i)
(4)

where B denotes the number of bins of the histograms.

3.2.1 Occlusion-sensitive Image Likelihood

When multiple body parts fit the same image region, the
independent parts models poorly explain the overall im-
age evidence. Let us consider two parts L1 and L2 that
overlap in the image plane. Both parts have been de-
tected using the chamfer distances for templates T1 and
T2, respectively. In the overlap area, only one template
model is valid for predicting the image data. The last
term of equation 2, Dlg(L1, L2), corresponds to a more
global reasoning about the configuration, dedicated to
estimating a combined image likelihood of the assembly,
by explicitly taking into account self-occlusions:

Dlg(L1, L2) = DTT1 +DTT2 +mini∈{1;2}DT
i
∩ (5)

Figure 1 illustrates the occlusion-sensitive likelihood
formulation, and details the terms of equation 5. Mini-
mizing DT i

∩, i ∈ {1; 2}, consists in identifying which part
partially occludes the other in the overlap area. Figure
1a) illustrates a given binary edge image and two over-
lapping templates T1 and T2 for the torso (in green) and
the arm (in blue), respectively. Both possibilities (the
torso occluding the arm and vice-versa) are shown in fig-
ure 1b) and 1c), respectively. In this example, we expect
our occlusion-sensitive likelihood to score the configura-
tion c) with the smallest distance DT 2

∩, as the arm is
actually occluding the torso.

DTT1
=

∑
t∈T1

I′E(t)

|T1|
DTT2

=

∑
t∈T2

I′E(t)

|T2|

DT1
∩ =

∑
t∈T1

∩

I′E(t)

|T1
∩|

DT2
∩ =

∑
t∈T2

∩

I′E(t)

|T2
∩|

Figure 1. Occlusion-sensitive Likelihood

4 Results

We present here results illustrating our approach abil-
ity to detect people by the combination of its visible
parts, and the possibility to segment the limbs in the
image.

Figure 2 illustrates the result for an upright standing
pose, with a strong amount of background clutter. From



(a) Source (b) Edges (c) Segments

(d) Limbs (e) Parts (f) Result

Figure 2. Body Part Detection and Assembly

the raw image (figure 2a)), we compute the edge map IE ,
and extract a set of straight line segments(figure 2b)).
The limb candidates are illustrated with red rectangles
(figure 2c)). As argued in section 2.2, we can notice that
many correct limb hypotheses are generated although a
single segment is extracted from IE (e.g upper arms,
right lower leg). Figure 2d) illustrates the results for
the overall set of bottom-up detectors, i.e. limbs, heads
(blue), and torsos (yellow). There are many false pos-
itives. Indeed, the parallel line model is itself not very
distinctive, and our detector happily fires on background
regions. Moreover, we set our torso and head detectors
with a maximum sensitivity, to overcome our simplis-
tic part representation and the auto-occlusions between
limbs. The model assembly makes it possible to effi-
ciently filter out the spurious detections, by incorporat-
ing the prior knowledge detailed in section 3, and to
detect that a person is present in the image. The config-
uration with the largest likelihood with respect to equa-
tion 2 is presented in figure 2e). In this example, we can
notice that there are strong auto-occlusions from the up-
per arms to the torso, making the occlusion-dependent
likelihood formulated in section 3.2.1 efficient for model-
ing the assembly. In addition, the symmetry in clothing
prior is here efficient for removing assemblies that in-
clude ”background parts”.

Figure 3 illustrates the ability of the approach to de-
tect someone plunging on the ground. Indeed, neither
the part detection nor their assembly make any assump-
tion about the pose of the person. Thus, the part label-
ing and segmentation is efficient for any viewpoint, mak-
ing the approach applicable in more general settings than
pedestrian detectors. In addition, we claim that our hu-
man detector is robust to strong image degradations, be-
cause the part segmentation only use contrast features.

For example, the images shown in figure 3a) and 3b) have
a small resolution (136×147 and 184×147, respectively),
are compressed (JPEG), there is motion blur, etc. It
proves that our generic part detection scheme combined
with a modeling of the articulated human structure can
successfully achieve human detection in various pose and
view points, and remains efficient in complex situations.

(a) Part detection (b) Best Assembly

Figure 3. Pose-Invariant Part Assembly

5 Conclusion and Future Works

We present a bottom-up approach for detecting hu-
mans in images with arbitrary poses. The main direction
for future works consists in incorporating the temporal
aspect of the image sequence for providing a video-based
human detector.
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