
Addressing Failure Prediction
by Learning Model Confidence

Charles Corbière1,2

charles.corbiere@valeo.com
Nicolas Thome1

nicolas.thome@cnam.fr

Avner Bar-Hen1

avner@cnam.fr
Matthieu Cord2,3

matthieu.cord@lip6.fr
Patrick Pérez2

patrick.perez@valeo.com

1CEDRIC, Conservatoire National des Arts et Métiers, Paris, France
2valeo.ai, Paris, France

3Sorbonne University, Paris, France

Abstract

Assessing reliably the confidence of a deep neural network and predicting its fail-
ures is of primary importance for the practical deployment of these models. In this
paper, we propose a new target criterion for model confidence, corresponding to
the True Class Probability (TCP). We show how using the TCP is more suited than
relying on the classic Maximum Class Probability (MCP). We provide in addition
theoretical guarantees for TCP in the context of failure prediction. Since the true
class is by essence unknown at test time, we propose to learn TCP criterion on
the training set, introducing a specific learning scheme adapted to this context.
Extensive experiments are conducted for validating the relevance of the proposed
approach. We study various network architectures, small and large scale datasets for
image classification and semantic segmentation. We show that our approach con-
sistently outperforms several strong methods, from MCP to Bayesian uncertainty,
as well as recent approaches specifically designed for failure prediction.

1 Introduction

Deep neural networks have seen a wide adoption, driven by their impressive performance in various
tasks including image classification [25], object recognition [43, 33, 37], natural language processing
[34, 35], and speech recognition [18, 15]. Despite their growing success, safety remains a great
concern when it comes to implement these models in real-world conditions [1, 19]. Estimating when a
model makes an error is even more crucial in applications where failing carries serious repercussions,
such as in autonomous driving, medical diagnosis or nuclear power plant monitoring [32].

This paper addresses the challenge of failure prediction with deep neural networks [17, 20, 16].
The objective is to provide confidence measures for model’s predictions that are reliable and whose
ranking among samples enables to distinguish correct from incorrect predictions. Equipped with such
a confidence measure, a system could decide to stick to the prediction or, on the contrary, to hand
over to a human or a back-up system with, e.g. other sensors, or simply to trigger an alarm.

In the context of classification, a widely used baseline for confidence estimation with neural networks
is to take the value of the predicted class’ probability, namely the Maximum Class Probability (MCP),
given by the softmax layer output. Although recent evaluations of MCP for failure prediction with

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: When ranking test samples according to Maximum Class Probability (a), output by a
convolutional model trained on CIFAR-10 dataset, we observe that correct predictions (in green) and
incorrect ones (in red) overlap considerably, making it difficult to distinguish them. On the other
hand, ranking samples according to True Class Probability (b) alleviates this issue and allows a better
separation for failure prediction. (Distributions of both correct and incorrect samples are plotted in
relative density for visualization purpose).

modern deep models reveal reasonable performances [17], they still suffer from several conceptual
drawbacks. Softmax probabilities are indeed known to be non-calibrated [13, 40], sensitive to
adversarial attacks [12, 44], and inadequate for detecting in- from out-of-distribution examples [17,
30, 26].

Another important issue related to MCP, which we specifically address in this work, relates to ranking
of confidence scores: this ranking is unreliable for the task of failure prediction [41, 20]. As illustrated
in Figure 1(a) for a small convolutional network trained on CIFAR-10 dataset, MCP confidence
values for erroneous and correct predictions overlap. It is worth mentioning that this problem comes
from the fact that MCP leads by design to high confidence values, even for erroneous ones, since the
largest softmax output is used. On the other hand, the probability of the model with respect to the true
class naturally reflects a better behaved model confidence, as illustrated in Figure 1(b). This leads to
errors’ confidence distributions shifted to smaller values, while correct predictions are still associated
with high values, allowing a much better separability between these two types of prediction.

Based on this observation, we propose a novel approach for failure prediction with deep neural
networks. We introduce a new confidence criteria based on the idea of using the TCP (section 2.1),
for which we provide theoretical guarantees in the context of failure prediction. Since the true class
is obviously unknown at test time, we introduce a method to learn a given target confidence criterion
from data (section 2.2). We also discuss connections and differences between related works for
failure prediction, in particular Bayesian deep learning and ensemble approaches, as well as recent
approaches designing alternative criteria for failure prediction (section 2.3). We conduct extensive
comparative experiments across various tasks, datasets and network architectures to validate the
relevance of our proposed approach (section 3.2). Finally, a thorough analysis of our approach
regarding the choice of loss function, criterion and learning scheme is presented in section 3.3.

2 Failure prediction by learning model confidence

We are interested in the problem of defining relevant confidence criteria for failure prediction with
deep neural networks, in the context of classification. We also address semantic image segmentation,
which can be seen as a pixel-wise classification problem, where a model outputs a dense segmentation
mask with a predicted class assigned to each pixel. As such, all the following material is formulated
for classification, and implementation details for segmentation are specified when necessary.

Let us consider a dataset D which consists of N i.i.d. training samples D = {(xi, y
∗
i)}Ni=1 where

xi ∈ Rd is a d-dimensional feature and y∗i ∈ Y = {1, ...,K} is its true class. We view a classification
neural network as a probabilistic model: given an input x, the network assigns a probabilistic
predictive distribution P (Y |w,x) by computing the softmax output for each class k and where w

2

are the parameters of the network. From this predictive distribution, one can infer the class predicted
by the model as ŷ = argmax

k∈Y
P (Y = k|w,x).

During training, network parameters w are learned following a maximum likelihood estimation
framework where one minimizes the Kullback-Leibler (KL) divergence between the predictive
distribution and the true distribution. In classification, this is equivalent to minimizing the cross-
entropy loss w.r.t. w, which is the negative sum of the log-probabilities over positive labels:

LCE(w;D) = − 1

N

N∑
i=1

y∗i logP (Y = y∗i |w,xi). (1)

2.1 Confidence criterion for failure prediction

Instead of trying to improve the accuracy of a given trained model, we are interested in knowing if
it can be endowed with the ability to recognize when its prediction may be wrong. A confidence
criterion is a quantitative measure to estimate the confidence of the model prediction. The higher the
value, the more certain the model about its prediction. As such, a suitable confidence criterion should
correlate erroneous predictions with low values and successful predictions with high values. Here,
we specifically focus on the ability of the confidence criterion to separate successful and erroneous
predictions in order to distinguish them.

For a given input x, a standard approach is to compute the softmax probability of the predicted class
ŷ, that is the Maximum Class Probability: MCP(x) = max

k∈Y
P (Y = k|w,x) = P (Y = ŷ|w,x).

By taking the largest softmax probability, MCP leads to high confidence values both for errors and
correct predictions, making it hard to distinguish them, as shown in Figure 1(a). On the other hand,
when the model is misclassifying an example, the probability associated to the true class y∗ would be
more likely close to a low value, reflecting the fact that the model made an error. Thus, we propose to
consider the True Class Probability as a suitable confidence criterion for failure prediction:

TCP : Rd × Y → R
(x , y∗)→ P (Y = y∗|w,x) (2)

Theoretical guarantees. With TCP, the following properties hold (see derivation in supplementary
1.1). Given an example (x, y∗),

• TCP(x, y∗) > 1/2⇒ ŷ = y∗, i.e. the example is properly classified by the model,
• TCP(x, y∗) < 1/K ⇒ ŷ 6= y∗, i.e. the example is wrongly classified by the model.

Within the range [1/K, 1/2], there is no theoretical guarantee that correct and incorrect predictions
will not overlap in terms of TCP. However, when using deep neural networks, we observe that the
actual overlap area is extremely small in practice, as illustrated in Figure 1(b) on the CIFAR-10
dataset. One possible explanation comes from the fact that modern deep neural networks output
overconfident predictions and therefore non-calibrated probabilities [13]. We provide consolidated
results and analysis on this aspect in Section 3 and in the supplementary 1.2.

We also introduce a normalized variant of the TCP confidence criterion, which consists in computing
the ratio between TCP and MCP:

TCPr(x, y∗) =
P (Y = y∗|w,x)
P (Y = ŷ|w,x)

. (3)

The TCPr criterion presents stronger theoretical guarantees than TCP, since correct predictions will
be, by design, assigned the value of 1, whereas errors will range in [0, 1[. On the other hand, learning
this criterion may be more challenging since all correct predictions must match a single scalar value.

2.2 Learning TCP confidence with deep neural networks

Using TCP as confidence criterion on a model’s output would be of great help when it comes
to predicting failures. However, the true class y∗ of an output is obviously not available when

3

Figure 2: Our approach is based on two sub-networks. The classification model with parameters
w is composed of a succession of convolutional and dense layers (‘ConvNet’) followed by a final
dense layer with softmax activation. The confidence network, ‘ConfidNet’, builds upon features maps
extracted by ConvNet, and is composed of a succession of layers which output a confidence score
ĉ(x, θ) ∈ [0, 1].

estimating confidence on test samples. Thus, we propose to learn TCP confidence c∗(x, y∗) =
P (Y = y∗|w,x) 1, our target confidence value. We introduce a confidence neural network, termed
ConfidNet, with parameters θ, which outputs a confidence prediction ĉ(x, θ). During training, we
seek θ such that ĉ(x, θ) is close to c∗(x, y∗) on training samples (see Figure 2).

ConfidNet builds upon a classification neural network M , whose parameters w are preliminary
learned using cross-entropy loss LCE in (1). We are not concerned with improving model M ’s
accuracy. As a consequence, its classification layers (last fully connected layer and subsequent
operations) will be fixed from now on.

Confidence network design. During initial classification training, model M learns to extract
increasingly complex features that are fed to the classification layers. To benefit from these rich
representations, we build ConfidNet on top of them: ConfidNet passes these features through a
succession of dense layers with a final sigmoid activation that outputs a scalar ĉ(x, θ) ∈ [0, 1].
Note that in semantic segmentation, models consist of fully convolutional networks where hidden
representations are 2D feature maps. ConfidNet can benefit from this spatial information by replacing
dense layers by 1× 1 convolutions with adequate number of channels.

Loss function. Since we want to regress a score between 0 and 1, we use the `2 loss to train
ConfidNet:

Lconf(θ;D) =
1

N

N∑
i=1

(ĉ(xi, θ)− c∗(xi, y
∗
i))

2. (4)

In the experimental part, we also tried more direct approaches for failure prediction such as a binary
cross entropy loss (BCE) between the confidence network score and a incorrect/correct prediction
target. We also tried implementing Focal loss [31], a BCE variant which focuses on hard examples.
Finally, one can also see failure detection as a ranking problem where good predictions must be
ranked before erroneous ones according to a confidence criterion. To this end, we also implemented a
ranking loss [36, 7] applied locally on training batch inputs.

Learning scheme. Our complete confidence model, from input image to confidence score, shares
its first encoding part (‘ConvNet’ in Fig.2) with the classification modelM . The training of ConfidNet

1or its normalized variant TCPr(x, y∗).

4

starts by fixing entirely M (freezing w) and learning θ using loss (4). In a next step, we can then
fine-tune the ConvNet encoder. However, as model M has to remain fixed to compute similar
classification predictions, we have now to decouple the feature encoders used for classification and
confidence prediction respectively. We also deactivate dropout layers in this last training phase and
reduce learning rate to mitigate stochastic effects that may lead the new encoder to deviate too much
from the original one used for classification. Data augmentation can thus still be used.

2.3 Related works

Confidence estimation has already raised interest in the machine learning community over the past
decade. Blatz et al. [3] introduce a method similar to our BCE baseline for confidence estimation in
machine translation but their approach is not dedicated to training deep neural networks. Similarly,
[42, 29] mention the use of bi-directional lattice RNN specifically designed for confidence estimation
in speech recognition, whereas ConfidNet offers a model- and task-agnostic approach which can
be plugged into any deep neural network. Post-hoc selective classification methods [11] identify a
threshold over a confidence-rate function (e.g., MCP) to satisfy a user-specified risk level, whereas
we focus here on relative metrics. Recently, Hendricks et al. [17] established a standard baseline for
deep neural networks which relies on MCP retrieved from softmax distribution. As stated before,
MCP presents several limits regarding both failure prediction and out-of-distribution detection as
it outputs high confidence values. This limit is alleviated in our TCP criterion which also provides
some interesting theoretical guarantees regarding confidence threshold.

In [20], Jiang et al. propose a new confidence measure, ‘Trust Score’, which measures the agreement
between the classifier and a modified nearest-neighbor classifier on the test examples. More precisely,
the confidence criterion used in Trust Score [20] is the ratio between the distance from the sample
to the nearest class different from the predicted class and the distance to the predicted class. One
clear drawback of this approach is its lack of scalability, since computing nearest neighbors in large
datasets is extremely costly in both computation and memory. Another more fundamental limitation
related to the Trust Score itself is that local distance computation becomes less meaningful in high
dimensional spaces [2], which is likely to negatively affect performances of this method. In contrast,
ConfidNet is based on a training approach which learns a sub-manifold in the error/success space,
which is arguably less prone to the curse of dimensionality and, therefore, facilitate discrimination
between these classes.

Bayesian approaches for uncertainty estimation in neural networks gained a lot of attention recently,
especially due to the elegant connection between efficient stochastic regularization techniques,
e.g. dropout [10], and variational inference in Bayesian neural networks [10, 9, 4, 21, 22]. Gal and
Ghahramani proposed in [10] using Monte Carlo Dropout (MCDropout) to estimate the posterior
predictive network distribution by sampling several stochastic network predictions. When applied
to regression, the predictive distribution uncertainty can be summarized by computing statistics,
e.g. variance. When using MCDropout for uncertainty estimation in classification tasks, however,
the predictive distribution is averaged to a point-wise softmax estimate before computing standard
uncertainty criteria, e.g. entropy or variants such as mutual information. It is worth mentioning that
these entropy-based criteria measure the softmax output dispersion, where the uniform distribution has
maximum entropy. It is not clear how well these dispersion measures are adapted for distinguishing
failures from correct predictions, especially with deep neural networks which output overconfident
predictions [13]: for example, it might be very challenging to discriminate a peaky prediction
corresponding to a correct prediction from an incorrect overconfident one. We illustrate this issue in
section 3.2.

In tasks closely related to failure prediction, other approaches also identified the issue of MCP
regarding high confidence predictions [17, 30, 26, 28, 13, 40]. Guo et al. [13], for confidence
calibration, and Liang et al. [30], for out-of-distribution detection, proposed to use temperature
scaling to mitigate confidence values. However, this doesn’t affect the ranking of the confidence
score and therefore the separability between errors and correct predictions. DeVries et al. [6] share
with us the same purpose of learning confidence in neural networks. Their work differs by focusing
on out-of-distribution detection and learning jointly a distribution confidence score and classification
probabilities. In addition, they use predicted confidence score to interpolate output probabilities and
target whereas we specifically define TCP, a criterion suited for failure prediction.

5

Lakshminarayanan et al. [26] propose an alternative to Bayesian neural networks by leveraging
ensemble of neural networks to produce well-calibrated uncertainty estimates. Part of their approach
relies on using a proper scoring rule as training criterion. It is interesting to note that our TCP criterion
corresponds actually to the exponential cross-entropy loss value of a model prediction, which is a
proper scoring rule in the case of multi-class classification.

3 Experiments

In this section, we evaluate our approach to predict failure in both classification and segmentation
settings. First, we run comparative experiments against state-of-the-art confidence estimation and
Bayesian uncertainty estimation methods on various datasets. These results are then completed by
a thorough analysis of the influence of the confidence criterion, the training loss and the learning
scheme in our approach. Finally, we provide a few visualizations to get additional insight into the
behavior of our approach. Our code is available at https://github.com/valeoai/ConfidNet.

3.1 Experimental setup

Datasets. We run experiments on image datasets of varying scale and complexity: MNIST [27]
and SVHN [39] datasets provide relatively simple and small (28× 28) images of digits (10 classes).
CIFAR-10 and CIFAR-100 [24] propose more complex object recognition tasks on low resolution
images. We also report experiments for semantic segmentation on CamVid [5], a standard road scene
dataset. Further details about these datasets, as well as on architectures, training and metrics can be
found in supplementary 2.1.

Network architectures. The classification deep architectures follow those proposed in [20] for fair
comparison. They range from small convolutional networks for MNIST and SVHN to larger VGG-16
architecture for the CIFAR datasets. We also added a multi-layer perceptron (MLP) with 1 hidden
layer for MNIST to investigate performances on small models. For CamVid, we implemented a
SegNet semantic segmentation model, following [21].

Our confidence prediction network, ConfidNet, is attached to the penultimate layer of the classification
network. It is composed of a succession of 5 dense layers. Variants of this architecture have been
tested, leading to similar performances (see supplementary 2.2 for more details). Following our
specific learning scheme, we first train ConfidNet layers before fine-tuning the duplicate ConvNet
encoder dedicated to confidence estimation. In the context of semantic segmentation, we adapt
ConfidNet by making it fully convolutional.

Evaluation metrics. We measure the quality of failure prediction following the standard metrics
used in the literature [17]: AUPR-Error, AUPR-Success, FPR at 95% TPR and AUROC. We will
mainly focus on AUPR-Error, which computes the area under the Precision-Recall curve using errors
as the positive class.

3.2 Comparative results on failure prediction

To demonstrate the effectiveness of our method, we implemented competitive confidence and un-
certainty estimation approaches including Maximum Class Probability (MCP) as a baseline [17],
Trust Score [20], and Monte-Carlo Dropout (MCDropout) [10]. For Trust Score, we used the code
provided by the authors2. Further implementation details and parameter settings are available in the
supplementary 2.1.

Comparative results are summarized in Table 1. First of all, we observe that our approach outperforms
baseline methods in every setting, with a significant gap on small models/datasets. This confirms both
that TCP is an adequate confidence criterion for failure prediction and that our approach ConfidNet
is able to learn it. TrustScore method also presents good results on small datasets/models such as
MNIST where it improved baseline. While ConfidNet still performs well on more complex datasets,
Trust Score’s performance drops, which might be explained by high dimensionality issues with
distances as mentioned in section 2.3. For its application to semantic segmentation where each
training pixel is a ‘neighbor’, computational complexity forced us to reduce drastically the number
of training neighbors and of test samples. We sampled randomly in each train and test image a

2https://github.com/google/TrustScore

6

https://github.com/valeoai/ConfidNet

Table 1: Comparison of failure prediction methods on various datasets. All methods share the same
classification network. Note that for MCDropout, test accuracy is averaged over random sampling.
All values are percentages.

Dataset Model FPR-95%-TPR AUPR-Error AUPR-Success AUC

MNIST
MLP

Baseline (MCP) [17] 14.87 37.70 99.94 97.13
MCDropout [10] 15.15 38.22 99.94 97.15
TrustScore [20] 12.31 52.18 99.95 97.52
ConfidNet (Ours) 11.79 57.37 99.95 97.83

MNIST
Small ConvNet

Baseline (MCP) [17] 5.56 35.05 99.99 98.63
MCDropout [10] 5.26 38.50 99.99 98.65
TrustScore [20] 10.00 35.88 99.98 98.20
ConfidNet (Ours) 3.33 45.89 99.99 98.82

SVHN
Small ConvNet

Baseline (MCP) [17] 31.28 48.18 99.54 93.20
MCDropout [10] 36.60 43.87 99.52 92.85
TrustScore [20] 34.74 43.32 99.48 92.16
ConfidNet (Ours) 28.58 50.72 99.55 93.44

CIFAR-10
VGG16

Baseline (MCP) [17] 47.50 45.36 99.19 91.53
MCDropout [10] 49.02 46.40 99.27 92.08
TrustScore [20] 55.70 38.10 98.76 88.47
ConfidNet (Ours) 44.94 49.94 99.24 92.12

CIFAR-100
VGG16

Baseline (MCP) [17] 67.86 71.99 92.49 85.67
MCDropout [10] 64.68 72.59 92.96 86.09
TrustScore [20] 71.74 66.82 91.58 84.17
ConfidNet (Ours) 62.96 73.68 92.68 86.28

CamVid
SegNet

Baseline (MCP) [17] 63.87 48.53 96.37 84.42
MCDropout [10] 62.95 49.35 96.40 84.58
TrustScore [20] 20.42 92.72 68.33
ConfidNet (Ours) 61.52 50.51 96.58 85.02

(a) CIFAR-10 (b) SVHN

Figure 3: Risk-coverage curves. ‘Selective risk’ (y-axis) represents the percentage of errors in the
remaining test set for a given coverage percentage.

small percentage of pixels to compute TrustScore. ConfidNet, in contrast, is as fast as the original
segmentation network.

We also improve state-of-art performances from MCDropout. While MCDropout leverages ensem-
bling based on dropout layers, taking as confidence measure the entropy on the average softmax
distribution may not be always adequate. In Figure 4, we show side-by-side two samples with a
similar distribution entropy. Left image is misclassified while right one enjoys a correct prediction.
Entropy is a symmetric measure in regards to class probabilities: a correct prediction with [0.65, 0.35]
distribution is evaluated as confident as an incorrect one with [0.35, 0.65] distribution. In contrast,
our approach can discriminate an incorrect from a correct prediction despite both having similarly
spread distributions.

7

Figure 4: Illustrating the limits of MCDropout with entropy as confidence estimation on SVHN test
samples. Red-border image (a) is misclassified by the classification model; green-border image (b)
is correctly classified. Prediction exhibit similar high entropy in both cases. For each sample, we
provide a plot of their softmax predictive distribution.

Risk-coverage curves [8, 11] depicting the performance of ConfidNet and other baselines for CIFAR-
10 and SVHN datasets appear in Figure 3. ‘Coverage’ corresponds to the probability mass of the
non-rejected region after using a threshold as selection function [11]. For both datasets, ConfidNet
presents a better coverage potential for each selective risk that a user can choose beforehand. In
addition, we can see that the improvement is more pronounced at high coverage rates - e.g. in
[0.8; 0.95] for CIFAR-10 (Fig. 3a) and in [0.86; 0.96] for SVHN (Fig. 3b) - which highlights the
capacity of ConfidNet to identify successfully critical failures.

3.3 Effect of learning variants

Table 2: Effect of learning scheme on AUPR-Error

MNIST CIFAR-100
SmallConvNet VGG-16

Confidence training 43.94% 72.68%
+ Fine-tuning ConvNet 45.89% 73.68%

We first evaluate the effect
of fine-tuning ConvNet in
our approach. Without
fine-tuning, ConfidNet al-
ready achieves significant
improvements w.r.t. base-
line, as shown in Table 2.
By allowing subsequent
fine-tuning as described in
section 2.2, ConfidNet performance is further boosted in every setting, around 1-2%. Note that using
a vanilla fine-tuning without deactivating dropout layers did not bring any improvement.

Given the small number of errors available due to deep neural network over-fitting, we also experi-
mented with training ConfidNet on a hold-out dataset. We report results on all datasets in Table 3 for
validation sets with 10% of samples. We observe a general performance drop when using a validation
set for training TCP confidence. The drop is especially pronounced for small datasets (MNIST),
where models reach >97% train and val accuracies. Consequently, with a high accuracy and a small
validation set, we do not get a larger absolute number of errors using val set compared to train set.
One solution would be to increase validation set size but this would damage model’s prediction per-
formance. By contrast, we take care with our approach to base our confidence estimation on models
with levels of test predictive performance that are similar to those of baselines. On CIFAR-100, the
gap between train accuracy and val accuracy is substantial (95.56% vs. 65.96%), which may explain
the slight improvement for confidence estimation using val set (+0.17%). We think that training
ConfidNet on val set with models reporting low/middle test accuracies could improve the approach.

Table 3: Comparison between training ConfidNet on train set or on validation set

AUPR-Error (%) MNIST MNIST SVHN CIFAR-10 CIFAR-100 CamVid
MLP SmallConvNet SmallConvNet VGG-16 VGG-16 SegNet

ConfidNet (using train set) 57.34% 43.94% 50.72% 49.94% 73.68% 50.28%
ConfidNet (using val set) 33.41% 34.22% 47.96% 48.93% 73.85% 50.15%

On Table 4, we compare training ConfidNet with MSE loss to binary classification cross-
entropy loss (BCE). Even though BCE specifically addresses the failure prediction task, we

8

observe that it achieves lower performances on CIFAR-10 and CamVid datasets. Focal
loss and ranking loss were also tested and presented similar results (see supplementary 2.3).

Table 4: Effect of loss and normalized criterion on AUPR-Error

Dataset Loss Criterion
TCP BCE TCPr

CIFAR-10 49.94% 47.95% 48.78%
CamVid 50.51% 48.96% 51.35%

We intuitively think that
TCP regularizes training
by providing more fine-
grained information about
the quality of the classifier
regarding a sample’s pre-
diction. This is especially
important in the difficult
learning configuration where only very few error samples are available due to the good performance
of the classifier. We also evaluate the impact of regression to the normalized criterion TCP r: per-
formance is lower than the one of TCP on small datasets such as CIFAR-10 where few errors are
present, but higher on larger datasets such as CamVid where each pixel is a sample. This emphasizes
once again the complexity of incorrect/correct classification training.

3.4 Qualitative assessments

In this last subsection, we provide an illustration on CamVid (Figure 5) to better understand our
approach for failure prediction. Compared to MCP baseline, our approach produces higher confidence
scores for correct pixel predictions and lower ones on erroneously predicted pixels, which allow an
user to better detect errors area in semantic segmentation.

Figure 5: Comparison of inverse confidence (uncertainty) map between ConfidNet (e) and MCP (f) on
one CamVid scene. The top row shows the input image (a) with its ground-truth (b) and the semantic
segmentation mask (c) predicted by the original classification model. The error map associated to
the predicted segmentation is shown in (d), with erroneous predictions flagged in white. ConfidNet
(55.53% AP-Error) allows a better prediction of these errors than MCP (54.69% AP-Error).

4 Conclusion

In this paper, we defined a new confidence criterion, TCP, which provides both theoretical guarantees
and empirical evidences to address failure prediction. We proposed a specific method to learn this
criterion with a confidence neural network built upon a classification model. Results showed a
significant improvement from strong baselines on various classification and semantic segmentation
datasets, which validate the effectiveness of our approach. Further works involve exploring methods
to artificially generate errors, such as in adversarial training. ConfidNet could also be applied for
uncertainty estimation in domain adaptation [45, 14] or in multi-task learning [23, 38].

9

References
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.

Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016. 1

[2] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is “nearest
neighbor” meaningful? In ICDT, 1999. 5

[3] John Blatz, Erin Fitzgerald, George Foster, Simona Gandrabur, Cyril Goutte, Alex Kulesza,
Alberto Sanchis, and Nicola Ueffing. Confidence estimation for machine translation. In
COLING, 2004. 5

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. In ICML, 2015. 5

[5] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A
high-definition ground truth database. Pattern Recogn. Lett., 30(2):88–97, 2009. 6

[6] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection
in neural networks. arXiv preprint arXiv:1802.04865, 2018. 5

[7] Thibaut Durand, Nicolas Thome, and Matthieu Cord. Mantra: Minimum maximum latent
structural SVM for image classification and ranking. In ICCV, 2015. 4

[8] Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. J.
Mach. Learn. Res., 11:1605–1641, 2010. 8

[9] Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016. 5

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In ICML, 2016. 5, 6, 7

[11] Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. In NIPS,
2017. 5, 8

[12] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014. 2

[13] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In ICML, 2017. 2, 3, 5

[14] Ligong Han, Yang Zou, Ruijiang Gao, Lezi Wang, and Dimitris Metaxas. Unsupervised domain
adaptation via calibrating uncertainties. In CVPR Workshops, 2019. 9

[15] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep speech:
Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014. 1

[16] Simon Hecker, Dengxin Dai, and Luc Van Gool. Failure prediction for autonomous driving. In
IV, 2018. 1

[17] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In ICLR, 2017. 1, 2, 5, 6, 7

[18] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, 2012. 1

[19] Joel Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. Computer vision for au-
tonomous vehicles: Problems, datasets and state-of-the-art. arXiv preprint arXiv:1704.05519,
abs/1704.05519, 2017. 1

[20] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier.
In NIPS, 2018. 1, 2, 5, 6, 7

10

[21] Alex Kendall, Vijay Badrinarayanan, , and Roberto Cipolla. Bayesian SegNet: Model un-
certainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv
preprint arXiv:1511.02680, 2015. 5, 6

[22] Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for
computer vision? In NIPS, 2017. 5

[23] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In CVPR, June 2018. 9

[24] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009. 6

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012. 1

[26] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems 30, 2017. 2, 5, 6

[27] Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist, 1998. 6

[28] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers
for detecting out-of-distribution samples. In ICLR, 2018. 5

[29] Qiujia Li, Preben Ness, Anton Ragni, and M.J.F. Gales. Bi-directional lattice recurrent neural
networks for confidence estimation. In IEEE International Conference on Acoustics, Speech
and Signal Processing, 10 2018. 5

[30] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In ICLR, 2018. 2, 5

[31] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
ICCV, 2017. 4

[32] Ondrej Linda, Todd Vollmer, and Milos Manic. Neural network based intrusion detection
system for critical infrastructures. In IJCNN, 2009. 1

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C. Berg. SSD: Single shot multibox detector. In ECCV, 2016. 1

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, abs/1301.3781, 2013. 1

[35] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Takao Kobayashi, Keikichi Hirose, and Satoshi
Nakamura, editors, INTERSPEECH, 2010. 1

[36] Pritish Mohapatra, Michal Rolínek, C.V. Jawahar, Vladimir Kolmogorov, and M. Pawan Kumar.
Efficient optimization for rank-based loss functions. In CVPR, June 2018. 4

[37] Taylor Mordan, Nicolas Thome, Gilles Henaff, and Matthieu Cord. End-to-end learning of
latent deformable part-based representations for object detection. International Journal of
Computer Vision, pages 1–21, 07 2018. 1

[38] Taylor Mordan, Nicolas Thome, Gilles Henaff, and Matthieu Cord. Revisiting multi-task
learning with ROCK: a deep residual auxiliary block for visual detection. In NIPS, 2018. 9

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop, 2011.
6

[40] L. Neumann, A. Zisserman, and A. Vedaldi. Relaxed softmax: Efficient confidence auto-
calibration for safe pedestrian detection. In NIPS Workshops, 2018. 2, 5

11

[41] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In CVPR, 2015. 2

[42] A. Ragni, Q. Li, M. J. F. Gales, and Y. Wang. Confidence estimation and deletion prediction
using bidirectional recurrent neural networks. In SLT Workshop, 2018. 5

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. In NIPS, 2015. 1

[44] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014. 2

[45] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. ADVENT:
Adversarial entropy minimization for domain adaptation in semantic segmentation. In CVPR,
2019. 9

12

