
Automated Offloading of Android Applications for
Computation/Energy Optimizations

Alessandro Zanni∗, Se-young Yu†, Stefano Secci†, Rami Langar‡, Paolo Bellavista∗ and Daniel F. Macedo§
∗Dept. Computer Science and Engineering (DISI), University of Bologna, Italy

Email: {alessandro.zanni3,paolo.bellavista}@unibo.it
†LIP6,Sorbonne Universits, UPMC Univ Paris 06, UMR 7606, France

Email: {young.yu, stefano.secci}@lip6.fr
‡LIGM,University Paris Est Marne-la-Vallee, UMR 8049, France

Email: rami.langar@u-pem.fr
§Computer Science Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Email: damacedo@dcc.ufmg.br

Abstract—Our work presents a methodology and a tool to op-
timize Android applications using mobile computation offloading
techniques. Our demo provides a study about the compatibility
of being offloaded of Android methods and a methodology to
autonomously classify Android methods based on their functions.

I. INTRODUCTION

Computation offloading is widely accepted as a powerful
concept that can overcome the resource constraints of mo-
bile devices and low-power Internet-of-Things devices, by
dynamically sending computation-intensive tasks to remote
servers depending on context. In different applications and
deployments, remote servers may vary from globally available
cloud resources to fog/edge gateway nodes in the vicinity.
Many proposed a mobile computation to offload computation
from a resource limited device to another device [1]. This
can help mobile devices to reduce execution time and energy
consumption of the computation at the cost of transferring
(parts of) the computation and related information to the
offload target and of receiving results from there.

This demo presents a tool that, given a compiled APK (in
an Android environment), can create a novel APK file that
contains additional code to automate the runtime offloading
of a program. The methods enabled to be offloaded at runtime
are chosen depending on computing time and energy usage,
which are predicted in our framework. This is done, while
take into consideration the complexity of the arguments and
previous execution data gathered [2].

We present the implementation and evaluation of an offload-
ing tool that can autonomously scan a generic Android mobile
application, without any prior and application-specific knowl-
edge, to autonomously create a new version of the application,
which is functionally equivalent, but with the capability to
offload computations to a remote server. The granularity of
the offloading decision is the application method. It is achieved
this by a careful automated analysis to detect which methods
can be executed on the server consistently and by marginally
modifying those methods code to run them remotely in a
completely transparent way. The result is then integrated into

a new Android application that runs some methods locally on
the mobile device and others remotely on the server.

To achieve this goal, we have improved and extended an
existing prototype from [2] in two main directions:

• Autonomous method selection. The tool includes an
algorithm to autonomously select the methods suitable
to be executed both locally and on the remote server,
through a complete scan of the: i) APK file; ii) the classes
developed by the programmers; iii) the methods for each
class. The selected methods are then sorted in terms of
the number of offloadable method calls.

• Translate methods and execution on a remote server. Our
extension has added the ability to offload every suitable
method whatever: i) its input parameters, by extending the
methods translation code generation to support complex
objects including lists and arraylists; ii) its state, being
either static or non-static method; iii) the static or no-
static variables used internally in its body with the related
object management.

II. AUTONOMOUS METHOD SELECTION

Fig. 1. methods checking analysis inside the method selection algorithm

Figure 1 illustrate the procedure we used in our analysis.

A. APK Parser

Firstly, the parser retrieves the information from the appli-
cation, e.g., the application structure and the files created by
the developers. The parser analyzes the APK file by scanning
and parsing the Android Manifest file in the APK to find the
MainActivity class.



B. Classes and Methods Analysis

The classes analysis phase aims to minimize the number of
offloadable classes from the classes found from APK Parser,
using the Soot framework [3] which allows to modify java
and android application without their source. Initially, our
internal class check detects classes that cannot be offloaded
since they extend device-dependent classes, i.e., Android li-
brary, Threads, etc. After that, it checks the dependencies of
each class whether they contain any of the non-offloadable
components iteratively, through multiple loops until no new
non-offloadable classes are found.

For each possible offloadable class, our tool parses the body
of each method in a fine-grained way. The tool first determines
whether the methods are internal or device-dependent using
the following criteria:

1) Internal check: if the method is a default constructer gen-
erated from the compiler or contains the MainActivity
among its parameters, the tool will discard it from the
offloadable classes because they are likely have a small
computation which makes the offloading inefficient.

2) Class check: if the method belongs to a class
marked as not-offloadable, the method cannot be of-
floaded because it is likely to call not-offloadable ob-
jects/methods/parameters.

3) Native keywords check: the tool pre-loads five configu-
ration files with blacklist keywords indicating elements
that it is convenient not to contain into an offlodable
method, i.e., application lifecycle management, applica-
tion GUI management, application events management,
application in/out management; native Android libraries.

C. Methods Sorting

Finally, the tool uses a sorting algorithm to determine the
order the methods. We introduce a priority queue where the
methods are added with a priority coefficient (Wm) related to
the maximum weight among the internal offloadable methods
ones (Wi), as explained in the equation 1.

Wm =

{
1, if no internal method

max(Wi) + 1, otherwise
(1)

then using the following algorithm:
• Step 1 (priority 1): Search the methods that do not contain

any calls to methods declared offloadable in their body,
and put the method in the priority queue.

• Step N (priority N): Search the methods that contains
calls to offloadable method with at maximum =(N-1) in
their body and insert in the priority queue.

This results a queue with methods sorted in a decreasing
order in terms of their weight, where the weight represents
the total number of offloading methods being called by that
method and by the methods being called from that method.

III. METHOD TRANSLATION AND OPTIMIZATION

Our post-compiler can optimize every method detected from
the previous method selection algorithm into a Jimple pseudo-
code. The optimized methods can be executed on a remote

server at runtime regardless of the type of parameters passed as
input arguments and whether the method is static or non-static.
The framework from [2] was able to only offload methods
with primitive parameters. Our extension allows methods
with complex parameters to be optimized for offloading by
serializing the complex objects and send them along with the
offloading request to the server.

The method translation algorithm in the post-compiler and
the remote execution platform is further extended to synchro-
nize the object instances between the devices involved in the
offloading. While the previous method translation algorithm
could offload only static methods that can only access static
variables, our optimization fully exploits object management,
allowing to offload non-static methods that can access any
variable both primitives and complex. When the method is
executed remotely, the application: i) sends the variables to
the remote server; ii) updates the values of those variables in
the server-side; iii) invokes and executes offloaded method; iv)
sends the values of the variables back to the client; v) update
the client variables.

IV. DEMO OVERVIEW

The demo setup includes an Android-based smartphone
client and a laptop-based server under the same wireless
network. After the post-compiler creates a new modified
APK file, the client installs and runs the application on the
mobile device. The application, through the method selection
algorithm, indicates which methods can be offloaded, and the
offloading framework, by historically monitoring data about
latency and energy usage, decides whether to offload a method
in order to optimize the application execution. The application
then sends the selected optimized methods smoothly to the
server, at runtime, returning the results of the computation to
the device in a complete transparent way for the final users.
The application can be downloaded from [4], also showing a
video demo.

ACKNOWLEDGMENT

This work was partially supported by the FUI PODIUM
project (Grant no. 15016552) and the ANR ABCD project
(contract nb ANR-INFRA-13-005).

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer with
Code Offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 49–62.

[2] J. L. D. Neto, D. F. Macedo, and J. M. S. Nogueira, “Location aware deci-
sion engine to offload mobile computation to the cloud,” in NOMS 2016 -
2016 IEEE/IFIP Network Operations and Management Symposium, Apr.
2016, pp. 543–549.

[3] R. Valle-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a Java Bytecode Optimization Framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. Mississauga, Ontario, Canada: IBM Press,
1999, pp. 13–.

[4] “ULOOF Framework.” [Online]. Available: http://uloof.lip6.fr


