
Automated Selection of Offloadable Tasks for
Mobile Computation Offloading in Edge Computing

Alessandro Zanni∗§, Se-young Yu§†, Paolo Bellavista∗, Rami Langar‡ and Stefano Secci§
∗Dept. Computer Science and Engineering (DISI), University of Bologna, Italy
§LIP6, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, France

†International Center for Advanced Internet Research (iCAIR), Northwestern University, USA
‡LIGM, University Paris Est Marne-la-Vallee, UMR 8049, France

Email: {alessandro.zanni3,paolo.bellavista}@unibo.it, young.yu@northwestern.edu, rami.langar@u-pem.fr, stefano.secci@upmc.fr

Abstract—Mobile computation offloading has recently at-
tracted much interest and first offloading solutions have been
developed. However, the relevant technical challenge of how
to automatically determine offloadable sections of Android ap-
plications has not been adequately investigated so far. This
paper proposes an innovative task selection algorithm that can
parse an Android application autonomously and classify all
the methods based on their offloadability by adopting a fine-
grained and multi-steps analyzer. The reported experimental
results show the effectiveness of our solution when applied to
the top 25 most downloaded Android apps on the Google Play
store, by showing its accuracy in identifying offloadable methods
and demonstrating the potential benefits of automated mobile
computation offloading.

I. INTRODUCTION

Mobile applications are constantly growing in terms of their
functionality and complexity in order to offer a wider set of
high-level features that challenge execution time and energy
usage. Recent mobile applications such as speech recognition,
natural language processing, computer vision and augmented
reality applications may require processing power beyond
which mobile devices are equipped with or can drain their
battery life at an unacceptable pace.

Mobile computation offloading [1] allows dynamically
migrating computation-intensive applications from resource-
limited devices to external machines; it can reduce execution
time and energy consumption at the cost of transferring
computation-related information. In particular, it is being
recognized that the offloading decision should be context-
dependent, i.e., deciding when and which computation task to
offload depending on current context data such as execution
time, energy consumption, task complexity, expected network
latency, etc. In addition, modern mobile computation offload-
ing technologies should dynamically consider the opportuni-
ties associated with fog or mobile edge nodes, in addition to
the ones targeted by traditional mobile computation offloading,
in order to go beyond the sole direct interaction of mobile
devices and global cloud datacenters [2]. In fact, fog comput-
ing [3] and Mobile Edge Computing (MEC) [4] can provide
virtualized computation/storage resources in the proximity of
data sources and targeted devices, with the potential ability
to overcome cloud limitations, by exploiting geographically

distributed heterogeneous resources with mobility support [2].
They allow mobile devices to be served from closer servers
to offload part of the mobile applications computation with
lower delay. Mobile applications can benefit from computation
capability of fog and MEC nodes to remain available and
responsive while processing large volumes of data [5].

One of the main, still open, technical challenges related
to mobile offloading is how to automatically partition an
application code into offloadable and non-offloadable parts,
for arbitrary applications by learning application code archi-
tecture [6]. Performing this partitioning manually requires sig-
nificant human effort: portions of Android applications (tasks)
may be unsuitable for offloading due to several non-trivial
motivations, such as frequent interaction with mobile users,
difficulties in replicating device-specific resource instances at
cloud/edge nodes, impossibility to serialize used resources,
only to mention a few. Moreover, this required human effort
slows down the acceptance of mobile offloading techniques in
industrial scenarios for obvious cost motivations.

Therefore, to maximize the benefits of offloading, a sophisti-
cated and autonomous task selection algorithm is required. De-
veloping a general-purpose task selection algorithm is not triv-
ial because it requires detecting offloadable parts of tasks from
the entire Android application code without prior knowledge
of the analyzed application. This paper specifically presents
the design, implementation, and evaluation of a novel fine-
grained task selection algorithm that can autonomously scan a
generic Android application without any application-specific
prior knowledge. Our algorithm analyzes and dynamically
partitions the application into offloadable and non-offloadable
methods. The granularity of our offloading suitability check
is made at the method level and achieved with an analysis
of the application structure of classes/methods to ensure that
the selected methods will be executed on the edge/cloud side
consistently. Finally, our solution has been experimentally
evaluated on the top 25 most downloaded Android applications
from the online Google marketplace to prove the efficiency of
our automated task selection algorithm in terms of the amount
of detected methods and associated performance. To the best
of our knowledge, this is the first proposal of an automated
task selection algorithm for mobile computation offloading.



II. RELATED WORK

MAUI [7] proposes code offloading using a profiler that
measures energy consumption and a solver which decides to
offload a method based on those measurements. ThinkAir [8]
performs on-demand resource allocation, executing methods
in parallel by dynamically creating, resuming, and destroying
multiple VMs in the cloud. COMET [9] uses thread offloading
among distributed devices to augment mobile devices with
machines available in the network. Cuckoo [10] implements
a communication library between mobile devices and the
Ibis communication middleware, by offloading bundles that
contain compiled code. The ULOOF framework [11], [12]
introduces an improved offloading decision mechanism that
exploits the assessment of the available bandwidth as well as
energy consumption, thus providing realistic execution time
and energy consumption estimations.

The above proposals have tried to address computation
offloading in different ways and at different granularity lev-
els, i.e., method, thread, or component levels. They focus
on offloading execution rather than selecting which tasks to
offload; they generally require developers to add annotations
to indicate which portion of an application to offload, that is to
modify application code manually. In fact, as already stated,
code selection decision is not well explored yet in the related
literature. Authors in [6] underline the task selection algorithm
as the main issue in offloading; moreover, they highlight the
granularity selection and the dynamic application partition as
the main technical challenges to face in order to offload to
edge/cloud nodes. In this perspective, CloneCloud [13] uses a
static code analyzer to automatically mark possible migration
points and to partition the binary of an application with a set
of execution point. CloneCloud uses a thread-granularity for
the offloading execution selection and each execution point
decides between where the application migrates the thread
towards the cloud or the local execution on the device.

Our solution, differently from the above work, provides
a fully autonomous code selection mechanism with method-
level granularity. It can dynamically analyze every kind of
Android application and detect the list of methods suitable to
be offloaded. Only the CloneCloud implements a similar au-
tonomous code selection mechanism without the need of hard-
coding into the specific application. However, it specifically
targets a powerful remote platform, i.e., the cloud computing,
to execute the offloaded code, since it needs to re-create a
VM with the same hardware and OS used locally. On the
contrary, we focus on a decoupled and lightweight solution that
has no platform constraints and can be used in many remote
servers independently from the available resources. In fact, our
solution aims to offload code at the method level that can run
on every server equipped with a Java Virtual Machine without
the same hardware/OS of the mobile device, thus suitable also
for less-powerful platforms, such as in the case of envisioned
MEC nodes.

III. ARCHITECTURE AND IMPLEMENTATION INSIGHTS OF
OUR TASK SELECTION SOLUTION

Our autonomous selection algorithm takes any Android
application package as an input and detects the included
methods that are suitable to be dynamically offloaded. The
proposed solution is designed to be general-purpose and
independent from application type, domain, size, and internal
structure. In particular, our algorithm starts by scanning the
whole application structure and apply incremental checks on
each single class/method and dependency constraints between
classes/methods.

To minimize the needed computation while achieving an
overall accurate result, we consider the following criteria when
we scan the package. Table III lists the criteria that our
algorithm considers for classes and methods.

Type of Checks Classes Methods

Internal Usage 3 3
Class Offloadability 3 3

Internal Objects Calls 7 3
Internal Methods Calls 7 3

TABLE I
CHECKS AUTOMATICALLY PERFORMED BY THE ALGORITHM

It is worth noting that we classify a device-dependent class
that includes objects impossible to be available/migrated at/to
remote cloud/edge nodes as non-offloadable, e.g., native An-
droid libraries or non-serializable Java objects (i.e., Threads).
All methods that are included into a non-offloadable class
are classified as non-offloadable. Vice versa, an offloadable
class is a class that successively passes all the class checks
and whose methods will be considered as possible offloading
candidates (after method-level checks). In fact, only after a
method passes all the incremental checks in the table, we mark
it as offloadable.

Figure 1 shows the components of our task selection algo-
rithm and, in the following sections, we give implementation
insights about each step of the method selection algorithm.

Fig. 1. Methods Selection Algorithm Architecture

A. APK Parser and Configuration File Loading

The APK parser retrieves an Android manifest file from
a provided APK to find a relevant information about the
internal application structure: it lists app packages and the
permissions to access protected parts of the API; it also
contains information about app components, which include
activities, services, broadcast receivers, and content providers;
for each component, it indicates the class that implements the
component and its capabilities (e.g., how it can be launched).



Successively, our solution retrieves, parses, and manipulates
class file methods, by leveraging on the Soot framework [14].
Soot provides a set of Java APIs to modify bytecode in
APK packages; in particular, Jimple [15] is an intermediate
representation of the Java bytecode that we use to implement
and optimize modifications of existing bytecode.

After that, we apply a list of keywords to filter out com-
ponents that cannot be offloaded based on the nature of the
component, such as GUI and hardware sensors. The complete
list of keywords and its rationale are not reported here for the
sake of briefness.

B. Class Analysis

Our class analyzer uses a set of tests to detect which classes
are not suitable to be offloaded, as follows.

• Internal Class Test: We found it is impossible to
offload anonymous inner classes because they are not
associated with the class name they are defined in
the Java bytecode and the Java compiler cannot lo-
cate the class with the specific class name in the app
code. However, our algorithm allows offloading non-
anonymous inner classes that are identified with the name
”class name+$+inner class name”.

• Android Class Test: We inspect classes that may contain
device-specific information by looking at their path of
the package the classes are belong to. This step is not
mandatory from a functional point of view because all
Android classes can be detected by the following method
analysis, but it allows to detect non-offloadable classes
more efficiently and, thus, to improve the performance
of our algorithm.

• Superclass and Dependency Tests: For each non-
internal class, we check if it extends an already defined
non-offloadable class. A subclass of an non-offloadable
superclass is likely to call non-offloadable methods or
access variables that should not be accessed from the
remote machine, therefore we classify them as non-
offloadable.

C. Method Analysis

The algorithm proposed to check method offloadability
mainly consists of two parts: (i) the main control that checks
the suitability of each method to be offloaded and (ii) a
dependency check that analyzes dependencies among methods.
The main control phase performs the following tests:

• Internal Method test. We check the suitability of each
method to be offloaded by using two criteria. (i) If the
method represents a static initializer (<clinit>method
name) used to initialize the class object itself, it is not
offloaded because a static method is always added by the
Java compiler and called by JVM after class loading. (ii)
If the method contains the MainActivity among its input
parameters, it is used internally by the Android compiler
to manage the MainActivity class or to use the context
of the MainActivity for the application startup.

• Class test. If a method belongs to a class marked as
non-offloadable, it is classified as non-offloadable as well
because it is likely to access non-offloadable objects,
methods or variables of the class.

• Objects Calls test. If a method contains platform-
dependent calls towards objects that were marked as non-
offloadable during class analysis, it is classified as non-
offloadable.

• Keywords test. We check if the methods include
platform-dependent calls towards methods that cannot
be offloaded. These methods are in the keyword-based
blacklist loaded from configuration files.

In addition to the previous checks, we also have dependency
check phase where we check which methods are invoked while
each inspected method executes. For each method, we can
determine its dependencies and discard the ones having at least
one method marked as non-offloadable. To this purpose, we
check the body of each method to see if there are any calls to
methods that are already classified as non-offloadable.

In particular, to scan dependencies of methods with mini-
mum overhead, we build a directed graph where each node is a
method and each edge is a method call directed from the caller
method (parent node) towards the callee method (child node).
Each node contains the following information: (i) method
signature; (ii) offloadable status, to indicate if the method
is offloadable, non-offloadable or temporally unknown; (iii)
visited status, which indicates if the dependency check has
already been executed for that node; (iv) parents list that
contains the list of the caller methods. The algorithm used
to create, modify, and parse the graph is described below:

• Step 1. We parse each method found in the offloadable
classes to build a directed graph. In each method invoca-
tion from the method body, we create an edge from child
to parent node.

• Step 2. Once the graph is created, we parse it to detect
which methods depend on non-offloadable methods (at
least one child node is non-offloadable). Starting from the
non-offloadable methods found during method checks, we
iterate through their parents until we reach to the root and
set the scanned nodes as non-offloadable. In this way, we
can recursively set as non-offloadable all the interested
branches without scanning all nodes.

• Step 3. We retrieve all the methods that are marked as
offloadable from the graph.

It is worth noting that the same dependency check can be
performed through an iterative approach where we check the
internal offloadable methods calls, with a complexity of Θ(n2∗
log n), where n is the total number of methods. Since the target
application may have a large number of methods, the iterative
approach has demonstrated to be too slow and therefore the
graph approach is required. In this case, the time complexity
for the dependency checks using our graph-based approach is
Θ(n), where n is limited to the number of non-offloadable
methods.



IV. EXPERIMENTAL EVALUATION

We have thoroughly evaluated the performance of our
proposed task selection algorithm by applying it to the top-25
most popular Android applications from the Google Play mar-
ketplace (according to the ranking of Feb. 1st, 2017). Those
applications compose an heterogeneous set of applications that
are different in terms of goals, domains, and internal structure.
In our experiments, besides the ratio and type of offloadable
and non-offloadable methods, we analyze also our algorithm
performance in terms of time to analyze apps and to retrieve
the list of offloadable methods.

Let us note that we fully tested our task selection algorithm
combined with an external computation offloading mechanism,
i.e., ULOOF [16], [12]. We set-up a complete offloading
platform that autonomously creates new Android applications
with the ability to scan dynamically their associated codes,
modify them, and offload some methods on an edge/cloud
node, if necessary, without any human intervention or spe-
cific configuration. Additional details about how we use the
ULOOF framework are available at [17].

A. Method Selection Assessment

The first significant figures relate to the number of methods
included in the top-25 most popular Android apps, how many
of them are offloadable, and the motivations why they are
considered non-offloadable, as listed in Section III-C.

Fig. 2. Methods analysis

As depicted in Figure 2, the average and median ratio of
methods suitable to be offloaded is 24.0%, with a standard
deviation of 3.0%. Some popular apps, such as Messenger,
Facebook, and Uber, show even a higher ratio, almost 30%.

B. Task Selection Performance

To measure the performance of our task selection algorithm,
for each app, we compare the total number of methods found
and the time needed by our algorithm to scan the app and to
apply the proposed heuristics (Figure 3).

The total time needed to scan an app is the sum of the times
needed for classes and methods. Due to the limited number
of classes usually present into an app if compared with the
number of methods, the latency associated with classes has
demonstrated to be almost negligible (always less than 5% of

Fig. 3. Task Selection Performance

total time) and the overall performance is mainly determined
by the time needed to scan methods. Note that our algorithm
exhibits very good performance and applicability to real-world
scenarios, with its ability to scan the vast majority of existing
top-25 apps in less than 1 minute.

For each app, we also show the speed-rate, defined as the
number of methods evaluated per ms. As shown in Figure 3,
it ranges from 0.6 to 1.9, with an average rate of 1.3 methods
scanned per ms.

V. CONCLUSIVE REMARKS

This paper proposes an innovative task selection algorithm
that autonomously parses a mobile Android app and retrieves
the list of methods that are suitable to be offloaded to a
cloud/edge node. The reported experimental results show that
our algorithm can identify up to almost 30% of methods
that are suitable candidates for offloading when applied to
most popular top-25 apps on the Google Play marketplace.
In addition, our algorithm has demonstrated to be able to
perform a complete scan on large-scale real-world apps within
tens of seconds. These encouraging results are stimulating our
ongoing research work in the field: among the others, we are
extending our experimentation to measure latency and energy
savings when applying the proposed solution, integrated with
ULOOF, to the same set of top-25 Android apps.

ACKNOWLEDGMENT

This work was partially supported by the FUI PODIUM
project (Grant no. 15016552) and the ANR ABCD project
(contract nb ANR-INFRA-13-005).

REFERENCES

[1] K. Kumar and Yung-Hsiang Lu, “Cloud Computing for Mobile Users:
Can Offloading Computation Save Energy?” Computer, vol. 43, no. 4,
pp. 51–56, Apr. 2010.



[2] P. Bellavista, A. Corradi, A. Zanni, “Integrating Mobile Internet of
Things and Cloud Computing towards Scalability: Lessons Learned
from Existing Fog Computing Architectures and Solutions,” ser. 3rd
International IBM Cloud Academy Conference (ICA CON) ’15, 2015.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things.” ACM Press, 2012, p. 13.

[4] Beck, M. T., Werner, M., Feld, S., and Schimper, T. (2014). Mobile edge
computing: A taxonomy, in Proc. of AFIN 2014.

[5] A. V. Kempen, T. Crivat, B. Trubert, D. Roy, and G. Pierre,
“MEC-ConPaaS: An experimental single-board based mobile edge
cloud,” Apr. 2017.

[6] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts,
Applications and Issues,” in Proc. of ACM Mobidata 2015.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in Proc. of ACM MobiSys 2010.

[8] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, Thinkair:
Dynamic resource allo- cation and parallel execution in the cloud for
mobile code offloading, in INFOCOM, 2012 Proceedings IEEE, pp.
945953, IEEE.

[9] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code Offload by Migrating Execution Transparently,” in
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 93–106.

[10] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A Compu-
tation Offloading Framework for Smartphones,” in Mobile Computing,
Applications, and Services. Springer, Berlin, Heidelberg, Oct. 2010,
pp. 59–79.

[11] J. L. D. Neto, D. F. Macedo, and J. M. S. Nogueira, “Location
aware decision engine to offload mobile computation to the cloud,” in
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium, Apr. 2016, pp. 543–549.

[12] J. L. D. Neto, S. Yu, D. Macedo, J. M. S. Nogueira, R. Langar, S. Secci,
“ULOOF: a User Level Online Offloading Framework for Mobile Edge
Computing,”. 2017. HAL research report nb. hal-01547036.

[13] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic Execution Between Mobile Device and Cloud,” in Proc. of ACM
EuroSys 2011.

[14] “A framework for analyzing and transforming Java and Android
Applications.” [Online]. Available: https://sable.github.io/soot/

[15] R. Vallee-Rai and L. J. Hendren, Jimple: Simplifying Java Bytecode for
Analyses and Transformations, 1998.

[16] A. Zanni, S. Yu, S. Secci, R. Langar, P. Bellavista, D.F. Macedo, “Au-
tomated Offloading of Android Applications for Computation/Energy
Optimizations,” in Proc. of IEEE INFOCOM 2017.

[17] ULOOF project (website): https://uloof.lip6.fr.
[18] “dex2jar.” [Online]. Available: https://github.com/pxb1988/dex2jar


