The OpenlISP Control Plane Architecture

Dung Chi Phung, UPMC and VNU
Stefano Secci, UPMC
Damien Saucez, INRIA Sophia Antipolis
Luigi lannone, Telecom ParisTech

Abstract
Among many options tackling the scalability issues of the current Internet routing
architecture, the Locotor/ldenﬁ%ier Separation Protocol (LISP) appears as a viable solu-
tion. LISP improves a network’s scalability, flexibility, and traffic engineering,
enabling mobility with limited overhead. As for any new technology, implementation
and deployment are essential to gather and master the real benefits that it provides.
In this article, we present the first complete open source implementation of the LISP
control plane. Our implementation is deployed in the worldwide LISP Beta Network
and the French LISP-Lab testbed, and includes the key standardized control plane fea-
tures. Our control plane software is the companion of the existing OpenLISP data-
plane implementation, allowing the deployment of a fully functional open source LISP

network compatible with any implementation respecting the standards.

he Internet is suffering from scalability concerns,

mainly due to the BGP routing infrastructure, and

provides limited support to new advanced services.

As discussed in [1, 2], a way to improve Internet

scalability is separating the IP space into locator
and identifier spaces. The Locator/Identifier Separation Pro-
tocol (LISP) [3] is henceforth being architected in this sense
and introduces a two-level routing infrastructure on top of the
current BGP+IP architecture, mapping an endpoint identifier
(EID) to one or several routing locators (RLOCs). RLOCs
remain globally routable, while EIDs become provider-inde-
pendent and only routable in the local domain. The resulting
hierarchical routing architecture opens the way to benefits
ranging from BGP routing table size reduction and efficient
traffic engineering, up to seamless IP mobility. Moreover,
LISP enables a large set of applications and use cases such as
virtual machine mobility management, layer 2 and layer 3 vir-
tual private networks, intra-autonymous system (AS) traffic
engineering, and stub AS traffic engineering.

More technically, LISP uses a map-and-encap approach,
where a mapping (i.e., a correspondence between an EID-
Prefix and its RLOC:) is first retrieved and used to encapsu-
late the packet in a LISP-specific header that uses only
RLOC:s as addresses. Such a map-and-encap operation in
LISP is performed using a distributed mapping database for
the first packet of a new destination EID; then the mapping is
cached locally for all subsequent packets. The LISP control
plane is based on signaling protocols necessary to handle
EID-to-RLOC registrations and resolutions, dynamically pop-
ulating mapping caches at LISP network nodes. Since several
RLOC:s can be registered for the same EID, priority and
weight metrics are associated with each RLOC in order to
decide which one to use (highest priority) or how to do load-
balancing (proportionally to the weights if priorities are
equal) [4]. In practice, when a host sends a packet to another
host at another LISP site, it sends a native IP packet with the
EID of the targeted host as the destination IP address; the

packet reaches a border router of the network that acts as an
ingress tunnel router (ITR), maps EID to RLOCs, appends a
LISP header and an external IP/UDP header with the ITR as
source node, and, as the destination address, an RLOC select-
ed from the mapping of the destination EID. The egress tun-
nel router (ETR) that owns the destination RLOC strips the
outer header (i.e., decapsulates) and sends the native packet
to the destination EID.

For example, in Fig. 1 the traffic from host 1.1.1.1 to host
2.2.2.2 is encapsulated by the ITR toward one of the RLOCs
(the one with the highest priority, i.e., RLOC3), which acts as
the ETR and decapsulates the packet before forwarding it to
its final destination. On the way back to 1.1.1.1, RLOC4’s
xTR queries the mapping system and gets two RLOCs with
equal priorities, hence performing load-balance as suggested
by the weight metric.

The advantage of creating network control functions dis-
joint from the data plane is the possibility of programming the
control plane independent of the forwarding logic, and thus to
implement advanced and personalized functionalities, as done
in [5] for instance, for virtual machine mobility management.
This separation respects the software defined networking
paradigm [6].

OpenLISP [7] is an open source implementation of the
LISP data plane in a FreeBSD environment. As a standalone,
an OpenLISP node is not able to handle all control plane sig-
naling within a LISP network. Our control plane implementa-
tion aims at filling this gap, while keeping the data and
control planes independent of each other for performance
reasons, as detailed hereafter. Our control plane implementa-
tion is used to seamlessly interconnect the UPMC, Telecom
ParisTech, INRIA, UNIROMAI1, VNU, the University of
Prague, and UFRJ LISP sites spread worldwide, and is
deployed in the official LISP Beta Network.! We are also

I LISP Beta Network worldwide testbed (website): hitp:/www.lisp4.net

34 0890-8044/14/$25.00 © 2014 IEEE

IEEE Network ¢ March/April 2014

2) xTR1 encapsulates the packet
with SA: RLOC1 and DA: RLOC3

Multi-homed
LISP site 1
(1.1.1.0224) -7
S~ MS
1) 1.1.1.1 sends a =
packet to 2.2.2.2

IBIRIAI

7) XTR2 decapsulates the packet
and delivers it to: 1.1.1.1

Mapping system

3) XTR3 decapsulates the packet
and delivers it to: 2.2.2.2

Multi-homed
LISP site 2
o (2.2.2.0024)

5) XTR4 sends a Map-Request for 1.1.1.1
to the MS and receives its mapping

............. Data plane
Control plane

6) Then, xTR4 encapsulates the packet
with SA: RLOC4 and DA: RLOC2

Network | Routing locator | Priority/weight
1.1.1.0/24 RLOC 1 1/50
1.1.1.0/24 RLOC 2 1/50

Network | Routing locator | Priority/weight
2.2.2.0/24 RLOC 3 1/100
2.2.2.0/24 RLOC 4 2/100

Figure 1. An example of LISP communications between two LISP sites.

using it in combination with OpenLISP as the standard imple-
mentation of nodes in the French LISP-Lab platform involv-
ing a dozen partners to date.2 Our purpose is to boost LISP
deployments by providing a full-fledged LISP open source
software implementation, usable in operational networks and
able to be freely tailored, to facilitate implementation of new
ideas leveraging on LISP. Our integrated OpenLISP system is
fully compatible with the standard as well as other implemen-
tations (e.g., Cisco I0S) as reviewed hereafter.

In the following, we detail the OpenLISP control plane
architecture and implementation aspects before describing
performance evaluation results.

The LISP Control Plane

For scalability reasons, ITRs learn mappings on-demand via
the so-called mapping system. The mapping system is com-
posed of the mapping database system and the map-server inter-
face [8].

The mapping system workflow is summarized in Fig. 2. On
one hand, the mapping database system constitutes the infras-
tructure that stores mappings on the global scale, potentially
using complex distributed algorithms ([8-10]). On the other
hand, the map-server interface hides this complexity via two
network elements, the map resolver (MR) and map server
(MS), deployed at the edge of the mapping database system,
which LISP sites contact to retrieve and register mappings.
More precisely, when an ITR is willing to obtain a mapping
for a given EID, it sends a Map-Request message to an MR.

The MR is connected to the mapping database system and
implements the lookup logic in order to determine at which
LISP site the Map-Request must be delivered (to any of its
ETRs), and delivers it. The ETR receiving the query will
return the mapping directly to the requesting ITR with a
Map-Reply message. It is worth noting that the ETR of a LISP

2 ANR LISP-Lab project testbed website: http://www.lisp-lab.org.

site is not directly involved in the mapping database system
but is instead connected to an MS. The ETR sends a Map-
Register message to that MS, which later ensures that the
mapping is registered in the mapping database system.
Optionally, the MS can acknowledge the registration with a
Map-Notify message.

Several mapping database systems have been proposed
(e.g., [8-10]), but only the Delegated Database Tree (LISP-
DDT, [10]) that we implement in our control plane is
deployed. In LISP-DDT, the MR discovers where to send the
Map-Request by iteratively sending Map-Requests and receiv-
ing Map-Referral messages via the hierarchical LISP-DDT
infrastructure, similar to DNS [10].

The OpenlISP Control Plane Architecture

In this section, we describe the design of our OpenLISP con-
trol plane implementation, issued under a BSD licence.?
Given that the main role of the LISP control plane is the
management of EID-to-RLOC mappings with the mapping
system, in the following we first focus on the design of the
mapping database, and then we detail the different modules.

Mapping System and Key Network Nodes

The heart of the OpenLISP control plane is the EID-to-
RLOC mapping database, synthetically referred to as map-
table in the following. Each map-entry of the map-table
consists of an EID prefix with a list of RLOCs, each RLOC
associated with a structure that contains the RLOC address
and related attributes (i.e., priority and weight). The three
network elements involved in the control plane, ETR, MS,
and MR, serve different purposes; hence, they implement
their own map-table logic, as detailed hereafter.

ETR’s map-entries correspond to the mappings for the dif-

3 OpenLISP control-plane source code: hitps://github.com/lip6-lisp/con-
trol-plane

IEEE Network * March/April 2014

35

Mapping system

Mapping database system

2. Mapping lookup| (map-Referral)

Map-server interface

Map-resolver (MR)
A

1. Map-Request

4. Map-Reply
(a)

3. Map-Request

Mapping system

Mapping database system

2. Registration

Map-server interface

Map-server (MS)
A\N

1. Map-Register 3. Map-Notify

IR, ITR, ETR; ;

Figure 2. LISP mapping system workflow: a) mapping retrieval; b) mapping registration.

ferent EID prefixes of the LISP site it serves and should regis-

ter via an MS. Each such map-entry must have at least one

RLOC address.

Map-Servers maintain EID prefix registrations for the LISP
sites they serve and for EID prefixes not assigned yet. There-
fore, we distinguish the following two map-entry types:

* Registered map-entries are built on Map-Register messages
received from ETRs and are associated with meta-informa-
tion about the registering site (e.g., cryptographic keys
authorized to register mappings, contact addresses). The
MS can use these entries to directly reply to Map-Request
messages on behalf of ETRs if commissioned to do so.

* Negative map-entries are used to define range of IP prefixes
that belong to the EID space but do not require LISP
encapsulation. Requests for such prefixes generate negative
map-replies [§].

Map-Resolvers maintain a map-table to speed up mapping
resolution, and we distinguish the next two types of entries:

* Negative map-entries are similar to an MS’s negative map-
entries. An MR hence immediately sends a negative Map-
Reply for not yet assigned EID prefixes.

* Referral map-entries contain the addresses of other DDT
nodes (MRs) that are supposed to provide more specific
LISP-DDT mappings (i.e., have a longer EID prefix match).
Even though they are logically separated, map-tables are

implemented within a compact radix tree data structure

instance optimized for fast IP prefix lookup [11]. Actually, as
our implementation is dual-stack, we maintain two radix tree
instances, one for IPv4 EIDs and the other for IPv6 EIDs.

Control Plane Modules

Our control plane implementation includes the essential fea-
tures to operate a multi-site LISP network, including all the
LISP-DDT logic and complete support of both IPv4 and IPv6.
In order to operate the control plane independent of the data
plane, it is divided into independent modules with different
functionalities (Fig. 3).

As depicted in Fig. 3, the control plane receives the mes-
sages from a dedicated queue, which gets them in turn from
the kernel’s UDP socket queue. The control plane is based on
one general orchestration processes (i.e., control) and three
specialized processes that implement MR, MS, and xTR net-
work element logics. The treatment of mapping-resolution-
related and registration-related messages within these
processes is isolated thanks to the use of threads. Each process
is composed of several modules, as described in the following.

The xTR process includes the following three modules:

MAP-REGISTER module: Implemented at the ETR inter-
face; it sends periodic information (each 60 s, as recommend-
ed in [3]) about map-entry registration to at least one MS.
Note that ETRs are authenticated by an MS using their pre-
configured shared key.

In order to support mapping system multi-tenancy, going
beyond the current standards, the module allows specifying
different keys for different MSs to allow an XTR to join LISP
networks managed by independent MS stakeholders.

MAP-REPLY module: Implemented at the ETR interface,
it receives and processes Map-Requests coming from the ITR
or MSs. According to the standard, Map-Requests must be
encapsulated (Encapsulated Control Message, ECM) Map-
Request when sent to MRs, but are sent natively to ETRs.
Our implementation supports these two modes with any com-
bination of IPv4/IPv6 encapsulation. Upon reception of a
Map-Request, an ETR replies with the corresponding Map-
Reply.

PLANE-INTERWORKING module: This module allows the
control plane to interact with the data plane and hence to
form a full-fledged OpenLISP xTR. In order to perform data
plane functions, the OpenLISP data plane maintains a map-
ping information base (MIB) consisting of the LISP cache
(storing short lived mappings in an on-demand fashion) and
LISP database. OpenLISP also provides a low-level abstrac-
tion called Mapping Socket to add or remove mappings from
the MIB locally on the machine (e.g., by means of a daemon

36

IEEE Network ¢ March/April 2014

map-reply, map-referral

map-request, map-reply

or using the command line). This
interworking module uses the con-
trol plane to maintain the database
interacting with the data plane
through the Mapping Socket [7].
The MS process includes the fol-
lowing two modules:
MAP-REGISTER module:
Implemented at the MS interface, it

Registration thread

map-notify

map-register

map-register

Kernel socket queue

Control plane queue! II

map-notify [Registration thread

receives Map-Register messages
from ETRs and updates the MS
map-table accordingly. The MS ver-
ifies the authenticity of the Map-
Register messages and ensures that Resolution thread
their EID-prefixes belong to the
LISP sites of which it is in charge.
In normal operations, mappings T

map-referral

ECM DDT map-request

xTR

Resolution thread

ECM map-request T

map-request

of given sites are stable with time.
However, the specification requires
periodically re-registering map-
pings. Therefore, to improve per-

D Control-plane process I:I Control-plane thread

formance, our control plane hashes
the Map-Register message to check
whether the mapping has changed
since the last registration, complete registration being done
only upon a mapping update. If the ETR asks for a notifica-
tion, a Map-Notify message is sent back to the ETR.

MAP-REQUEST module: Upon Map-Request reception,
the module has a choice between two actions, depending on
the map-table entry that corresponds to the EID in the Map-
Request. If the EID corresponds to the EID prefix of a regis-
tered map-entry, the MS sends a Map-Reply back or forwards
the Map-Request to one of the RLOCsSs in the map-entry,
depending on the value of the proxy bit in the Map-Register
message. If, instead, the EID corresponds to a site managed
by the MS but has no active registration, a negative Map-
Reply is sent back.

The Map-Resolver process contains the following two mod-
ules:

MAP-REQUEST module: It accepts and processes Map-
Requests from xTRs. For DDT signaling, the Map-Request
follows the map-referral chain until it reaches an MS or an
ETR, or the number of referral nodes it passed through
exceeds the maximum allowed number. To speed up perfor-
mance, the MR caches map-referral messages in its map-table
so that it can reuse it for further Map-Requests covered by
the EID prefix.

MAP-REFERRAL module: It accepts the LISP-DDT Map-
Requests to which it replies with a map-referral message. We
provide in the control plane package a sample configuration
that can be used to set up a DDT root [10].

Finally, the control process aims to orchestrate other pro-
cesses. It is in charge of receiving control plane messages
from the LISP network and dispatching them to the appropri-
ate control plane process. A first-in first-out (FIFO) queue is
used to absorb demand burstiness and catch messages coming
from the UDP socket kernel queue. This process also popu-
lates the map-table, used by control plane processes, accord-
ing to the device configuration file.

Running the OpenlISP Control Plane

The OpenLISP control plane process listens on the UDP 4342
LISP control port. It runs in the user space to allow easier
programmability of its features, while the OpenLISP data
plane runs in the kernel to give higher performance to data
plane functions. Even though our control plane is designed
for a FreeBSD environment, it can be adapted to Linux.

Figure 3. System-level OpenLISP control plane multi-thread architecture.

As depicted in Fig. 3, the control plane program handles
three types of resident threads besides the main thread: one
thread runs the control process, one thread is dedicated to
mapping registrations, and the other threads are dedicated to
Map-Request/Referral processing (resolution threads). The
main thread accepts LISP control plane packets coming from
the kernel socket queue and pushes them to a FIFO control
plane queue in the user space based on a dynamic list. For
load balancing, the control thread can dynamically create sev-
eral resolution threads up to a maximum number, which is
also left as a tunable parameter for the user via configuration
files. The choice of using several pre-instantiated threads to
process control plane messages and create a packet queue for
the control plane fed by the kernel socket queue is dictated by
scalability and robustness against attacks. It is worth noting
that using multiple cores could create moderate processing
time variances due to the dynamic thread-core binding operat-
ing system (OS) operations.

Finally, it is worth mentioning that a command line inter-
face is also provided to allow an operator to interact with the
control plane. More details on the configuration are provided
in the documentation files of the software release.

Evaluation

We evaluated the performance of our LISP control plane by
stressing an OpenLISP node running on a physical machine
with a 2.67 GHz dual-core CPU and 2 Gbytes RAM. The
evaluation focuses on the OpenLISP node system perfor-
mance itself, independent of the LISP Beta Network topology.
We do not account for packets not handled by the control
plane due to drops in the network. Indeed, since LISP uses
UDP to deliver both data plane and control plane messages,
some of them may be dropped and definitely lost by interme-
diate nodes in an operational context, and the sender will
eventually retransmit the packet after timeout. Therefore, the
number of messages the control plane can handle depends on
the provisioning of the kernel’s UDP queue size, but also on
the frequency with which the control plane program picks up
packets from a kernel’s queue and how fast it processes the
messages. In order to avoid modifying the system configura-
tion, we added in our control plane, more specifically in the
control thread, a FIFO queue that is overprovisioned so that

IEEE Network * March/April 2014

37

800

i i]
- 700 I Pt Poros 1 } £ SR SO TR I
= 600 i
>
2 500 .
8
S 04 B Map resolver
o 4 Map server
f=
A 300 4 E
a
Q
8 2004 .
©
o
100 =
"= = = = = = = = = s = = m u = = =

0 T T T T T T T T T T T T T T T T T
200 300 400 500 600 700 800 900 1000 1100 1200 1300 4010 1500 1600 1700 1800 1900 2000
Number of LISP sites

Figure 4. Control plane processing latency as a function of the
number of LISP sites.

the kernel’s queue occupancy remains as small as possible. In
the tests we used a control plane queue size of 100,000 pack-
ets; we tested the feasibility using smaller sizes (1000, 500, and
100), with no visible effects on performance, as well as with
very high rates (more than 4000 packets/s).

In the following we evaluate the control plane processing
latency. For the MS, it corresponds to the time taken to check
the validity of the Map-Register message, update the mapping
into the mapping system, and send back Map-Notify messages
when needed. When generating the Map-Register messages in
the tests, around 5 percent are randomly set to require a
Map-Notify. For the MR, the processing latency corresponds
to the mapping lookup time and the time to send the Map-
Reply back. Figure 4 displays the processing latency for both
MS and MR as a function of the number of connected LISP
sites (i.e., the number of different mappings).

To carry out our measurements, we use a LISP site com-
posed of two xXTRs and one MS/MR node. xTRs send traffic
at the maximum rate over a 100 Mb/s link with the MS/MR,
stressing the control plane with almost 3000 packets/s in the
control plane input queue. For the sake of realism, we fed the
EID-to-RLOC database IPv4 prefixes of the DANTE public
routing table,* fragmenting /16 prefixes into /24 prefixes: thus,
we obtain a mapping database of more than 260,000 different
EID prefixes. Randomly picking up EID prefixes from the
database, we construct s sites, each site having from 1 to e
EID prefixes (e.g., for multihoming TE or IP mobility man-
agement). We vary s from 200 to 2000 (roughly from one to
10 times the number of sites currently connected to the LISP
Beta Network), with a step of 100 sites; e takes a random
value between 1 and 100, so as to also include LISP sites
intensively performing multihoming traffic engineering and
IP/prefix mobility across RLOCs. It is worth noting that the
number of RLOCs does not influence radix tree size. Once
this setting is loaded in the MS/MR node, one of the xTR is
used to send map-register messages for all sites to the MS,
while the other xTR to send Map-Request messages to the
MR. To prevent time-dependent artifacts, control plane mes-
sages are sent sequentially in about 20 different spaced test
periods, with 20 messages sent per period on average. To
avoid biases, the two signaling flows have not been sent con-
currently.

Figure 4, showing both average and 99 percent confidence
intervals of the obtained results, leads to two main conclu-
sions. First, the processing time increases only by a limited
amount, roughly 10 percent, while increasing the number of
registered LISP sites from 200 to 2000, for both MS and MR.
This result suggests that the logic implemented for the lookup
represents a light portion of the overall processing load. We

4 DANTE project (http://www.dante.net)

1,000,000

100,000 .//.XW i

10,000 1
—m— Average radix tree depth
1000 4 —A—Maximum radix tree depth .
—»—Radix tree nodes

Average number of EID-prefixes in the mapping database

100

Number of observations

r — —— — — — — — —

10 4 1

T T T T T T T T T T T T T T T T T T
200 300 400 500 600 700 800 900 10001100 12001300 1400 1500 1600 17001800 1900 2000
Number of LISP sites

Figure 5. Insight on the mapping database radix tree structure.

5000 =

—=-QOpen LISP Prae
4500 7| o~ LISPMob
10004 | A—CISCO -

-%-ldeal
3500 | | %~ PyLISP

3000

2500
2000
1500
1000

Number of Map-Replies per second

500

T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Map-Requests per second

Figure 6. Average number of received Map-Replies as a function
of sent Map-Requests.

verified and the processing latency slightly decreases at certain
steps with respect to the previous step because the second
core started being used by the operating system. The relatively
remarkable variance is likely the symptom of CPU differently
assigning threads to cores at different executions.

Furthermore, under such severe load conditions, the Map-
Server processing latency stays at very acceptable values
(around 700 ps) for the provided computing power, and is
about 30 times higher than the Map-Resolver latency; this is
essentially due to the very high number of sites and prefixes
to register, the fact that first, Map-Register messages need to
be authenticated via HMAC, and then the mapping database
possibly may need to be updated (hence roughly a quadratic
time complexity). Map-Reply and Map-Notify messages that
are close in size and written with a linear complexity have a
similar light impact on the processing latency of MR and MS,
respectively.

The processing latency performance also depends on the
dispersion of the EID-prefix in the mapping database, which,
as already mentioned, is built using a radix tree [11]. Figure 5
reports the average radix tree depth, the maximum tree depth,
the total number of nodes, and the average number of EID
prefixes in the mapping database (obviously, the same for the
MR and MS cases; the confidence intervals are not visible). It
is worth noting that the number of tree nodes is slightly high-
er than the total number of EID prefixes because of the nec-
essary addition of branching nodes in the radix tree. Figure 5
shows that when the number of registered LISP sites increas-
es, the radix tree depth does not increase significantly, despite
the fact that the total number of nodes (directly affecting the
size of memory used to store and manage the mapping
database) increases exponentially. This explains why the num-
ber of LISP sites, as shown in Fig. 4, only marginally affects
the processing latency.

38

IEEE Network ¢ March/April 2014

Features OpenLISP Cisco 10S LispoMob PyLISP FritzBox

Our evaluation shows that our control plane e e Ve Ve Ve Ve
implementation is scalable and offers the level of
performance needed for operational deployment Map-Server Yes Yes No No Yes
suffering from very high loads. Moreover, the
overhead due to LISP encapsulation is proven to Map-Resolver Yes Yes No No Yes
be negligible with the OpenLISP data plane imple-
mentation [7]. These results and our efforts to be DDT Yes Yes No No No
in conformance with the standards position the
combination of the OpenLISP data plane and our Open source Yes No Yes Yes No
control plane implementation as a viable and effi-
cient alternative to closed-source vendor-specific In-kernel Yes Yes No No N/A
implementations. The proof is that one DDT root data plane (monolithic)
using our implementation is already integrated in
the official LISP Beta Network control plane. LISP-TE Yes No No No N/A
Re/afed WOfk Proxy xTR Yes Yes No No Yes

Among the existing LISP implementations (Open-
LISP, Cisco I0S,% FritzBox,” LISPMob,8
PyLISP?), three are open source: OpenLISP,
LISPMob, and PyLISP. The former is already described above
since our control plane is built on the OpenLISP data plane.
LISPMob is a multi-platform implementation of the LISP
mobile node (LISP-MN) variant [12] intended for mobile
devices (e.g., smartphones); in LISP-MN, mobile nodes are
full-fledged xTRs relying on a lightweight version of the con-
trol plane. LISPMob is implemented in the user space and
compatible with Linux and Android. Even though LISPMob is
intended for mobile devices, it does not preclude its usage on
routers; however, the limited control plane functionalities to
date and its user space implementation would make it
innapropriate for large-scale operational networks. PyLISP, a
recent Python implementation of LISP, only provides xTR
functions, and is also a pure user space implementation. The
design of the other proprietary implementations (i.e., Cisco
I0S% and FritzBox7) is unfortunately not well documented.

Table 1 compares the LISP implementations (for the
FritzBox there is no public complete information to date); all
respect the reference RFC [3] and are hence interoperable.
The OpenLISP and Cisco I0S implementations are the most
complete. Morever, to the best of our knowledge, OpenLISP
is the only one supporting LISP traffic engineering (LISP-TE)
[13] and map versioning, as well as the only open source
implementation supporting Proxy-ITR/ETR features.

We quantitatively compared these implementations by
measuring their reliability when replying to Map-Request
messages.10 Figure 6 gives the scatter plot of the Map-
Request rate vs. the Map-Reply rate for an increasing Map-
Request rate. Ideally, the Map-Reply rate should be equal to
the Map-Request rate, but because of processing time and
buffer limitations, some requests are eventually dropped.
OpenLISP, LISPMob, and PyLISP were executed in the
same single-core node of 2.67 GHz and 1 GB of RAM. We
ran the Cisco implementation of a multi-core carrier grade
router, the 3900 one, since tested lower-grade Cisco routers
did stop the LISP control plane when approaching a few

3 See http://ddt-root.org

6 LISP Cisco 10S implementation (website): http://lisp.cisco.com
7 FritzBox (website): http://www.fritzbox.eu/en/index.php

8 LISPMob open source project (website): http://www.lispmob.org

9 PyLISP open source (website): https://github.com/steffann/pylisp

Table 1. Comparison between LISP implementations (as of January 6, 2014).

thousand Map-Requests per second. Results between the
open source implementation and the Cisco implementations
are therefore not directly comparable, but are reported for
the sake of clarity. The Cisco one consequently appears as
the most robust implementation, dropping about 10 percent
of the control plane messages, only starting at around 4000
messages/s. Among the open source implementations, Open-
LISP slightly outperforms LISPMob for low and mid-range
rates, despite the additional features to manage, but has sim-
ilar performance at higher rates. PyLISP in its current imple-
mentation is not very scalable and shows very poor
performance already at 500 Map-Requests/s. Overall, these
results show that the more mature implementations are
those with a longer history.

Perspectives

Thanks to our development effort, OpenLISP is today the de
facto single fully featured open source LISP implementation
available. We hope that this will help boost the research in
the field and deployment, and to improve the understanding
and the insight of such a new technology as LISP.

Our performance evaluation combined with the data plane
performance evaluation in [5] shows that our implementation
is scalable enough for large networks and reaches perfor-
mances suitable for real deployments. Our implementation is
currently mature enough to be deployed in operational net-
works, and is actually used to interconnect at least seven LISP
sites to the worldwide LISP Beta Network testbed and 11 to
the LISP-Lab testbeds, correctly handling both data plane and
control plane operations. Moreover, we have just integrated
an OpenLISP DDT root server into the current worldwide
LISP DDT hierarchy.!!

We are currently enhancing the traffic engineering features
to support various working modes concurrently, and we plan
to add security features, integrating the related upcoming
Internet Engineering Task Force (IETF) specification on the
matter. We recently ported the control plane to the Linux
environment; another important milestone already planned is
to port the data plane to Linux as well, and the whole Open-
LISP node to other BSD flavors (e.g., OpenBSD and Net-
BSD).

10 FritzBox has not been tested because hardware was not available to us.

11.99 percent error bars are not included because they are so small that the
results are not visible.

IEEE Network * March/April 2014

39

Acknowledgments

This article was partially supported by the NU@GE project
(http://www.nuage-france.fr), funded by the French Investisse-
ment d’avenir research programme, and the ANR LISP-Lab
Project (http://www.lisp-lab.org; Grant No: ANR-13-INFR-
0009) and the EIT ICT-Labs Future Networking Solutions
action line.

References

[1] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on Rout-
ing and Addressing,” IETF RFC 4984, 2007.

[2] T. Li, Ed., “Recommendation for a Routing Architecture,” IETF RFC 6115,
2011.

[3] D. Farinacci et al., “Locator/ID Separation Protocol (LISP),” IETF RFC
6830, Feb. 2013.

[4] S. Secci, K. Liu, and B. Jabbari, “Efficient Inter-Domain Traffic Engineering
with Transit-Edge Hierarchical Routing,” Computer Networks, vol. 57, no.
4, Mar. 2013, pp. 976-89.

[5] P. Raad et al., “Achieving Sub-Second Downtimes in Large-Scale Virtual
Machine Migrations with LISP,” IEEE Trans. Network and Service Manage-
ment, in press.

[6] “Software Defined Networking: The New Norm for Networks,” white
paper, ONF, Apr. 2012.

[7] L. lannone, D. Saucez, and O. Bonaventure, “Implementing the Locator/ID
Separation Protocol: Design and Experience,” Computer Networks, vol.
55, no. 4, Mar. 2011, pp. 948-58.

[8] V. Fuller and D. Farinacci, “LISP Map-Server Interface,” IETF RFC 6833,
Feb. 2013.

[?] V. Fuller et al., “LISP Alternative Topology (LISP+ALT),” IETF RFC 6835,
Feb. 2013.

[10] V. Fuller et al., “LISP Delegated Database Tree,” draft-fuller-lisp-ddt-04,
Sept. 2012.

[11] G. Wright and W. Stevens, TCP/IP lllustrated Volume 2, The Implementa-
tion, Professional Computing Series, Addison-Wesley, 1995.

[12] D. Farinacci et al.,” LISP Mobile Node,” draft-meyerlisp-mn-09, July
2013.

[13] D. Farinacci, P. Lahiri, and M. Kowal, “LISP Traffic Engineering Use-
Cases,” draftfarinaccilisp-te-04, Jan 2014.

Biographies

DUNG CHI PHUNG (Chi-Dung.Phung@upmc.fr.) received an M.Sc. degree from
Vietnam National University (VNU), Hanoi, where he worked as a campus
network engineer. He is on a leave of absence from VNU and working as a
research engineer at Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,
LIP6, France.

STEFANO SECCI [M] (Stefano.Secci@upmc.fr) is an associate professor at Sor-
bonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, France. He
received a dual Ph.D. degree from the Politecnico di Milano and Telecom
ParisTech. He has also covered positions at NTNU, George Mason University,
Fastweb ltalia, and Ecole Polytechnique de Montréal. His current research
interests are Internet resiliency and cloud networking. He is Vice-Chair of the
Internet Technical Committee, joint between the IEEE Communications Society
and the IEEE Internet Society (ISON).

DAMIEN SAUCEZ (Damien.Saucez@inria.fr) is a postdoctoral researcher working
on information-centric networking (ICN) and software defined networking at
INRIA Sophia Antipolis, France. His research interests include future Internet
architecture and, in particular, traffic engineering and large-scale Internet mea-
surements. He actively contributes to IETF standardization and implementation
efforts. He has a Ph.D. in applied sciences from Université catholique de Lou-
vain, Belgium.

LUIGI IANNONE (Luigi.lannone@telecom-paristech.fr) is an associate professor at
Telecom ParisTech. His research interests include intra- and inter-domain rout-
ing, future Infernet architectures, mobility, wireless networks, and wired/wire-
less convergence. He has a Ph.D. in computer science from Université Pierre
et Marie Curie (UPMC — Paris VI). He is Secretary of the IETF LISP working

group.

40

IEEE Network ¢ March/April 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

