

Proceedings of IC-NIDC2012
AN OPEN CONTROL-PLANE IMPLEMENTATION

FOR LISP NETWORKS

Dung Phung Chi(1,2), Stefano Secci(2), Guy Pujolle(2), Patrick Raad(3), Pascal Gallard(3)

(1) VNU, Hanoi, Vietnam, dungpc@vnu.edu.vn

(2) LIP6/UPMC, Paris, France, firstname.lastname@lip6.fr
(3) NSS, Lognes, France, firstname.lastname@nss.fr

Abstract
Among many options to tackle scalability issues of
the current Internet routing architecture, the
Locator Identity Separation Protocol (LISP) seems
to be a feasible and effective one. LISP brings
renewed scale and flexibility to the network,
enabling advanced mobility management, with
acceptable scalability and security. This paper
gives a brief presentation about an open control-
plane implementation of LISP currently working in
the lisp4.net testbed. Our implementation includes
most LISP control-plane functions, and also a
module to allow the integration with an OpenLISP
data-plane and, therefore, the deployment of a
complete standalone Open-Source LISP Tunnel
Router interoperable with existing Cisco LISP
implementation1.

Keywords: Control-Plane, Internet Routing, LISP,
VM Mobility

1 Introduction
The basic idea of LISP is to implement a two-
level routing on the top of BGP/IP, separating
transit networks from edge networks, mapping an
IP address, or End-point Identifier (EID), to one or
many Routing Locators (RLOCs). RLOCs remain
globally routable, while EIDs become provider
independent and routable beyond RLOCs [2].

At the data-plane, "map-and-encap" is performed
using a mapping cache. The control-plane
communications (with a mapping system) handle
EID-to-RLOC registrations and resolutions. Many
RLOCs can be registered for the same EID;
priority and weight metrics are associated with
each RLOC to decide which one to use (best
priority), or how to do load-balancing (if equal
priorities) [3]. When a host communicates with
another host on another LISP site, the source sends

1 This work has been partially funded by the
"Investissement d'Avenir - Developpement de
l'Economie Numérique" nu@ge French research
program

a native IP packet with EID as the destination IP
address; the packet reaches a border router, acting
as an Ingress Tunnel Router (ITR), which does
mapping lookups for EID-to-RLOCs, appends a
LISP header and an external IP header with the
ITR as source and an RLOC as destination. The
destination RLOC, or Egress Tunnel Router
(ETR), strips the outer header and sends the native
packet to the destination.

OpenLISP [4] is an open-source implementation of
the LISP data-plane, in a FreeBSD environment.
Standalone, an OpenLISP node is not able to
handle all control-plane signaling within a LISP
network, so it has to depend on xTR proxies. Our
control-plane implementation aims at filling this
gap, including an optional module using the
OpenLISP mapping socket, yet being independent
from OpenLISP, as detailed hereafter. Our control-
plane implementation is currently used to
interconnect the LIP6, UNIROMA1, VNU Hanoi,
U. Prague and INRIA Sophia Antipolis LISP sites
to the worldwide testbed operated by Cisco
(http://www.lisp4.net).

The rest of paper is organized as follows. Section
II presents the design of our control-plane
modules. Section III presents control-plane
implementation design, and Section IV describes
implementation details. Section V surveys existing
related work. Section VI presents future work and
concludes the paper.

2 LISP control-plane
The LISP mapping system includes two node
types: Map Resolver (MR) and Map Server (MS).
A MR accepts requests sent from an ITR and
resolves the EID-to-RLOC mapping using a
mapping database; whereas a MS learns
authoritative EID-to-RLOC mappings from an
ETR, including them in a mapping database [5]. In
[2], the authors describe the format and the
different types of the control-plane mapping
system messages, without specifying the Mapping
System architecture.

Two mapping system architectures have been
proposed: the Alternative Topology (LISP-ALT,
[6]), based on BGP signaling, and the Delegation
Data Tree (LISP-DDT, [7]), inspired by Domain
Name System (DNS). Currently, DDT is used in
the lisp4.net testbed. It is worth mentioning that
there is no interdependency between the mapping
system architecture and the LISP control-plane
architecture, which strictly includes the signaling
message between LISP tunnel router (xTR) and
mapping system nodes.

The LISP control-plane messages that we included
in our open-source implementation are those
indispensable for LISP operations. They are:
• MAP-REGISTER: message (authenticated

using HMAC) sent by an ETR to MS to
register one or many EID-to-RLOC mappings,
including RLOC priority and weight metrics;

• MAP-REQUEST: message sent by an ITR, or
relayed by MS, to an ETR, to get the mapping
for a given EID (local probes between xTR of
same LISP site are possible to verify the
reachability);

• MAP-REPLY: message sent by an ETR in
response to a map-request, including the
mapping information;

• ENCAPSULATED-CONTROL-MESSAGE
(ECM)}: is used to encapsulate control-plane
message between xTR and Mapping System.
Currently, only map-request is allowed to be
encapsulated and used to send between an ITR
and MR;

• SOLICIT-MAP-REQUEST (SMR): a map-
request message soliciting a mapping update to
an ITR. It will trigger a map-request from the
ITR to the requester and then a map-reply from
the requester.

3 Implementation design
Our implementation includes the basic control-
plane functions needed to fully operate a LISP site.
In order to operate it independently of or integrated
with OpenLISP, it needs to be divided into
independent modules in terms of functionality.
Another important thing is that the control-plane
must support both IPv4 and IPv6, not only for EID
but also for MS and MR.

MAP-REGISTER module: implemented at the
ETR interface; it sends periodically (60 seconds
recommend in [2]) information about EID-to-
RLOC mapping registration to at least one MS.
ETR authenticated with MS using HMAC and a
previously granted key.

An ETR in the lisp4.net testbed is assigned only
single key, which can be used to authenticate
mapping registrations with all the MSs.

In order to allow higher degree of freedom with
respect to the basic LISP specification, our control-
plane program allows specifying keys for different
MS, so as to, for example, allow an ITR joining
many difference LISP networks managed by
independent mapping systems.

An organization might indeed manage more than
one EID-prefix, coming from many mapping
systems, so an ETR is made able to chose which
EID will be registered with which MS. Then,
inside an organization, some other network entity
is supported to orchestrate consistent mapping
information across the difference mapping system
(e.g., to avoid loop).

The registration information needs to be kept in a
local database be used by other modules. In the
case of our program, the database is loaded from
the configuration file and is kept in live memory
during its lifetime. In the case the OpenLISP
interworking is used, it sharing database with
OpenLISP.

MAP-REPLY module: implemented at the ETR
interface, it receives and processes map-requests
that may come from the ITR or MS, and may be
encapsulated in the ECM or not. An ECM map-
request can be a map-request IPv4 encapsulated in
an IPv6 ECM or vice versa. Therefore, the module
must be protocol independent. In our program, this
module includes two children modules for IPv4
and IPv6. The children share two common sockets
to allow them to process ECMs.

If a map-request message arrived at the ETR is
querying for an EID-to-RLOC mapping, a map-
reply is generated and sent. As of the specification,
the nonce from map-request is copied in the nonce
field of the map-reply, and an EID (or more than
one in the case an ETR is configured with
overlapping EID-prefixes) with a prefix length that
is less or equal to the EID being request is included
in map-reply. In the case the incoming map-
request has the SMR format (special bit set to 1), if
our control-plane program is integrated with
OpenLISP, SMR processing will be made to called
update the database of OpenLISP; in case of no
integration with OpenLISP, the map-request will
be ignored. Details about the SMR process can be
found in [2].

toOPENLISP INTERWORKING module: this
module allows our control-plane program to work
with the OpenLISP data-plane and to have a
working xTR. In order to perform data-plane
functions, OpenLISP maintains a Mapping
Information Database (MIB) consisting of the
LISP Cache (storing short lived mappings in an
on-demand fashion), and the LISP Database
(storing all "local" mappings, used in selecting the

appropriate RLOCs when encapsulating or
decapsulating packets [2]). OpenLISP provides
also a tool to add or remove mappings from the
MIB but only using the command line. The main
task of this interworking module is to maintain that
database by using its control-plane. More
precisely, the main functions are:

• Initial building the LISP Database of xTR;
• Listen to request from OpenLisp through

the OpenLISP socket [4];
• Send the request to the mapping system;
• Process the map-reply and update the

database cache of OpenLISP.

Our program includes an option to use the MIB as
the reference database for both the control-plane
and the data-plane. At its current version,
OpenLISP only defines add/delete functions to
maintain database. Based on them, we build our
interworking module to perform database updates
and to refresh database upon SMR.

4 Implementation overview
Once started, our control-plane program listens on
the UDP LISP control port where LISP control-
plane message are sent. It is worth recalling that
the program is designed to work in a FreeBSD
environment. Moreover, it is worth mentioning
that the program runs in the user space, while the
data-plane OpenLISP runs in the kernel. This is an
important feature as it is a good practice to give
higher priority to data-plane functions than to
control-plane functions.

Figure 1. OpenLISP control-plane thread interworking

As depicted in Figure 1, the control-plane program
handles four threads: one (register thread)
periodically sends a map-register message to the
MS; two others (reply threads) handle IPv4 and
IPv6 independently, treat map-request messages,
and respond with map-reply messages; the last
thread (toOpenLISP thread) communicates directly
with the OpenLISP data-plane.

Moreover, the reply threads share two sockets (on
IPv4 and IPv6) to be able to accept ECMs that may
have an IPv4 inner header and an IPv6 outer
header, or the other way around.

The control-plane implementation requires basic
information in a configuration file: the mapping
between the EID-to-RLOC managed locally by the
xTR, the IPs of the MSs, the authentication key
(optionally, many keys for multiple mapping
systems). The file is divided into two main
sections: one is for the MS's IPs; the other one can
be divided into multiple subsections and handles
the EID-to-RLOC mapping database.

The following is an example of the MS section of
the configuration file. It contains a list of map-
servers (IP address or domain name) with the
associated authentication-key ('auth-key' to be
replaced with authentication key that the xTRs of
the same LISP side use to authenticate with a same
mapping system).

Configuration file: mapping-server/resolver part:

@MAPSERVER
193.162.145.50 auth-key
l3-london-mr-ms.rloc.lisp4.net auth-key
2001:67c:21b4:109::b auth-key
@MAPRESOLVER
l3-london-mr-ms.rloc.lisp4.net

Each EID-to-RLOC section includes the mapping
between one EID and RLOC(s). The first line of
the section contains EID's information: EID-prefix,
Subnet mask, Time-To-Live (TTL) and Flag. The
Flag is used to indicate whether the EID-prefix is
registered with the MS or not. Other lines are
RLOC's information: RLOC address, Priority,
Weight and Local flag. As of the original LISP
specification [2], the priority metric is used to
prefer one RLOC to another (the lower priority
inter value indicates, the higher the priority), and
the weight, range from 1 to 100, indicates the load-
balancing ratio (if equal priorities). Our program
does not handle integrity checks (sum of the
weight for all the RLOC with equal priorities equal
to 100; priority value between 1 and 100; mask
length minor or equal than 32; etc), for the sake of
code simplicity. However, these functions may be
easily implemented.

Configuration file: EID-to-RLOC part:

@EID
#Eid-Prefix Subnetmask TTL Flag
153.16.38.0 25 60 1
#RLOC Priority Weight Local flag
132.227.62.242 2 100 1
132.227.62.243 1 100 0
2001:660:240::242 5 100 1
2001:660:240::243 3 100 0

During its operation, the program also prints debug
information to the console output. This feature is
very important especially when implementing
novel functionalities in LISP and to debug control-

plane message errors. The debug information is
displayed in two forms: raw package format (in
hexadecimal number) and human readable format.
Below is an example of console output:

Console output for debug: Map-Register Packet

Raw format:
0x3000000459f066a12bc5f51f000100149f5d07b1c234c6
3edba328df82d85492167a9e4c0000000a0220100000000
0199102c750164ff000005000197647a09ff64ff000001000
184e33ef20000000a012010000000000199102c730164ff0
00005000197647a090000000a012010000000000199102
c720164ff000005000197647a090000000a012010000000
000199102c760164ff000005000197647a09

Human readable format
lisp_type = 3
rloc_probe = 0
want_map_notify = 0
record_count = 4
lisp_nonce = 0x59f066a1-0x2bc5f51f
key_id = 1
key_len = 20
auth_data =
0x9f5d07b1c234c63edba328df82d85492167a9e4c
#Recodr0
record_ttl = 10
loc_count = 2
eid_mask_len = 32
action = 0
auth_bit = 0xffffffff
lisp_map_version = 0x0000-0x00000000
eid_afi = 1
eid_prefix = 153.16.44.117
RLOC 0: priority=1 weight=100 mpriority=255
mweight=0 rloc_local=1 rloc_probe=0
reach_bit=1loc_afi 1 locator = 151.100.122.9
RLOC 1: priority=255 weight=100 mpriority=255
mweight=0 rloc_local=0 rloc_probe 0 reach_bit 1
loc_afi 1 locator = 132.227.62.242

The control-plane program source code and more
detail about research activities on LISP can be
found in http://www.lisp.ipv6.lip6.fr (web server
accessible via LISP!).

5 Related work
In this section, we review related research about
LISP control-plane and related applications.
Significant work has been devoted to the possible
deployment LISP for mobility management
purposes, in both wireless network and data-center
network environments. With a wireless equipment
perspective, a specific implementation of the
control-plane and the data-plane for mobility nodes
exists, called LISP Mobile Node (LISP-MN) [8],
developed in the frame of the Lispmob project.
The idea is the make a mobile equipment become a
complete xTR, with the deployment of a
lightweight version of the control-plane and the
data-plane into node's operating system (OS). The

supported environment is Linux (currently not
FreeBSD). When a node moves across LISP sites,
it uses control-plane messages to update the
mapping between its EID and new RLOC
corresponding to its new position. Of course, one
possible drawback is the fact that LISP, defined as
transit-edge separation architecture, here touches
the user equipment, hence affecting the scalability
of the solution. A different approach is to maintain
the current LISP philosophy and build mechanisms
to detect and update the mapping when a node
moves across the LISP edge, as presented in [9] for
wireless mesh networks; however no details are
given about the implementation. Under the first
approach, the mobile node can operate and move
freely across LISP sites. Under the second
approach, a mobile node can only move across
LISP sites (remembering that under this approach,
the node's OS does not need to be modified).

Some other studies focus on developing
mechanisms to manage the caching database of
xTR: resolution to refresh caching database when
mapping change [2] or cache synchronization
when an xTR restarts [11]. Currently, there are
three methods are proposed in [2] to refresh
caching database: Clock Sweep (based on setting
TTL of EID-to-RLOC mapping), SMR (described
in previous section), and Database Map Version
(each encapsulated package includes a map version
field and xTR uses it to detect if one EID-to-RLOC
mapping is up-to-date or not). The first method
suffers from a long convergence time because
lower bounded by the minimum TTL (1 minute)
set by the ITR willing to change the mapping and
upper bounded the maximum TTL (24h) an ITR
shall wait to ensure that all mapping cached in
network's ITRs with the previous TTL expire (TTL
values as of [2]. The second approach has been
already described, the SMR message is sent only to
the ITRs present in the mapping cache, asking
them to send back a map-request to get the new
mapping. The third approach, map versioning,
allows an ETR autonomously solicitating ITRs
about mapping information update with more
recent mappings, using SMRs, hence this works
only only with the ITRs still present in the ETR
mapping cache, i.e., for which a recent
communication exists.

Despite that main purpose behind LISP is to
improve the Internet routing scalability and
resiliency by decreasing the routing table size and
by offering novel traffic engineering features, one
of major LISP's fields of application today is data
center networking. The mobile node is in this case
not wireless equipment, but a virtual machine that
can be moved from one network to another, the
networks being potentially very far from each
other. An advantage in using LISP for virtual
machine mobility, rather than DNS or mobile IP, is

that the IP address can be the same (not possible
with DNS remapping) and no triangular routing is
used (not natively possible in mobile IP). There
are currently two approaches that we could identify
to handle virtual machine mobility (VMM) in a
LISP environment: one is based on mapping
update upon data-plane traffic detection [10], the
other consists in implementing control-plane
directly in the mobile node as suggested by [8].
However, the first suffers from security issues
(no authentication implies that a hacked zombie
virtual machine can generate service interruption
redirecting traffic to itself) and low performance
for non-streaming VMs (the incoming VM should
stream data packets to trigger locator change in the
mapping system; otherwise a special process
should be run by the VM or the hypervisor). The
second approach, as already mentioned, somehow
goes against the LISP philosophy of separating
transit from edge networks, putting additional
burden on the VM in terms of control-plane
signaling, and moreover opening the path to
security flaws related to OS infection by virus.

6 Future work and perspectives
Our attention is devoted to the lack of security and
performance in the current methods to handle
VMM in a LISP Cloud environment. Our objective
is to define a solution that:
• Implements routing locator priority change

upon VM migration;
• Offers the lowest possible convergence time;
• Guarantees a form of authentication and

security;

Does not need to modify the VM's OS, hence is
run either at the hypervisor level and/or at the
switch-router level. The solution should
encompass the definition of new control-plane
messages in the edge side, from the xTR to the
EID, and in the transit side between xTRs and the
mapping system. We are interested in defining a
solution for VMM in LISP cloud environments
that can be readily adopted also for wireless access
network environments, so that node mobility
functions can be unified for users and machines.

Another open field research is the implementation
of LISP traffic engineering modules allowing the
definition of specific policies in LISP
configuration, e.g., implementing the solution
proposed in [4].

Finally, we are currently working in the
implementation of an open-source mapping server
interface, also compatible with OpenLISP (to date,
the MS is implemented only in the Cisco IOS).
Our control-plane implementation allows
connecting a LISP site to the lisp4.net testbed
without the need to buy a router. Moreover, our
implementation allows working simultaneously
with different mapping systems. From an
opensource implementation perspective, the path
forward is the implementation of an open-source
Mapping Server, to push forward the development
of new functionalities for the LISP control plane,
and to surround current limitations in the Cisco
implementation (e.g., locator count limited to 5 of
the 8 available bits).

References
[1] D. Meyer, L. Zhang, K. Fall, “Report from

the IAB Workshop on Routing and
Addressing”, RFC4984, 2007.

[2] D. Farinacci, V. Fuller, D. Meyer, D.Lewis,
“Locator/ID Separation Protocol (LISP)”,
draft-ietf-lisp-23, May, 2012.

[3] S. Secci, K. Liu, G. K. Rao, B. Jabbari,
“Resilient Traffic Engineering in a Transit-
Edge Separated Internet Routing”, in Proc. of
IEEE ICC 2011.

[4] D. Saucez, L. Iannone, O. Bonaventure,
“OpenLISP: An Open Source Implementation
of the (Locator/ID) Separation Protocol”, in
Proc. of ACM SIGCOMM 2009, Demo
paper.

[5] V. Fuller, D. Farinacci, , “LISP Map Server
Interface”, draft-ietf-lispms-16, March, 2012.

[6] V. Fuller, D. Farinacci, D. Meyer, D. Lewis,
“LISP Alternative Topology (LISP+ALT)”,
draft-lisp-alt-10, December, 2011.

[7] V. Fuller, D. Lewis, V. Ermagan, “LISP
Delegated Database Tree”, draftfuller-lisp-
ddt-01, March, 2012.

[8] D. Farinacci, D. Lewis, D. Meyer, “LISP
Mobile Node”, draft-meyerlisp-mn-07,
October, 2011.

[9] M.F. Almirall, L. Iannone, R. Merz,
“Managing Fast Mobility in Wireless Multi-
Hop Networks with LISP”, 2011.

[10] “Locator ID Separation Protocol (LISP) VM
Mobility Solution”, Cisco white paper, 2011.

[11] D. Saucez, O. Bonaventure, L. Iannone, C.
Filsfils, “LISP ITR Graceful Restart”, draft-
saucez-lisp-itr-graceful-00, July, 2012.

