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Abstract—We consider the problem of cooperative distributed
routing optimization in multi-domain/multi-provider networks.
The main object of our investigation are ASON/G-MPLS trans-
port networks, still the results of our investigations could be
extended to any multi-domain network where particular domains
have limited mutual visibility of intra-domain resources. This
paper refines a distributed decomposition mechanism for reliable
cooperative optimization of flow reservation levels introduced
in [1], by considering the fundamental issue of fair income
distribution. The proposed idea of fair income distribution
mechanism has been adopted from the theory of cooperative
games (Shapley value). We show the benefits of adopting the
proposed income distribution scheme by numerical simulations1.

I. INTRODUCTION

Automatically Switched Optical Networks (ASON) and
Generalized Multi-Protocol Label Switched (G-MPLS) net-
works are equipped, with addition to the transport and to
the management planes, with a control plane responsible for
handling transport service calls as well as for handling the
set-up process for the associated transport connections. As the
control plane of a domain can access all the information on
intra-domain topology and state, completion of intra-domain
connections is (or at least, it could become) a relatively
straightforward task – an operator is able to route intra-domain
connections in an optimal way.

Inter-domain connections traverse multiple routing and/or
administrative domains with limited mutual visibility of intra-
domain resources. To route such connections, control planes
of the involved domains have to cooperate – either off-line by
publishing information on aggregated intra-domain topology
or on-line, by active participation in step-by-step (better to say,
domain-by-domain) process of routing for each connection
request. For example, a practical implementation could require
a “service level” above a Path Computation Element (PCE)-
based multi-domain control-plane as proposed in [2] and [3],
to manage service-related data and instantiate multi-provider
connections. Despite the cooperation, eventually each control
plane has to individually decide on how to route its part of the
connection taking into account the corresponding intra-domain
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policies and known restrictions related to inter-domain links.
As today’s market forces implementation of QoS enabled
services spanned over multiple administrative domains, locally
optimized inter-domain routing decisions become increasingly
inadequate. Instead, cooperative routing models and optimiza-
tion goals are required.

The goal of this paper is to improve the distributed scheme
for cooperative optimization of inter-domain traffic flow pre-
sented in [1] and [4]. These papers define an iterative
distributed optimization process, run either in the control plane
or in the management plane of the network, in which domains,
cooperating in a coalition, calculate the optimal pattern of
inter-domain traffic flow. The referred papers are mostly
devoted to the description of an optimization process whose
objective is to maximize the sum of incomes of individual
domains under the assumption that the income of a domain
depends linearly on the amount of inter-domain traffic the
domain injects into the network. As the objective function
might prefer that a domain should rather transit than inject
traffic, such an implicit distribution rule could lead to unfair
distribution of the total income. In fact, as a domain has no
guarantees to gain any additional profit (in reality, it may even
loose) there is no incentive to enter the coalition. This paper
aims in closing that gap – it extends the model of distributed
cooperative optimization with a mechanism of provably fair
distribution of the coalition’s income adopted from the theory
of cooperative games.

The paper is organized as follows. Section II summarizes
the distributed optimization model presented in [1] and [4] and
introduces a necessary notation. Sections III and IV present a
model for application income distribution mechanisms adopted
from the theory of cooperative games, namely the notion of the
Shapley value. Section V presents a method and the algorithm
for computation of the Shapley values from the results of the
distributed optimization process. Section VI presents numeri-
cal results illustrating the effect of the proposed distribution
mechanism on the incomes of particular domains. Eventually,
Section VII gives concluding remarks together with a sketch
of the plan for further investigations.

II. DISTRIBUTED ROUTING OPTIMIZATION FRAMEWORK

The distributed method of cooperative optimization of
inter-domain traffic flow was introduced in [1] and [4]. In
[1] a generic multi-domain routing problem (consisting in



optimization of bandwidth reservation levels on inter-domain
links for traffic flows identified by traffic classes and traffic
destinations) is formulated, and its possible decompositions
are discussed. In [4] it is shown how to decompose the
problem with respect to individual domains using sub-
gradient optimization based on Lagrangean relaxation and
it is demonstrated how to resolve an inter-domain routing
optimization problem using a distributed process based on
sub-gradient optimization combined with recovering of near-
optimal bandwidth reservation levels. The original approach
was further refined in a few papers (e.g., in [5]) where
issues related to implementation architecture, computational
efficiency and determination of reasonable stopping criteria
for the distributed optimization process had been considered.
Hereafter it is reminded the necessary formal notation
together with base formulation of the original optimization
problem. For further details please refer the original papers
[1] and [4].

The considered model of the network consists of a directed
graph G = (V, E) with the set of nodes V and the set of
directed links E (E ⊆ V × V). For a set of nodes U ⊆ V
we define the set δ+(U) of links outgoing from set U , and
the set δ−(U) of links incoming to set U . More precisely,
δ+(U) = {e ∈ E : a(e) ∈ U ∧ b(e) /∈ U} and δ−(U) = {e ∈
E : b(e) ∈ U ∧ a(e) /∈ U}, where a(e) and b(e) denote the
originating and terminating node, respectively, of link e ∈ E .
Besides, we shall write δ±(v) instead of δ±({v}), i.e., when
U = {v} is a singleton.
M is the set of network domains. Each node v ∈ V belongs

to exactly one domain denoted by A(v). Hence, set V is
partitioned into subsets Vm = {v ∈ V : A(v) = m},m ∈M.
For each domain m ∈ M, Em = {e ∈ E : a(e), b(e) ∈ Vm}
is the set of intra-domain links between the nodes in the same
domain m. The set of all intra-domain links is denoted by
EI =

⋃
m∈M Em. Further, the set of all inter-domain links is

denoted by EO, where EO = {e ∈ E : A(a(e)) 6= A(b(e))} =⋃
m∈M δ+(Vm) =

⋃
m∈M δ−(Vm). Clearly, the set of intra-

domain links is disjoint with the set of inter-domain links.
Finally, the capacity of link e ∈ E is denoted by ce and
expressed in units of bandwidth, for example in Mb/s.

Set D represents traffic demands between pairs of nodes
The originating and terminating node of d ∈ D is denoted by
s(d) and t(d), respectively, and hd is the traffic volume of d,
expressed in the same units of bandwidth as capacity of links.
D(s, t) = {d ∈ D : s(d) = s ∧ t(d) = t} denotes the set
of all demands from node s ∈ V to node t ∈ V (note that
there can be more than one demand between a given pair on
nodes). In the sequel, zd will denote the variable specifying
the percentage of volume hd actually handled in the network,
i.e., zdhd is the carried traffic of demand d. The set of all
demands originating in domain m is denoted as Dm = {d ∈
D : s(d) ∈ Vm}. The sets Dm = {d ∈ D : s(d) ∈ Vm},
m ∈M, define a partition of D.

Let xet denote a variable specifying the amount of aggre-
gated bandwidth (called flow in the sequel) reserved on intra-

domain link e ∈ EI for the traffic destined for (a remote) node
t ∈ V . Then, for each inter-domain link e ∈ EO we introduce
two flow variables: x+

et and x−et. Variable x+
et (respectively, x−et)

denotes the amount of bandwidth reserved for traffic carried
on e and destined for t that is reserved by domain A(a(e))
(respectively, A(b(e))) at which link e originates (respectively,
terminates). Then for each domain m ∈ M we introduce the
following flow vectors:
• zm = (zd : d ∈ Dm)
• xm = (xet : e ∈ Em, t ∈ V)
• xm+ = (x+

et : e ∈ δ+(Vm), t ∈ V)
• xm− = (x−et : e ∈ δ−(Vm), t ∈ V)
• Xm = (zm,xm,xm+,xm−).

The basic conditions that have to be fulfilled in each domain
m ∈M are flow conservation constraints∑

e∈δ+(v)∩Em

xet +
∑

e∈δ+(v)\Em

x+
et

−
∑

e∈δ−(v)∩Em

xet −
∑

e∈δ−(v)\Em

x−et

=
∑

d∈D(v,t)

zdhd, t ∈ V, v ∈ Vm \ {t}

(1a)

and capacity constraints∑
t∈V

xet ≤ ce, e ∈ Em (1b)∑
t∈V

x+
et ≤ ce, e ∈ δ+(Vm) (1c)∑

t∈V
x−et ≤ ce, e ∈ δ−(Vm). (1d)

Let Xm (m ∈ M) denote the set of all vectors Xm

satisfying constraints (1) and, possibly, certain extra domain-
specific conditions. Such extra constraints can for example
be implied by requirements for the weight-based shortest-path
intra-domain routing (see Chapter 7 in [6]) or by QoS-type
conditions such as zd ≥ 1, d ∈ Dm. The routing optimization
problem can now be stated as follows:

max F (z) =
∑
m∈M

∑
d∈Dm

zdhd (2a)

s.t. Xm ∈ Xm, m ∈M (2b)

x+
et ≤ x−et, e ∈ EO, t ∈ V. (2c)

Certainly, objective functions different from (2a) can also be
considered.
Let λ = (λet : e ∈ EO, t ∈ V) be a vector of (non-negative)
multipliers associated with constraints (2c). The Lagrangean
function L(λ;X),λ ≥ 0,X = (Xm : m ∈ M) ∈ X =⊗

m∈MXm associated with problem (2) is of the following
decomposed form:

L(λ;X) =
∑
m∈M

Lm(λm;Xm). (3)

In (3), λm = (λet : e ∈ δ−(Vm)∪ δ+(Vm), t ∈ V) is the sub-
vector of λ composed of the values λet for all inter-domain



links e originating or terminating in domain m ∈ M, and
Lm(λm;Xm) denotes the partial Lagrangean corresponding
to domain m ∈M equal to∑
d∈Dm

zdhd +
∑
t∈V

(
∑

e∈δ−(Vm)

λetx
−
et −

∑
e∈δ+(Vm)

λetx
+
et), (4)

where λm ≥ 0 and Xm ∈ Xm. The problem dual to (2) (see
for example [7]) becomes as follows:

w∗ = minλ≥0 w(λ). (5)

The (non-empty) set of optimal solutions of problem (5) will
be denoted by Λ∗. The dual function w is defined as w(λ) =∑
m∈M wm(λm) and is computed through resolving separate

subproblems:

wm(λm) = maxXm∈X m Lm(λm;Xm), m ∈M. (6)

For any λ ≥ 0, X(λ) ∈ X will denote the so called maxi-
mizer of the Lagrangean function (3), i.e., any optimal solution
of the Lagrange problem:

X(λ) = arg maxX∈X L(λ;X). (7)

Any maximizer X(λ) = (Xm(λm) : m ∈ M) is computed
through solving independent subproblems (6):

Xm(λm) = arg maxXm∈X m Lm(λm;Xm), m ∈M. (8)

In the sequel the quantity ∇w(λ) will denote a subgradient
of the dual function w at point λ. Subgradients are obtained
as a by-product of the (distributed) computation of the values
of w(λ): if X(λ) is a maximizer of the Lagrangean function
(3) for a given λ, then the corresponding subgradient ∇w(λ)
is as follows ([7]):

∇w(λ) = (x(λ)−et − x(λ)+et : e ∈ EO, t ∈ V). (9)

The dual problem can be resolved using general subgradient
minimization (SM) techniques (see for example [8] and [9]).
However, this is not sufficient because as discussed in [5] an
optimal dual solution λ∗ ∈ Λ∗ of problem (5) does not in
general yield an optimal (nor even feasible) primal solution
X∗, i.e., an optimal solution of problem (2). What we only
know for sure is that any optimal λ∗ gives the optimal value
F ∗ of the primal objective function (2a): F ∗ = w(λ∗) = w∗.
We note here that although any optimal primal solution X∗

is a maximizer for any λ∗ ∈ Λ∗, the converse is not true. In
fact, in general a maximizer X(λ∗) can be primal infeasible.

SM can be combined with recovering a (near-) optimal
primal solution X∗, leading to a class of algorithms referred
to as SM-PR (subgradient minimization—primal recovery).
It turns out that convergence of the divergent series SM-
PR algorithms can be slow even when applied to medium-
size instances of (2). Certain improvement can be achieved
when using deflected subgradients in Step 1(a) (see Section
3 in [10]). Still, it seems that one of the best available SM-
PR methods are the so called proximal bundle methods, see
[11], [12], and [13]. Therefore, in our numerical experiments
discussed in Section VI we also used a SM-PR algorithm of the
proximal bundle type (called ConicBundle 0.1) implemented
in [14] (for a brief theoretical introduction see [15]).

III. RATIONALES

We are thus interested in an interconnection scenario in
which domains collaborate in a sort of multi-domain alliance.
Multiple domains interact to optimize link capacity reservation
levels, thus to improve their inter-domain routing, escaping a
solution guided by unilateral and selfish choices toward a more
effective global solution. If this interconnection principle is
undoubtedly attractive, and the proposed approach shall be sui-
table, the incentives are still not obvious. In the following, we
investigate this aspect and propose a game theoretical multi-
domain income distribution scheme based on the Shapley-
value concept [16] that shall motivate the adoption of the
proposed multi-domain routing optimization framework.

Adopting the distributed multi-domain optimization ap-
proach presented in Sect. II, the global routing solution is
likely to improve with respect to multi-domain throughput
and load distribution efficiency. Nevertheless it is likely that
the corresponding optimal global solution arises disparities
among domains. Still acceptable when the involved domains
belong to a same provider network, such routing disparities
would decrease the reciprocal trust among individual providers
(called Autonomous Systems, ASs, AS carriers or carrier
providers in the Internet architecture). Eventually, the alliance
agreement may not be settled for the lack of fair incentive
schemes.

Under the current Internet business model, AS carriers
provide IP connectivity to customer ASs in the form of paid
“transit agreements”, selling bandwidth and Quality of Service
(QoS). The traffic received from customer ASs is then routed
across the Internet using either other customers’ networks, or
the network of other providers. In this last case, another paid
transit agreement may settle the routing policy. Alternatively,
a free-transit agreement, also called “peering agreement”, can
settle it. In a peering agreement, two carrier providers agree for
free reciprocal transit (between their clients’ networks only) if
they can both get mutual operational and economical benefits
from it. A review of Internet agreements can be found in [17].

Under this standpoint, the framework proposed in [1] and
[4] can be considered as a sort of “extended peering agree-
ment” from which providers obtain mutual benefit without
side payments. However, we claim that for such frameworks
the agreement shall rely on side payments since the multi-
provider optimization can arise disparities. In order to reserve
bandwidth for external connections for which no direct earning
is obtained, a provider may need a form of economical
incentive. It is indeed possible that, by reserving bandwidth
for external connections, a provider grants earnings to its
“peers” bigger than the earnings related to its own services.
Instead of “extended peering agreement” it seems more ap-
propriate to refer to an economical “alliance of providers”
that wish to cooperate for multi-provider connection-oriented
(ASON/GMPLS) services, sharing the related incomes (be-
sides the costs of an integrated technical architecture such as
proposed in [2]).

It is thus needed to define a fair scheme for multi-provider



income distribution that rewards a provider in a way that is
not solely based on the generated traffic (Content provider
behavior, see [20]) or absorbed traffic (Eyeball provider be-
havior, see [20]) but also accordingly to its alliance transit
contribution, i.e., that takes into account how much a provider
supports the services of the other providers allocating its
network’s resources. The originally conceived scheme in [1]
and [4] relies on the current Internet business model, with
transit agreements settled between domains. Hence, a provider
income derives from the Internet connections provided to its
direct clients.

With a far-sighted standpoint, in [19] it is proven that,
if part of the profits due to inter-provider services were
shared, the Internet providers would behave less selfishly,
yielding better global routing with lower routing cost than
under the current practice. Using the Shapley value concept
from cooperative games, in [19] it is argued that profits and
costs may be fairly imputed considering the importance of
each AS in the interconnected “coalition” composed of ASs
routing “common” inter-AS flows [20]. In this way, it is proven
that ASs have incentive to better route yielding to a common
inter-domain routing cost lower than with the current practice,
besides than interconnection cost savings.

IV. A SHAPLEY VALUE PERSPECTIVE FOR INCOME
DISTRIBUTION

The Shapley Value concept is a game theoretic solution for
value imputation problems that offers interesting properties
recalled below [16]. For this reason, it has been applied to
very diverse fields [21]. In game theory, interacting agents are
modeled as players that take decisions rationally following
the utility functions of all the players. In cooperative games,
since some players may contribute more than others for the
collaboration, the value imputation problem consists in how
to distribute a global value (or revenue) among the players.
How important is each player to the coalition, and what payoff
can be reasonably expected, are questions to which coopera-
tive coalitional game theory answers with many theoretical
concepts - not worth being all reviewed here (for a review
consider [18]). Among these concepts, the Shapley value
considers the strategic weight (importance) of each player in
the alliance to share the alliance value.

The Shapley value is calculated as follows:
• consider all the possible permutations of the players,
• for each permutation and each player, calculate the mar-

ginal contribution that the player grants if he joins the
coalition formed by the predecessor players,

• for each player, calculate the average of its marginal
contributions on all the permutations.

For example, assume that we have a set of players {1, 2, 3}
(so possible permutations are {1, 2, 3}, {1, 3, 2}, {2, 1, 3},
{2, 3, 1}, {3, 1, 2}, {3, 2, 1}). Thus marginal contributions of
particular players in case of permutation {3, 1, 2} would be
µ({1, 3})− µ({3}) (of player 1), µ({1, 2, 3})− µ({1, 3}) (of
player 2) and µ({3})− µ(∅) = µ({3}) (of player 3);

The Shapley value is thus equal to zero for null players,
which do not offer any marginal contribution to a coalition
in any case, and equal to the single-player payoff for dummy
players, which are indifferent in staying in the coalition or not.

A. Mathematical formulation

The Shapley value can be used to assign the payoff (income)
of a player as function of his marginal contribution to the
coalition. Given that the marginal contribution that a player
brings to a coalition (i.e. the alliance income related to its
connection services) varies as function of the players that
already form the coalition, it is essential considering the order
in which the player enters the coalition (or would enter if a
coalition evaluates the opportunity of joining the new player).

Mathematically, we use the formulation of a coalitional
game. Let N denote a set of players. We start with a function
µ : P(N ) → R, that goes from subsets of players S ⊆ N to
reals, called the “worth function”, with the properties:

i) µ(∅) = 0;
ii) µ(S ∪ T ) ≥ µ(S) + µ(T ), ∀S, T ⊆ N | S ∩ T = ∅.

The computation of µ will be explicited in the next section.
The interpretation of the function µ is as follows: if S is
a coalition of players which agree to cooperate, then µ(S)
describes the total expected gain from this cooperation, inde-
pendent of what the actors outside of S do. ii) is the “super-
additivity” condition, hypothesis of classical cooperative game
theory, which expresses the fact that collaboration can only
help, and never hurts. A shapley value imputation ωi can thus
be calculated for each player i ∈ N as function of µ:

ωi(µ) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n!

(µ(S∪{i})−µ(S)) (10)

where the sum extends over all subsets S of N not contai-
ning player i. The formula can be justified if one imagines
the coalition being formed one player at a time, with each
player demanding its contribution µ(S\{i}) − µ(S) as a fair
compensation, and then averaging over the possible different
permutations in which the coalition can be formed.

B. Properties

The Shapley Value satisfies desirable properties of indivi-
dual fairness, efficiency, symmetry, additivity and null player
modeling (for a detailed characterization see [21]). In fact, the
vector of Shapley values is the only payoff vector - defined on
the class of all superadditive games - that satisfies these five
properties. Namely, under a Shapley value distribution, in our
framework every provider gets at least as much as it would
have got without any collaboration, and two strategically
equivalent providers obtain the same value. Moreover, the
Shapley value distribution supports anonymity. That is, the
labeling of the players doesn’t play a role in the assignment
of their payoffs, i.e., if i and j are two players, and µ1 is the
worth function that acts just like µ2 except that the roles of
i and j have been exchanged, then ωi(µ1) = ωj(µ2). Finally,
the Shapley value is the single imputation rule that supports



w
4

w
2

w
1

w
3

e
3

e
2

e
1

e
4

e
5

p1

p3

p2

Fig. 1. Connectivity graph of an exemplary multi-domain network

marginality, i.e., which uses only the marginal contributions
of a player as argument [21].

V. WORTH FUNCTION

Let us consider a network model consisting of a directed
graph H = (W,F) with the set of nodes W and the set of
edges F . Let W = {Wi : i ∈ I} where I = {1, 2, ..., N}
and N = 2|W|. Each subset Wi ∈ W induces a subgraph
Hi = (Wi,Fi) of graph H where Fi = (Wi ×Wi) ∩ F .

Set D ⊆ (W ×W) represents traffic demands; let us recall
that the originating and terminating node of d ∈ D is denoted
by s(d) and t(d), respectively, and hd is the traffic volume of
d. Set Pd denotes the set of paths that realize demand d ∈ D
and ydp is a fraction of volume hd sent over path p ∈ Pd
(
∑
p∈Pd

ydp = hd). Let P =
⋃
d∈D Pd denote the set of all

paths and the set Pi = {p ∈ P : ∀e∈p e ∈ Fi} denote the set
of paths that survive in subnetwork Hi.

The total amount of traffic that subnetwork Hi delivers
to its destination nodes can be expressed as T (Hi) =∑
d∈D

∑
p∈Pi∩Pd

ydp. Then, with an additional assumption
that the income that subnetwork Hi earns depends linearly on
the value of T (Hi), the worth function of subnetwork Hi may
be defined as

µ(Hi) = αT (Hi). (11)

Without loss of generality, we hereafter assume that α = 1.
Let us consider a simple network presented in Figure 1. The
network realizes a single demand d1 (D = {d1}) of volume
hd1 = 1 using three paths P = Pd = {p1, p2, p3} with
respective loads yd1p1 = 0.5, yd1p2 = 0.25, yd1p3 = 0.25.
We observe that the value of the worth function µ(Hi) is
equal to zero for every subnetwork Hi such that Pi = ∅.
Hence, the only meaningful subnetworks are those induced
by subsets W1 = {w1, w2, w3, w4},W2 = {w1, w2, w3} and
W3 = {w1, w4, w3}. Their respective worth function values
are µ(H1) = 1, µ(H2) = 0.5, µ(H3) = 0.25. Worth function
(11) can be used to compute the Shapley value imputation of
nodes in W (cf. Table I). Set Π is a family of all sequences
(permutations) of nodes in W while π ∈ Π denotes a single
permutation. Then H(π,w) denotes a subnetwork induced by
the set of nodes that precede node w in permutation π. The
Shapley value of node w ∈ W is an average over all π ∈ Π
of its marginal contribution to every subnetwork H(π,w) (cf.
Section III).

permutation marginal contribution to subnetwork H(π,w)
π ∈ Π w = w1 w = w2 w = w3 w = w4

{w1, w2, w3, w4} 0 0 .5 .5
{w1, w2, w4, w3} 0 0 1 0
{w1, w4, w2, w3} 0 0 1 0
{w1, w4, w3, w2} 0 .75 .25 0
{w1, w3, w4, w2} 0 .75 0 .25
{w1, w3, w2, w4} 0 .5 0 .5
{w2, w3, w4, w1} 1 0 0 0
{w2, w3, w1, w4} .5 0 0 .5
{w2, w1, w3, w4} 0 0 .5 .5
{w2, w1, w4, w3} 0 0 1 0
{w2, w4, w1, w3} 0 0 1 0
{w2, w4, w3, w1} 1 0 0 0
{w3, w4, w1, w2} .25 .75 0 0
{w3, w4, w2, w1} 1 0 0 0
{w3, w2, w4, w1} 1 0 0 0
{w3, w2, w1, w4} .5 0 0 .5
{w3, w1, w2, w4} 0 .5 0 .5
{w3, w1, w4, w2} 0 .75 0 .25
{w4, w1, w2, w3} 0 0 1 0
{w4, w1, w3, w2} 0 .75 .25 0
{w4, w3, w1, w2} .25 .75 0 0
{w4, w3, w2, w1} 1 0 0 0
{w4, w2, w3, w1} 1 0 0 0
{w4, w2, w1, w3} 0 0 1 0

Shapley values .3125 .229167 .3125 .14833

TABLE I
INTERMEDIATE AND THE FINAL SHAPLEY VALUES

To compute Shapley value imputation that the domains
of the original multi-domain network receive, induced by the
optimal routing solution (cf. Section II), we first construct the
domain connectivity graph H(W,F) of the original multi-
domain network (cf. Section II) graph G = (V, E). Each node
wm ∈ W,m ∈ M represents domain m of the original
network while each link f = {wm′ , wm′′},m′,m′′ ∈ M
represents the set L(f) of all directed inter-domain links
between domains m′ and m′′.

Then we define the vector of reservations Y = {yft : f ∈
F , t ∈ W} where a single reservation yft denotes the amount
of capacity on link f that is reserved for traffic destined to
node t. Observe that value of yfw, w = wm can be computed
using either the formula

∑
e∈L(f) x

+
et or

∑
e∈L(f) x

−
et where

m = A(t) is the domain node t belongs to.
We assume that the subset of edges F t ⊆ F used by flow

of traffic from every node w ∈ W to an arbitrary destination
node t ∈ W induces the acyclic graph Ht = (Wt,F t) (in fact
vector Y generates flows that are near-acyclic still they can
be made acyclic by means of a preprocessing).

Then we consider the full set of demands D = (W ×W).
Observe that volume of demand d ∈ D from node s(d) to
node t(d) can be computed using hd =

∑
e∈δ+(w) yet −∑

f∈δ−(w) yft. As traffic belonging to demand d is undis-
tinguishable (vector Y defines only reservations that are
aggregated over destination nodes) it is reasonable to assume
that the set of paths Pd, d ∈ D of demand d contains all paths
in graph Ht leading from node s(d) to node t(d). Let φt(w)
denote the total volume of traffic destined to node t in node
w and let ψt(f) denote a percentage of that volume that each



link f ∈ δ+(w)∩F t carries. Observe that the a rule of splitting
of the volume of every demand d such that t(d) = t in every
node of graph Ht is defined by

ψt(f) = yft/
∑

e∈δ+(w)∩Ft

yet. (12)

Using formula (12) we can compute loads ypd on every path
p ∈ Pd of every demand d ∈ D and finally, by following the
pattern used in the example, also to compute Shapley value
imputation that domains eventually receive.

Algorithm V.1 computes value µt(Hi) which denotes a
component of the worth function of subnetwork Hi for the
traffic to destination node t ∈ Wi. It takes advantage of the
observation that the value of this component is equal to the
volume φti(t) of node t, i.e., µt(Hi) = φti(t) and also of the
assumption that graph Ht is acyclic. Procedure NODEVOL
computes the value of volume φti(w) of node w ∈ Wi.
Procedure LINKVOL computes the the amount of traffic to
node t that loads link f ∈ Fi in graph Ht.

Algorithm V.1: WORTHCOMPONENT(i∈I, t∈Wi)

procedure NODEVOL(w)
if not visited(w)

then

for each e ∈ {δ−(w) ∩ Fi ∩Ht}
do vol(w)← vol(w)+LINKVOL(e)

visited(w)← true
return (vol(w))

procedure LINKVOL(e)
if NODEVOL(a(e))ψt(e) < yet

then return (NODEVOL(a(e))ψt(e))
else return (yet)

main
for each w ∈ Wi

do
{
vol(w)← 0
visited(w)← false

return (NODEVOL(t))

Finally, the worth function of the subnetwork Hi is computed
as

µ(Hi) =
∑
t∈Wi

µt(Hi) (13)

Note that the worth function µ(Hi) of subnetworkHi, i ∈ I
is computed using the single vector of reservations Y . This
can be considered as heuristic since the worth value of a
subnetwork is not computed w.r.t. the optimal vector of reser-
vations that would be obtained from a restriction of Problem
2. Nevertheless, it is pragmatical since a provider has no final
choice to enter or to leave the coalition imposed by business
agreements that take into account not only direct profits but
also other issues – e.g., the possibility for extending customer
base.

edge f ∈ F destination node t ∈ W
a(f) b(f) m1 m6 m0 m5 m4 m3 m2

m0 m4 155 0 0 0 3987 174 0
m0 m5 132 0 0 2694 0 1053 0
m0 m6 563 11174 0 0 0 0 1031
m1 m2 0 724 809 0 0 0 6384
m1 m3 0 0 0 495 625 1619 0
m2 m1 7669 0 0 0 0 0 0
m2 m3 0 0 0 0 0 2675 0
m2 m6 0 7092 1822 542 651 0 0
m3 m1 5596 0 0 0 0 0 0
m3 m2 0 246 0 0 0 0 5168
m3 m4 0 0 202 0 4992 0 0
m3 m5 0 794 1070 2274 0 0 0
m4 m0 0 0 2158 0 0 0 0
m4 m3 772 0 0 0 0 1265 495
m4 m5 0 0 0 9418 0 0 0
m4 m6 0 4862 0 0 0 0 214
m5 m0 0 0 7756 0 0 0 0
m5 m3 624 0 0 0 0 7273 393
m5 m4 0 0 0 0 7870 0 0
m5 m6 0 3413 0 0 0 0 212
m6 m0 0 0 8903 0 0 0 0
m6 m2 1280 0 0 0 0 773 9921
m6 m4 0 0 0 0 2467 0 0
m6 m5 0 0 0 1550 0 272 0

TABLE II
COMPONENTS OF VECTOR Y

VI. NUMERICAL EXPERIMENTS

In our experiments we compared imputation of the income
of a multi-domain network generated by the proposed Shapley
value based distribution with that generated by the original
distribution (cf. either [1] or [4]), where the whole income
related to demand d is attributed to a domain that injects this
demand into the network, and no domain receives income for
transiting nor terminating the traffic. Note that value of the
income has been defined (cf. Section V) as equal to (depending
linearly on) the total volume of demands that the coalition
serves.

We did the investigations in a context of a single multi-
domain network consisting of seven domains (the original
topology of the network is presented in Figure 2a, where
thick lines represent intra-domain links and thin lines represent
inter-domain links; independently from the type of the link, a
single line represents a pair of oppositely directed unidirectio-
nal links of equal capacity). The considered traffic matrix is
random.
First, to reduce the complexity of the original network, a star-
aggregation of intra-domain networks was applied (according
to the methodology described in [5]). Then, for the aggregated
network (in Figure 2b) the distributed optimization process had
been run. Finally, the domain connectivity graph H = (W,F)
(in Figure 2c) was constructed and the optimal routing solution
of Problem 2 was projected onto that graph (the vector of
reservations Y induced by the optimal routing solution is
presented in Table II). As in general case a node receives sum
of share components induced by flows to many different des-
tination nodes, the differences between imputations generated
by two considered distributions may be difficult to depict. To



(a) The original network (b) The network after star aggregation (c) The domain connectivity graph H

Fig. 2. Network topology abstraction schemes

avoid that problem, we decided to restrict our consideration to
just a single flow directed to an arbitrary (say, m3) destination
node. This flow is presented in Figure 3, where number beside
a link f ∈ F denote the value of reservation yft, t = m3,
i.e., the amount of bandwidth reserved on link f for traffic to
node m3. Considering these reservations, one can then easily
compute the amount of traffic to node m3 that every node
either injects into the network, terminates or transits (cf. Table
III) hence (following the method introduced in Section V)
he can compute also Shapley values attributed to a particular
domain. Table IV shows imputations generated by the two
distributions (Shapley based and the original one) in context
of the considered flow. Columns i, t and tr of the table show
income components related to traffic that a domain injects
and terminates, respectively. The last column

∑
denotes total

imputation that a domain receives.
Observing Tables III and IV one can conclude that the

original distribution is unfair – as there are significant unpaid
volumes of traffic terminated by domain m3 and transited
through domains m2, m4 and m5. The second part of Table
IV shows that the proposed Shapley value distribution schemes
offers significantly fairer results, as domains are awarded for
every type of their contribution in the total income (the ‘x’s
mean that the Shapley value attributed to transit domain cannot
be easily divided into components related to injecting and
transiting of traffic). Namely, the Shapley scheme assigns to
m3 the biggest share while the original scheme would assign
a null income: without m3 12833 units of traffic (c.f. the
total ingress traffic at m3 in Figure 3) could not be provided,
so the corresponding revenue is distributed fairly also to m3

recognizing to it an income share of 6010. Or, m0 and m6

not reserving bandwidth for any external connection, receive
roughly one third of the original share.

In this study case we can appreciate the application of
the concept initially proposed by the authors of [20]. They
claim that nowadays the Internet is characterized by “Content
providers” (e.g., Youtube) that delivers traffic to “Eyeball
providers” (e.g., Polish Telecom) that connect large commu-
nities of customers. Since the Content providers get revenue
by selling services to customers of Eyeball providers using
the network of “Carrier providers” (e.g., Opentransit), they

propose to share the corresponding income among all the
providers in the delivery chain. In our restricted study case,
m0, m1 and m6 can be seen as Content providers simply
injecting traffic toward m3, the Eyeball provider, crossing m2,
m4 and m5 that act as Carrier providers, as well as Content
providers in turn.

m
0

m
6

m
2

m
1

m
3

m
5

m
4

773

2675

272

1053

174

7273

1265

1619

Fig. 3. Flow to domain m3

domain injects terminates transits
m0 1225 0 0
m1 1619 0 0
m2 1902 0 773
m3 0 12833 0
m4 1091 0 174
m5 5948 0 1325
m6 1045 0 0

TABLE III
FLOW m3 COMPONENTS

In the general case, by contemplating a mixed
Content/Eyeball/Carrier behavior for each domain, our
framework somehow adopts and extends the concept
proposed in [20], by coupling a routing decomposition
optimization framework that deals with multiple connections,
with a fair income distribution policy. For the general case,
in Figure 4 we compare the original distribution to the
final Shapley values, which are computed summing all the
contributions due to all the flows and all the destinations.



original distribution Shapley distribution
i t tr

∑
i t tr

∑
m0 1225 0 0 1225 408 0 0 408
m1 1619 0 0 1619 809 0 0 809
m2 1902 0 0 1902 x 0 x 1188
m3 0 0 0 0 0 6010 0 6010
m4 1091 0 0 1091 x 0 x 602
m5 5948 0 0 5948 x 0 x 3408
m6 1045 0 0 1045 323 0 0 323

TABLE IV
FLOW m3 RELATED INCOME DISTRIBUTION

Fig. 4. Income distribution schemes comparison

We can better appreciate the global effect of the proposed
distribution scheme. For each domain, the result is a fair
weighting of the traffic injected, terminated and transited,
following the Shapley imputation rule (10).

Those domains better interconnected, i.e. with more neigh-
bors and more intra-domain availability (c.f. Figure 2), are able
to transit traffic (c.f. the reservation levels in Table II) and get
a higher share. This is the case for example of m6 and m2

that increase their share of 29% and 16%, respectively. Those
domains that inject a lot of traffic but still offer an adequate
transit for alliance connections, e.g. m4, maintain a similar
share. Instead, for those whose injected traffic volume is not
sufficiently compensated with transit contribution, e.g. m5, m3

and m0, the share decreases (of roughly 10%).

VII. CONCLUDING REMARKS

In this paper we have presented a cooperative multi-provider
routing optimization framework in which providers cooperate
to the resource reservation for inter-provider connections.
We discussed under which circumstances this might result
economically feasible. In order to support the adoption of
such a multi-provider routing optimization framework, we
proposed a fair income distribution scheme relying on the
Shapley Value concept from cooperative game theory, showing
how the complex issue of computing the Shapley values using
decomposition result parameters can be solved heuristically.

By comparison with the original implicit income distri-
bution policy, we show the benefits of the adoption of the

Shapley value distribution scheme. Those domains that attract
large volumes of traffic can receive an income for such a
contribution. Those providers that do not balance their injected
traffic volume with bandwidth reserved for external connection
transit, see their income share decreased. Those domains that
do not offer transit at all are fairly penalized. Our approach
is a further step (after a few others such as [20]) toward
the definition of feasible cooperative routing frameworks and
acceptable business models for the future Internet.

As a further work we aim to refine the optimization decom-
position method so as to allow a pro-active integration of the
Shapley values. The idea is to control the amount of traffic
volume a provider is allowed to inject within the alliance.
It might be desirable to allow rewarding a provider’s transit
contribution directly with intra-alliance traffic injection ability
by bounding the inter-provider throughput.
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