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Abstract
This paper refines a distributed optimization mecha-

nism for reliable cooperative optimization of flow reser-
vation levels in multi-domain networks (introduced in [1]),
by considering the fundamental issue of fair income distri-
bution. The proposed idea of income distribution mech-
anism has been adopted from the theory of cooperative
games.1
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1. Introduction

The goal of this paper is to improve the distributed
scheme for cooperative optimization of inter-domain traf-
fic flow presented in [1] and [3]. These papers define an
iterative distributed optimization process, run either in the
control plane or in the management plane of the network,
in which domains, cooperating in a coalition, calculate
the optimal pattern of inter-domain traffic flow. The re-
ferred papers are mostly devoted to the description of an
optimization process whose objective is to maximize the
sum of incomes of individual domains under the assump-
tion that the income of a domain depends linearly on the
amount of inter-domain traffic the domain injects into the
network. As a globally optimal solution might prefer that
a domain should rather transit than inject traffic, such an
implicit distribution rule could lead to unfair distribution
of the total income. In fact, as a domain has no guaran-
tees to gain any additional profit (in reality, it may even
loose) there is no incentive to enter the coalition. This
paper aims in closing that gap – it extends the model of
distributed cooperative optimization with a mechanism of
provably fair distribution of the coalition’s income adopted
from the theory of cooperative games.

The paper is organized as follows. Section 2. summa-
rizes the distributed optimization model presented in [3]
and [1] and introduces a necessary notation. Sections 3.
and 4. present a model for application income distribu-

1This work has been carried out within the EU IST Euro-NF IN-
CAS (INter Carrier Alliance Strategies) S.JRA.1.7 activity, and within
the scope of a COST Action 293, GRAAL (Graphs and algorithms in
communication networks).

tion mechanisms adopted from the theory of cooperative
games, namely the notion of the Shapley value. Section
5. presents a method and the algorithm for computation
of the Shapley values from the results of the distributed
optimization process. Section 6. presents numerical re-
sults illustrating the effect of the proposed distribution
mechanism on the incomes of particular domains. Even-
tually, Section 7. gives concluding remarks together with
a sketch of the plan for further investigations.

2. Distributed routing optimization framework

In [1] a generic multi-domain routing problem (con-
sisting in optimization of bandwidth reservation levels
on inter-domain links for traffic flows identified by traf-
fic classes and traffic destinations) is formulated, and its
possible decompositions are discussed. In [3] it is shown
how to decompose the problem with respect to individ-
ual domains using sub-gradient optimization based on La-
grangean relaxation and it is demonstrated how to resolve
an inter-domain routing optimization problem using a dis-
tributed process based on sub-gradient optimization com-
bined with recovering of near-optimal bandwidth reser-
vation levels. The original approach was further refined
by [4] (where it is demonstrated how to take advantage
of different aggregation models of intra-domain topology
in order to reduce the size and increase the computational
efficiency of the proposed method) and, at last, in [5]
where an effective architecture and reasonable stopping
criteria for the distributed optimization process have been
introduced. Hereafter there are reminded only the neces-
sary elements of the original formal notation – for further
details please refer the original papers [1], [3], [4] and [5].

The considered model of the network consists of a
directed graph G = (V, E) with the set of nodes V and
the set of directed links E (E ⊆ V × V). M is the set
of network domains. Each node v ∈ V belongs to ex-
actly one domain denoted by A(v). Set D represents
traffic demands between pairs of nodes. The originating
and terminating node of d ∈ D is denoted by s(d) and
t(d), respectively, and hd is the traffic volume of d, ex-
pressed in the same units of bandwidth as capacity of
links. D(s, t) = {d ∈ D : s(d) = s ∧ t(d) = t} denotes
the set of all demands from node s ∈ V to node t ∈ V .
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In the sequel, zd will denote the variable specifying the
percentage of volume hd actually handled in the network,
i.e., zdhd is the carried traffic of demand d.

Let xet denote a variable specifying the amount of
aggregated bandwidth (called flow in the sequel) reserved
on intra-domain e link for the traffic destined for (a re-
mote) node t ∈ V . Then, for each inter-domain link e
we introduce two flow variables: x+

et and x−et. Variable
x+

et (respectively, x−et) denotes the amount of bandwidth
reserved for traffic carried on e and destined for t that
is reserved by domain A(a(e)) (respectively, A(b(e))) at
which link e originates (respectively, terminates).

3. Rationales

According to a review of Internet agreements that can
be found in [7], the framework proposed in [1] can be con-
sidered as a sort of “extended peering agreement” from
which providers obtain mutual benefit without side pay-
ments. However, we claim that for such frameworks the
agreement shall rely on side payments since the multi-
provider optimization can arise disparities. In order to
reserve bandwidth for external connections for which no
direct earning is obtained, a provider may need a form
of economical incentive. It is indeed possible that, by
reserving bandwidth for external connections, a provider
grants earnings to its “peers” bigger than the earnings re-
lated to its own services. Instead of “extended peering
agreement” it seems more appropriate to refer to an eco-
nomical “alliance of providers” that wish to cooperate for
multi-provider connection-oriented (ASON/GMPLS) ser-
vices, sharing the related incomes (besides the costs of an
integrated technical architecture such as proposed in [2]).
It is thus needed to define a fair scheme for multi-provider
income distribution that rewards a provider in a way that is
not solely based on the generated traffic (Content provider
behavior, see [10]) or absorbed traffic (Eyeball provider
behavior, see [10]) but also accordingly to its alliance
transit contribution, i.e., that takes into account how much
a provider supports the services of the other providers al-
locating its network’s resources. With a far-sighted stand-
point, in [9] it is proven that, if part of the profits due to
inter-provider services were shared, the Internet providers
would behave less selfishly, yielding better global rout-
ing with lower routing cost than under the current prac-
tice. Using the Shapley value concept from cooperative
games, in [9] it is argued that profits and costs may be
fairly imputed considering the importance of each AS in
the interconnected “coalition” composed of ASs routing
“common” inter-AS flows [10]. In this way, it is proven
that ASs have incentive to better route yielding to a com-
mon inter-domain routing cost lower than with the current
practice, besides than interconnection cost savings.

4. A Shapley Value Perspective for Income
Distribution

The Shapley Value concept is a game theoretic solu-
tion for value imputation problems that offers interesting
properties recalled below [6]. For this reason, it has been

applied to very diverse fields [11]. In game theory, inter-
acting agents are modeled as players that take decisions
rationally following the utility functions of all the players.
In cooperative games, since some players may contribute
more than others for the collaboration, the value imputa-
tion problem consists in how to distribute a global value
(or revenue) among the players. How important is each
player to the coalition, and what payoff can be reasonably
expected, are questions to which cooperative coalitional
game theory answers with many theoretical concepts - not
worth being all reviewed here (for a review consider [8]).
Among these concepts, the Shapley value considers the
strategic weight (importance) of each player in the alliance
to share the alliance value.

The Shapley value is thus equal to zero for null play-
ers, which do not offer any marginal contribution to a
coalition in any case, and equal to the single-player pay-
off for dummy players, which are indifferent in staying
in the coalition or not. In our multi-provider framework,
dummy players are those that reserve resources for exter-
nal inter-provider connections but do not obtain the same
from the other providers, while null player are those that
not even reserve resources.

The Shapley value can be used to assign the payoff (in-
come) of a player as function of his marginal contribution
to the coalition. Given that the marginal contribution that
a player brings to a coalition (i.e. the alliance income re-
lated to its connection services), varies as function of the
players that already form the coalition, it is essential con-
sidering the order in which the player enters the coalition
(or would enter if a coalition evaluates the opportunity of
joining the new player).

Mathematically, we use the formulation of a coalitional
game. We start with a function µ : P(M)→ R, that goes
from subsets of players (partition set ofM) to reals, called
the “worth function”, with the properties:
i) µ(∅) = 0;
ii) µ(S ∪ T ) ≥ µ(S) + µ(T ), ∀S, T ⊆M | S ∩ T = ∅.
The computation of µ will be explicited in the next sec-
tion. The interpretation of the function µ is as follows: if
S is a coalition of players which agree to cooperate, then
µ(S) describes the total expected gain from this cooper-
ation, independent of what the actors outside of S do. ii)
is the “super-additivity” condition, hypothesis of classical
cooperative game theory, which expresses the fact that
collaboration can only help, and never hurts. A shapley
value imputation ωi can thus be calculated for each player
i ∈M as function of µ:

ωi(µ) =
∑

S⊆M\{i}

|S|!(n− |S| − 1)!
n!

(µ(S ∪{i})−µ(S))

(1)
where the sum extends over all subsets S of M not con-
taining player i. The formula can be justified if one imag-
ines the coalition being formed one player at a time, with
each player demanding its contribution µ(S\{i})− µ(S)
as a fair compensation, and then averaging over the pos-
sible different permutations in which the coalition can be
formed.
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Fig 1. Connectivity graph of an exemplary multi-domain network

The Shapley Value satisfies desirable properties of in-
dividual fairness, efficiency, symmetry, additivity and null
player modeling (for a detailed characterization see [11]).
In fact, the vector of Shapley values is the only payoff
vector - defined on the class of all superadditive games -
that satisfies these five properties. Namely, under a Shap-
ley value distribution, in our framework every provider
gets at least as much as it would have got without any
collaboration, and two strategically equivalent providers
obtain the same value. Moreover, the Shapley value dis-
tribution supports anonymity. That is, the labeling of the
players doesn’t play a role in the assignment of their pay-
offs, i.e., if i and j are two players, and µ1 is the worth
function that acts just like µ2 except that the roles of i
and j have been exchanged, then ωi(µ1) = ωj(µ2). Fi-
nally, the Shapley value is the single imputation rule that
supports marginality, i.e., which uses only the marginal
contributions of a player as argument [11].

5. Coalitional game characterization

The computation of Shapley values for every domain
m ∈ M of the coalition requires a procedure for evalu-
ation of worth function µ(S) of arbitrary sub-coalition
S ⊆ M. Lets consider a simple example of a mul-
tidomain network (connectivity graph presented in Fig-
ure 1) where node m ∈M = {m1,m2,m3,m4} rep-
resents a single domain of the original network and,
edge e ∈ E = {e1, e2, e3, e4, e5} represents an aggre-
gate of all the directed links between the pair of do-
mains. Assume that there is a single demand d such
that s(d) = m1 and t(d) = m3 of nominal volume
hd = 1. Let the optimal routing solution (of Problem
(2) in [1]) define that zd = 1 and particular reserva-
tion levels are: xe1m3 = 0.5, xe2m3 = 0.75, xe3m3 =
0.25, xe4m3 = 0.25, xe5m3 = 0.5. A worth function µ(S)
for the sub-coalition S ⊆ M is defined as the value of
the objective function (cf. (2a) in [1]) that could be
achieved when only nodes m ∈ S and links e ∈ ES
(ES = {e ∈ E : a(e) ∈ S, b(e) ∈ S}) would be active.

Therefore, µ(S) is computed upon the optimal rout-
ing solution for the grand coalition, so independently from
which sub-coalition is active, the corresponding reserva-
tion levels are fixed.
One can observe that the value of the worth function
µ(S) is equal to zero for every sub-coalition S ⊆ M
such that does not contain both the source and the des-
tination domain of demand d (i.e., domains m1 and m3)
together with at least one from two transit domains (ei-

permutations m1 m2 m3 m4

m1m2m3m4 0 0 .5 .5
m1m2m4m3 0 0 1 0
m1m4m2m3 0 0 1 0
m1m4m3m2 0 .75 .25 0
m1m3m4m2 0 .75 0 .25
m1m3m2m4 0 .5 0 .5
m2m3m4m1 1 0 0 0
m2m3m1m4 .5 0 0 .5
m2m1m3m4 0 0 .5 .5
m2m1m4m3 0 0 1 0
m2m4m1m3 0 0 1 0
m2m4m3m1 1 0 0 0
m3m4m1m2 .25 .75 0 0
m3m4m2m1 1 0 0 0
m3m2m4m1 1 0 0 0
m3m2m1m4 .5 0 0 .5
m3m1m2m4 0 .5 0 .5
m3m1m4m2 0 .75 0 .25
m4m1m2m3 0 0 1 0
m4m1m3m2 0 .75 .25 0
m4m3m1m2 .25 .75 0 0
m4m3m2m1 1 0 0 0
m4m2m3m1 1 0 0 0
m4m2m1m3 0 0 1 0

Shapley values .3125 .229167 .3125 .14833

T a b l e 1. Intermediate and the final Shapley values

ther m2 or m4). Hence the only profitable sub-coalitions
are S1 = {m1,m2,m3,m4},S2 = {m1,m2,m3} and
S3 = {m1,m4,m3} with respective worth functions
µ(S1) = 1, µ(S2) = .5 and µ(S3) = .25.

The Shapley values are then computed using (1). The
intermediate and the final results of this process are pre-
sented in Table 1. The first column of the table contains
all the possible permutations of domains of the coalition
M, the next four columns contain marginal contributions
of domains m1, m2, m3 and m4 respectively. The last
row of the table contains the final Shapley values for every
domain m ∈M of the coalition.

Worth function for the optimal routing solution

The Shapley value computation is complex. This is
due to additional intrinsic complexity related to the struc-
ture of the optimal routing solution: a flow directed to a
particular destination domain t is usually aggregated and
has many source domains s, and its sub-flow paths are
a-priori unknown.

Let dt(v), v ∈ M, t ∈ M denote the total traf-
fic volume generated within v and directed to t. Let
φt(S, v),S ⊆ M, v ∈ S, t ∈ S denote the traffic vol-
ume that domain v has to direct to domain t when sub-
coalition S is active. Let ES denote set of links active
for sub-coalition S – i.e., e ∈ E such that a(e) ∈ S and
b(e) ∈ S. At last, let ϕt(S, e),S ⊆ M, e ∈ ES , t ∈ S
(we refer to it as volume of link e) denote the volume of
traffic to domain t carried on link e when sub-coalition
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S is active. Distribution of volume of domain v to its
outgoing links is trivial if this domain volume exceeds
the sum of reservation levels over active outgoing links –
i.e., φt(S, v) ≥

∑
e∈δ+(v)∩ES xet,S ⊆ M, v ∈ S, t ∈ S

– as in such a case, every active outgoing links gets vol-
ume equal to its reservation (ϕt(S, e) = xet). In the
opposite case, where there is a surplus of reservation to
use and due to the optimal routing solution got from the
distributed optimization (cf. Section 2.) does not spec-
ify paths for particular demands (or sub-flows), it seems
reasonable and simple to assume a fair weighted distri-
bution of volume of domain v to its outgoing links –
i.e., ϕt(S, e) = xet/(

∑
f∈δ+(v)∩ES xft)φt(S, v) S ⊆

M, t ∈ S, e ∈ ES , v ∈ S .

Algorithm 5..1: worthFunctionComponent(S, t)

procedure domainvolume(S,m)
if not domainReady(m)

then


φt(S,m)← 0
for each e ∈ δ−(m) ∩ ES

do φt(S,m)← φt(S,m)+linkvolume(S, e, t)
domainReady(m)← true

return (φt(S,m))

procedure linkvolume(S, e, t)
if a(e) ∈ S

then return (φt(S, v)xet/(
∑

f∈δ+(a(e))∩ES xft))
else return (0)

main
for each m ∈M

do domainReady(m)← false
return (domainvolume(S, t))

Let µ(S, t) denote a component of worth function of sub-
coalition S ⊆ M for traffic to destination domain t. To
compute value of that component one may use Algorithm
5..1. The algorithm assumes that a flow of traffic to do-
main t, which is induced by values of reservations taken
form the optimal routing solution, forms an acyclic graph
(in fact, the optimal routing solution does not always in-
duce acyclic flows still, they could be easily made acyclic
by simple preprocessing). Algorithm 5..1 takes advantage
of the observation that µ(S, t) = φt(S, t) – i.e., that value
of worth function component, for particular sub-coalition
S and destination domain t, is equal to the volume of
domain t.

Finally, the worth function of the sub-coalition S ⊆
M can be computed as

µ(S) =
∑
t∈S

µ(S, t) (2)

Then, (1) computes the Shapley value imputation for all
domains of the coalition.

6. Numerical experiments

In our experiments we tested the Shapley value based
distribution algorithm for a single multi-domain network

consisting of seven domains (the domain connectivity
graph of that network is presented in Figure 2, where
a single line represents a pair of oppositely directed uni-
directional links of equal capacity). The considered traffic
matrix is random.
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Fig 2. The domain connectivity graph

Lets consider flow to the arbitrarily chosen destina-
tion domain – e.g., flow to domain m3. That flow is
depicted in Figure 3, where number beside a link denote
the amount of bandwidth reserved on that link for traffic to
domain m3. Considering these reservation levels, one can
easily compute the amount of traffic to domain m3 that
each domain injects into the network, terminates or tran-
sits (results for such computations are presented in Table
2). Table 3 shows how the two considered distributions
divide the income related to flow to domain m3 between
particular domains (the original distribution refers to the
implicit distribution rule assumed in [1] and [3], where a
domain was awarded only for traffic that it injects into the
network – there were no income components related to
transiting nor terminating traffic). There are four columns
for each distribution – i denotes income component re-
lated to traffic a domain injects into the network, t income
component related to traffic terminated within a domain
and tr income component related to traffic transited by a
domain. Finally, column

∑
denotes the total income that

is attributed to a domain by particular distribution.
Observing Tables 2 and 3 one can easily conclude that

the original distribution is unfair – as there are significant
unpaid volumes of traffic terminated by domain m3 and
transited through domains m2, m4 and m5. The second
part of Table 3 shows that the proposed Shapley value
distribution schemes offers significantly fairer results, as
domains are awarded for every type of their contribution
in the total income (the ‘x’s mean that the Shapley value
attributed to transit domain cannot be easily divided into
components related to injecting and transiting of traffic).
Namely, the Shapley scheme assigns to m3 the biggest
share while the original scheme would assign a null in-
come: without m3 12833 units of traffic (c.f. the total
ingress traffic at m3 in Figure 3) could not be provided,
so the corresponding revenue is distributed fairly also to
m3 recognizing to it an income share of 6010. Or, m0 and
m6 not reserving bandwidth for any external connection,
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receive roughly one third of the original share.

Fig 3. Flow to domain m3

domain injects terminates transits
m0 1226 0 0
m1 1627 0 0
m2 1892 0 724
m3 0 12833 0
m4 1159 0 174
m5 5951 0 1306
m6 978 0 0

T a b l e 2. Flow m3 components

Original distribution Shapley distribution
i t tr

∑
i t tr

∑
m0 1225 0 0 1225 408 0 0 408
m1 1619 0 0 1619 809 0 0 809
m2 1902 0 0 1902 x 0 x 1188
m3 0 0 0 0 0 6010 0 6010
m4 1091 0 0 1091 x 0 x 602
m5 5948 0 0 5948 x 0 x 3408
m6 1045 0 0 1045 323 0 0 323

T a b l e 3. Flow m3 related income distribution

7. Summary

In this paper we have presented a cooperative
multi-provider routing optimization framework in which
providers cooperate to the resource reservation for inter-
provider connections. We discussed under which circum-
stances this might result economically feasible. In order
to support the adoption of such a multi-provider routing
optimization framework, we proposed a fair income distri-
bution scheme relying on the Shapley Value concept from
cooperative game theory, showing how the complex issue
of computing the Shapley values using decomposition re-
sult parameters can be solved heuristically.

By comparison with the original implicit income dis-
tribution policy, we show the benefits of the adoption of
the Shapley value distribution scheme. Those domains
that attract large volumes of traffic can receive an income
for such a contribution. Those providers that do not bal-
ance their injected traffic volume with bandwidth reserved

for external connection transit, see their income share de-
creased. Those domains that do not offer transit at all are
fairly penalized. Our approach is a further step (after a
few others such as [10]) toward the definition of feasible
cooperative routing frameworks and acceptable business
models for the future Internet.

As a further work we aim to refine the optimization
decomposition method so as to allow a pro-active inte-
gration of the Shapley values. The idea is to control
the amount of traffic volume a provider is allowed to in-
ject within the alliance. It might be desirable to allow
rewarding a provider’s transit contribution directly with
intra-alliance traffic injection ability by bounding the inter-
provider throughput.
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