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Abstract: Mobile cloud computing is a new rapidly growing field. In addition to the
conventional fashion that mobile clients access cloud services as in the well-known
client/server model, existing work has proposed to explore cloud functionalities in
another perspective — offloading part of the mobile codes to the cloud for remote
execution in order to optimize the application performance and energy efficiency of
the mobile device. In this position paper, we investigate the state of the art of code
offloading for mobile devices, highlight the significant challenges towards a more effi-
cient cloud-based offloading framework, and also point out how existing technologies
can provide us opportunities to facilitate the framework implementation.

1. Introduction

We are entering an era of cloud computing. Nowadays, people leverage cloud services
from diverse aspects and enjoy various benefits of cloud computing. Cloud functionali-
ties are exploited in many ways: Infrastructure-as-a-Service (IaaS), e.g., Amazon EC2
provides virtual machines that are used to deploy customized web services; Platform-
as-a-service (PaaS), e.g., Google App Engine provides a comprehensive framework to
build and deliver web applications; Software-as-a-Service (SaaS), e.g., e-mail services
like Hotmail and web applications like Google Docs play an indispensable role in many
people’s daily lives. A key reason leading to an increasing commercial adoption of cloud
computing is its unprecedented advantages over the conventional computing paradigm.
Such advantages include, to name a few, reduced cost (e.g., users do not need to pur-
chase infrastructures for infrequent computing tasks), easier maintenance (e.g., users do
not need to install applications on their own client computers), and automatic scaling
(e.g., the cloud can adjust the number of virtual machines to perform horizontal scaling
according to the workload of the provided services).

People access public cloud services via the Internet. In turn, the Internet is in-
creasingly accessed via mobile clients [1], due to the exploding prevalence of mobile
handheld devices such as smart cell phones, tablet PCs and laptops. It is therefore not
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surprising that recent market research predicts that by the end of 2014 the so-called
“mobile cloud computing” market will deliver an annual revenue of about 20 billion
US dollars |2]. Thus, it is fairly reasonable to foresee that mobile cloud computing will
occupy a significant proportion of Internet usage in the future.

Despite the combined advantages of cloud computing with the ubiquitous accessi-
bility of mobile devices, the full potential of mobile cloud computing is far from being
fully exploited. For instance, the primary role of mobile devices today in the context
of cloud computing is to serve as terminals for accessing the cloud. If we look at the
interaction pattern between the cloud and the mobile device today, an application can
be either executed on the cloud side and use the mobile side as a thin client, or executed
on the mobile side alone, while potentially consuming isolated cloud services such as
map services in GPS-based applications. Even so, what can be executed on the cloud
depends on what concrete services are provided by the cloud. This status quo limits
the possibility and flexibility to optimize the mobile application performance [3].

An intuitive idea for fulfilling this gap dates back to past experiences of distributed
computing, which call for exploiting the cloud, as a remote execution environment,
to improve the application performance via distributed execution between the cloud
and the local device [4,5]. When it comes to mobile handheld apparatus, this can
be even more appealing since over the years the constrained computing and storage
resources of mobile devices have remained a significant limiting factor of mobile devices.
Moreover, mobile devices have serious power constraints due to their limited battery
lifetime and the ever increase of richer (and more complicated, more computation-
demanding) applications [6]. Furthermore, current battery technologies suggest that
energy will remain the primary bottleneck in the foreseeable near future [7,8]. In
conclusion, there is a promising optimization space for distributed execution between
the cloud and the mobile device.

In this paper, we first investigate the state of the art of the distributed execution
(i.e., computation/code offloading) between the cloud and mobile devices, and present
a detailed comparison between these research efforts. Then we highlight the challenges
towards a more efficient cloud-based offloading framework and also suggest some op-
portunities that may be exploited by future research work. Finally, we conclude our
discussion with a brief summary.

2. State of the Art: Computation Offloading

Most related research efforts on computation offloading for mobile devices include
MAUI [9] and CloneCloud [10]. In the following, we describe their principles from
the application modeling to the system architecture, and then compare them in detail.

MAUI

MAUI offloads computation at the method granularity. It models an application as
a call graph G = (V,E). In the directed graph G, each vertex u € V represents
a method and every edge e = (u,v) € FE represents an invocation of method v by
method u. The computation offload problem is converted to the graph partitioning
problem so that one partition executes in the cloud and the other executes locally. The
partitioning problem is further an integer linear program, in which the energy saving
of the distributed execution is maximized, subject to the total execution time.
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Figure 1: State-of-the-art computation offloading architectures
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In the optimization objective, I, is the binary decision variable for method v. I, = 0
means v is executed locally while I, = 1 means v is executed remotely. The above
problem is to find the value of each decision variable for each method. E! is the energy
consumption of v if executed locally and C,, is the energy spent on transferring the
program state from the local device to the remote cloud when u calls v.

Constraint indicates that the whole distributed execution time plus transferring
time should be less than a predefined latency L. T! is time cost of v if executed
locally and T} is the time cost of v if executed remotely. B,, is the time spent on
transferring the program state from the local device to the remote cloud when wu calls
v. In Constraint , r, is the binary indicative variable, which means v should be
considered as an offload candidate if r, = 1 and should not be considered if r, = 0.
MAUTI requires the programmer to mark in the source code which method should be
considered to offload and which should not.

Given an application, in order to build the call graph and solve the optimization
problem, MAUI has to profile the device, application and network to obtain the val-
ues of variables Ef], Tlf, T, Cy» and B,,. MAUI profiles the device at initialization
time to collect samples of CPU utilization and the corresponding smartphone energy
consumption to build a simple linear energy model. MAUI also profiles the application
continuously to acquire the execution time (i.e., T' and T7), the number of required
CPU cycles, and the program state transfer requirements for each method. Besides,
MAUT profiles the network continuously to measure the average throughput of the net-
work interface. Leveraging all these profiling, MAUI can calculate the needed values.

MAUTI is implemented based on Microsoft .NET framework on the cloud side and
NET compact framework on the mobile side. In its system architecture, as shown in
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Figure , the Profiler is responsible for profiling the device, application and network
to obtain necessary information as stated above; the Solver is responsible for solving
the optimization problem periodically when the application runs; the Proxy takes care
of the data and control transfer between the cloud and the smartphone.

CloneCloud

CloneCloud also offloads mobile codes at the method granularity. Two profile trees
are built by the CloneCloud Profiler for each execution of the application: one for
execution on the cloud and one for execution on the mobile device. Each node in the
tree represents a method invocation and each edge represents a method call from the
caller to the callee. Such representation is quite similar to MAUI’s call graph. Besides,
CloneCloud has a similar optimization model as follows.

maximize:

C(E) = Comp(E) + Migr(FE)

Comp(E) = Yiepm (1 = L(m))I(i,m)Ce(i, 0) + L(m)1 (i, m)Ce(i, 1))
Migr(E) = R(m)I(i,m)Cs(7)

subject to:
L(m) = 0,Ym € Visopite 3)
L(my) = L(ms),Vmq, ma, C : my, ma € Vative, 4
R(mgy) = 0,Ymy, mg : TC(mq,mg) =1 A R(my) =1 (3)
L(my) # L(ms),¥Ymy,mo : DC(my,my) = 1A R(msy) =1 (6)

The optimization objective is to minimize the cost, which can be the execution
time (including the state transfer time to the cloud) or the energy consumption by the
application on the mobile device. The cost is further divided into computation cost
and migration cost. R(m) is the binary decision variable for method m. R(m) = 1
means one migrates the method to the cloud while R(m) = 0 means no migration.
L(m) is the auxiliary decision variable which indicates the execution location of m:
L(m) = 1 for remote execution and L(m) = 0 for local execution. I(i, m) represents i
is an invocation of m, which equals 1 if m is invoked and 0 if not. C(4) is the migration
cost of invocation ¢ and C.(i, L(m)) is the computation cost of invocation i at location
L(m). On a whole, the optimization problem is to find the value of R(m) for each
method m.

Constraint indicates that methods accessing device-specific features must be
pinned at the mobile device. Constraint shows methods sharing the native states
must be co-located. Constraint means if one decides to migrate method m; to the
cloud and m; calls mo, then it must be located on the local device, i.e., to prevent nested
migration. Constraint @ means if one migrates a method, it will not be co-located
with its caller .

A major advantage of CloneCloud over MAUI is that the former does not require
source code availability and programmer efforts to identify the offload candidates, as
what is done by the latter. CloneCloud adopts static program analysis to identify legal
positions to put migration and re-integration points in the byte codes. CloneCloud is
implemented based on Java Dalvik VM [11] and has the following architecture as shown
in Figure [1(b)] The components have similar functionalities to MAUI counterparts.
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MAUI vs. CloneCloud

Essentially, MAUI and CloneCloud attempt to solve the same problem. The two pro-
posals have similar models and architectures as well, although they differ substantially

in implementation details. A detailed comparison is presented in Table 1.

Table 1: MAUI vs. CloneCloud

MAUI

CloneCloud

Execution Prerequisites

Application binaries must be in both the mobile and MAUI-server sides

Device clone must be in the cloud; App binaries and partition database
must be in the mobile device

Migration granularity

Method (RPC-like)

Method (Thread suspend and resume)

State transferred

Method level (referenced objects, variables, static classes, etc.)

Thread level (virtual state, program counter, registers, stack, heap etc)

Source availability

Required

Not required

Selection of migration
candidates

Marked by developer as “Remoteable”

Identified automatically by static analysis

Optimization target

Maximize energy saving

Minimize execution time or energy consumption

Migration constraints

No UI codes; No local I/0 involved; No methods that can be affected by
re-execution; total execution time less than some pre-defined value

No mobile-specific methods; No methods that share native state(s);
No nested migration

Execution prerequisites

Application binaries must be in both mobile and server sides

Device clone must be in the cloud; App binaries and partition database
must be in the mobile device

Application model

Annotated call graph

Annotated profile tree

Energy model

Proportional to the number of CPU cycles

Calculated as power level multiplied by execution time. Map the triple to
power level: < CPU(processing/idle), display(on/off), Net(on/idle) >

When to profile

Continuously at run time. No persistent profiling result is stored across
multiple runs

Before the partitioned app begins.
Profiling results are used to generate partition configuration files

‘When to solve

Periodically at run time

Before the partitioned app begins

Implementation

Based on .NET (compact) framework

Based on Java Dalvik VM

3. Towards More Efficient Computation Offloading

While MAUI and CloneCloud represent an important step towards the optimization
of mobile application performance with the help of remote execution, major challenges
towards a more efficient cloud-based computation offloading framework remain, as de-
tailed below. We also explore possible alternatives that can leverage existing technolo-
gies and facilitate the implementation work.

Application Model

MAUI models an application as a call graph and CloneCloud uses profile trees. There is
also some other work that models an application as a resource consumption graph [3].
Based on these models, the computation offloading problem is converted to a graph
partitioning problem and/or further formalized to an integer linear programming prob-
lem. However, such approaches are limited in that they cannot properly and precisely
reflect the real case of how complicated applications execute; e.g., such models assume
applications are single-threaded and do not consider asynchronous method invocations.
Multi-threading and asynchrony are usually necessary aspects of a huge number of
modern mobile applications. To this end, novel application models are needed; one
also needs to investigate what optimization problems the new models can result in and
how this can impact the system architecture and implementation details. Although this
requirement arises from the scenario of computation offloading, the application model
can be an independent research issue which may be applicable for other scenarios.

Estimating Code Energy

MAUTI profiles the mobile device and builds a simple linear model to estimate the energy
consumption of a piece of code based on the number of CPU cycles this code requires
to execute. CloneCloud calculates the energy consumption as a power level multiplied
by the execution time of the code. Power levels are a series of pre-measured values,
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and a given execution environment is mapped to a power value. The execution en-
vironment is represented by the triplet {CPU(Processing/Idle), Display(On/Off), Net-
work(Transmitting/Receiving/Idle);. Both energy estimation models are inaccurate,
because they do not consider some real-world factors that can usually largely impact
the energy consumption and can result in wrong offloading decisions. These factors in-
clude, for example: (1) The energy consumption of I/O operations, which MAUT’s and
CloneCloud’s energy models do not take into account; (2) The auto-scaling CPU clock
speeds, one of the important modern CPU technologies, alters the CPU frequency auto-
matically and therefore changes the execution time of a given code. It may be worth to
adapt the energy management mechanisms for the mobile device from an OS perspective
for a better energy estimation model for computation offloading [12}|13].

Exploring Cloud

Both MAUI and CloneCloud claim to be able to offload computation/execution from
a mobile device to the cloud. However, their actual implementation and evaluation is
done between a mobile device and a nearby PC/server, and does not exploit the cloud-
side architecture, constraints and possible optimization opportunities when a number
of mobile clients are simultaneously offloading codes. For instance, if some piece of
code is frequently ofloaded by multiple users, the cloud may reuse the virtual machine
instances that hold this offloaded code without frequently allocating new and destroying
existing virtual machines. This is somewhat similar to the notion of shared libraries in
operating systems, as well as de-duplication in storage systems; both are known to result
in significant savings. The cloud can also classify the codes into different categories to
provide customized offloading service. Besides, due to the large number of potential
offloading usages, the cloud may exploit the use of data mining and pre-profile some
codes for further optimizing the offload process.

Both MAUT and CloneCloud are based on the assumption that the only optimization
objective is to lower the energy consumption or improve the application performance of
the mobile device, without taking into account the resources consumed at the offloading
destination. However, the cloud provider providing virtual machines for offloading
purpose will not only target at providing satisfactory user experience, but also try to
achieve these goals while incurring the least cost in the cloud, e.g., providing customized
offloading service with least resource (e.g., energy) consumption of the cloud itself. Some
existing work has already discussed approaches to save energy in the data center [14-17]
and in the cloud [18-21]. Other work models the energy consumption of the whole cloud
computing system, i.e., the energy consumption from the client to the virtual machine
as a whole [22], rather than only considering the client or the cloud alone. All these
works provide thoughtful insights on making better offloading decisions based on a
comprehensive optimization of the whole cloud computing system.

Ad-Hoc Cloud Offloading

As discovered in the MAUT work [9], the energy cost of computation offloading greatly
depends on the round trip delay to the server. In particular, offloading over WiFi to
a nearby machine is much more energy efficient than offloading to a remote Internet
server over WiFi, which in turn consumes much less energy that using the 3G network.
This motivates the looking at offloading computations to nearby devices, whether these
devices are computers, laptops, tablets, or PCs, that are detected in an ad-hoc manner.
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Such devices may happen to be on the same wireless LAN, connected through WiFi-
Direct, or happen to be on the same WiFi ad-hoc network.

Facilitating this concept requires a discovery mechanism, such as Apple’s bonjour
protocol, as well as a distributed runtime mechanism that manages the offloading. A
unique challenge in this space is the need to be able to recover from disconnection of
devices. That is, the phone that owns the computation might wonder far apart from
the device hosting its computation to the point that they can no longer communicate.
As a result, the phone might need to restart the corresponding computation locally, or
on another nearby device after realizing the disconnection. Yet, correctness should
be ensured even in cases where the disconnection was short-lived, and the devices
got reconnected again, despite the fact that the same computation might have been
executed on more than one device. At the other side, if a device hosting a computation
gets disconnected from the phone that initiated the computation, there is a risk of
having an orphan computation that consumes resources but whose results will never be
consumed. Even worse, to handle resources locked by the offloaded computation on the
disconnected hosting device, all locks should be lease-based. Finally, the distributed
runtime system should be able to choose which device a computation should be offloaded
to. This should be done in a local and efficient manner.

Assisted Cloud Offloading in Mobile Access

Another way to reduce the round-trip time that would be encountered when offloading
to an Internet server is to move the server close to user access points to decrease the
access latency to acceptable values with respect to application performance. In fact,
cloud servers are becoming mobile, and as users change point of attachment virtual
server machines can also change their point of attachment, i.e., their cloud container.
The virtual machine can therefore be migrated from a datacenter to mini-datacenters
located close to the users to support efficient offloading. These mini-datacenters can
be managed by the users themselves (e.g., at their own set-up-box at home), or by
the mobile backhauling provider (e.g., when the application is a service of the mobile
network provider itself), or by cloud surrogate in the access network managed in a
similar way external Content Delivery Network surrogates are managed today in ISPs.
An important challenge here is to guarantee IP continuity in the access to the offloading
virtual machine (VM) being moved across mobile access cloud containers. In this scope,
protocols like LISP can allow keeping the same IP address for the offloading VM. An
important work in this direction is to optimize LISP to decrease the VM handover
downtime on the path traced by [23] or acting directly in the data-plane, supposing the
mobile equipment is itself a LISP mobile node [24].

As above mentioned, the offloading server may be shared among many users. An
important aspect in this situation is to move an offloading server, shared by a group
of users, to the cloud surrogate closer to the users, somewhere around the centroid of
their different positions. Preliminary studies [25] show content consumption patterns
are different at different periods depending on the presence of special events, with dif-
ferent grouping patterns among individuals. Using the huge amount of data available
for analysis in nowadays mobile cellular and WiFi networks, it is also conceivable to
predict future movements of users accessing the same services, having the same appli-
cation usages patterns, i.e., potentially able to share the same offloading VM, so as to
instantiate VM migration across mobile access VM containers.
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Programming Model

MAUI and CloneCloud are implemented based on C# and Java, respectively. Both
languages are imperative and object-oriented programming languages, which also sup-
port managed code execution environments, however suffering from two drawbacks for
the offloading purpose: (1) global/static public classes/variables and (2) shared states
across methods/threads. Therefore,to enable the RPC-style remote execution, MAUI
has to ship all objects/variables referenced by the offloaded code to the remote side.
For CloneCloud, methods sharing common states need to be co-located. Thus, the
offloading flexibility is limited. Functional programming languages seem to be good
alternatives for overcoming the above constraints intrinsically [26}27], since they gen-
erally allow no global variables and/or shared states, and require each function to be
stateless and re-executable. This characteristics fits well in the context of computation
offloading. Moreover, functional languages provide more reliability support because
one always obtains the same result by re-execution. This can be exploited for fault-
tolerance in bad network conditions as desired by MAUI. In case offloading is done
similar to CloneCloud, a key issue is to determine which specific function can be of-
floaded, so that no program state is needed to be shipped and each offloaded function
can be encapsulated and executed in a remote thread independently.

A recent study on the impact of mobile code distribution using JavaScript for stan-
dards development has been published in the IETF [28]. Over the last few years
JavaScript has been the favorite technique for providing a standardized mobile code
distribution mechanism for many application developers. The JavaScript APIs are
continuously extended to bring JavaScript applications to a level comparable with na-
tive applications. HTMLJ5, a bundle of the new HTML version combined with several
JavaScript APIs, has received widespread acceptance by web developers as well as in
the smartphone app developer community. However, JavaScript currently only sup-
ports mobile code distribution from the server to the client where it is then executed in
a sandbox; distributing code from the client to the server is not supported. An applica-
tion developer typically decides during the application design time about the worksplit
between the server and the client-side, often influenced by the nature of the application
itself. Fortunately, a developer typically has the freedom to change the JavaScript code
at the server side and code changes are instantly propagated to connecting Web clients.
One potential direction for further research is thus to study how JavaScript may be
re-used while at the same time offering a more dynamic code offloading.

Leveraging Concurrent/Parallel Runtime Support

MAUTI and CloneCloud have to deal with the details of packaging and shipping either
the referenced objects/variables or the program states because there is no underlying
runtime support of saving and transferring such information. However, this is not the
case for concurrent and parallel programming languages [29,[30]. Therefore, it is natu-
ral to consider concurrent/parallel languages as candidates to implement computation
offloading because their runtime environment already provides the mechanisms for gath-
ering information, shipping states and controlling remote execution so that one does not
have to re-do this work. For example, it may be interesting to modify OpenMP [31] or
COMET [32] to allow parallel execution between a mobile device and the cloud, taking
the energy consumption of mobile codes into consideration.
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4. Conclusion

In this paper, we have investigated the potential of cloud-based computation offloading.
We started with reviewing the previous research efforts of MAUI and CloneCloud,
and demonstrated the detailed comparison between these two proposals. Then, we
argued that there are still great challenges preventing us from a more efficient offloading
framework. We also pointed out several existing technologies that can help facilitating
the implementation task. Moreover, security raises more and more attention in the
cloud computing field and is also an important aspect to be considered in the next
steps. We believe that mobile cloud computing will be the next big step for the future
evolution of Internet-based computing and it is therefore necessary to develop efficient
approaches to provide good mobile application experiences for users. We believe the
research topic is very important, and it is not, as of our knowledge, addressed in ongoing
FP7 projects on mobile cloud, such as Mobile Cloud Networking FP7 project [33].
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