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Abstract—A present issue in the evolution of mobile cellular
networks is determining whether, how and where to deploy
adaptive content and cloud distribution solutions at the base
station and backhauling network level. Intuitively, an adaptive
placement of content and computing resources in the most
crowded regions can grant important traffic offloading, improve
network efficiency and user quality of experience. In this paper
we document the content consumption in the Orange cellular
network for the Paris metropolitan area, from spatial and
application-level extensive analysis of real data from a few million
users, reporting the experimental distributions. In this scope, we
propose a hotspot cell estimator computed over user’s mobility
metrics and based on linear regression. Evaluating our estimator
on real data, it appears as an excellent hotspot detection solution
of cellular and backhauling network management. We show that
its error strictly decreases with the cell load, and it is negligible
for reasonable hotspot cell load upper thresholds. We also show
that our hotspot estimator is quite scalable against mobility data
volume and against time variations.

I. INTRODUCTION

As a matter of fact, we are witnessing the overtaking of
a second decennial milestone in the evolution of telecommu-
nications since the commercial Internet in 1992. After data
traffic overcoming voice traffic in the beginning of current
century, mobile data traffic is expected to overcome wireline
access traffic. As of Institute Mediametrie [1], more than 31%
of French mobile users use a smartphone, and about 71% of
them daily connect to the Internet. This recent trend seems to
accelerate; e.g., the number of mobile Internet users increased
by 10% in just one quarter last year.

The advent of smartphones, tablets and Internet keys, with
generous processing and memory capacity, is shifting the
network engineering attention from core networks and wireline
local loops to the mobile cellular network. At present, tech-
niques typically implemented in wireline network engineering
are being considered for cellular access and backhauling
networks. On one hand, content delivery networks and caching
protocols could go down close to backhauling gateways and
base stations. On the other hand, Cloud servers could approach
the user at mini-datacenter connected to backhauling elements.
The aim is to offload the transport network when it is con-
gested and to improve user’s quality of experience reducing
the access latency.

In order to better characterize these phenomena, in this
paper we analyze user content consumption habits from the
Orange cellular network in the Paris metropolitan area. We
provide experimental distributions of key aspects to allow
dataset reconstruction. Moreover, we propose a methodology
to estimate hotspot cells based on compact user mobility met-
rics. In particular, our estimator is based on linear regression
of parameters computed over users’ centroids and radius of
gyration. We detail the performance of our estimator as a
function of cell load and different regressions. We show that
as a cell load estimator it has an error on median inferior to
10%, that the error is decreasing with the cell load, and that for
hotspot cell identification the load estimation and identification
errors are negligible. We also show that the estimator is robust
and gives excellent results for different time windows and as
a function of the volume of data and the sample regression
window.

The paper is organized as follows. Section II synthetically
presents the dataset. Section III presents content consump-
tion maps and analyzes them from a spatial distribution
and application perspective. Section IV presents the hotspot
estimation issue and the estimator we propose. Section V
presents estimation results for the Orange’s Paris metropolitan
area network. Section VI summarizes our work.

II. DATASET

The dataset we consider in this work comes from network
management tickets, generated each time a mobile device uses
wireless mobile network for Internet data exchange (i.e., what
is commonly referred to as “mobile Internet” service). The
network probe data exploited in the study provide information
on the protocol used for the communication, so it is possible
to categorize the traffic by application (Web, VoIP, P2P,
streaming etc.). Data are individual, so all user identifiers were
irreversibly anonymized before the analysis to protect user’s
privacy. The probe collects 6-minute spaced data session in-
formation, assigning the session to the cell identifier of the last
used antenna. Data are recorded on a per-user basis and cover
about 1,5 million mobile phone users from the “Ile-de-France”
French department, giving about 100 millions of records per
day. We limit our study to two single days and to the Inner
Ring “La Petite Couronne” of the Paris metropolitan area,978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



(a) June 25, 2012 (whole day)

(b) July 1, 2012 - during the football game

Fig. 1. User density (nb. of users per minute)

formed by three Ile-de-France peri-urban departments (92,
93, 94) bordering with the Paris urban department (75) and
forming a geographical crown around it. We decompose the
region according to the IRIS2000 system, developed by INSEE
(National Institute of Statistics and Economics Studies), which
divides a territory into units of equal size; a French acronym,
‘IRIS’ stands for “aggregated units for statistical information”,
and “2000” refers to the target size of 2000 residents per IRIS
unit (using IRIS-localized data, an IRIS zone may not contain
base stations). For hotspot cell estimations, we further divide
an IRIS into cells, each cell being composed of a few antennas
able to host up to roughly 1000 users.

III. CONTENT CONSUMPTION DISTRIBUTIONS

In this section, we synthetically characterize content con-
sumptions, as a function of time, place and applications as
done in [2]. We consider datasets of two days, one normal day
with standard content consumption activity (June 25th, 2012),
and one special day where a particular content consumption is
expected (July 1st, 2012), the day of the Italy-Spain Eurocup
football final; for this special day, only the 2h period during
the match is taken into account.

A. Content Consumption Spatial Distributions

Looking for differences between urban and peri-urban re-
gion is a first naturally arising research question. In the

(a) Traffic Density CDF

(b) User Density CDF

Fig. 2. Traffic and User Densities - CDF

following, we define the user density as the total number of
users in a given IRIS, to the time of observation in the two
periods, and the traffic density as the exchanged byte volume
by IRIS’s base stations to the time of observation.

Fig. 1 represents the user density over seven-quantile in-
tervals. We can remark that a few IRISs are clearly more
overloaded than others, presenting a large number of users
and a large traffic volume; the reason is that they cover clearly
identifiable content consumption hotspots such as the two Paris
international airport terminals (in the north-east and in the
center-south) with travelers actively surfing using their mobile
phone while waiting, and the La Defense business center.
During the football game, hotspots appear in some IRIS inside
the capital as well as outside it. These crowded places are very
likely some public spaces where people use to gather together.

In order to further explore this latter aspect and the density
distributions, Fig. 2(a) and Fig. 2(b) plot the experimental
cumulative distribution functions (CDFs) of traffic and user



(a) PDF of the differential traffic density (normal day - special day)

(b) PDF of the differential user density (normal day - special day)

Fig. 3. PDF of the Differential Traffic and User Densities

density in the two considered days. We can easily notice that:

• In terms of traffic density, the game period shows a
higher ratio of low density IRISs (e.g., 30% with less
than density = 5) than the normal day, and a double
ratio of high density IRISs (e.g., with a density > 10 are
10% during the game, and 5% in the normal day);

• In terms of user density, during the normal day dense
zones show a density from 5 to 15 times higher than
during the game (e.g., the zones with a density > 10 are
30% in the normal day, and only 2% during the game).

These two aspects clearly show important differences. Users
are much less concentrated during the special event, which ap-
pears as counterintuitive at a first view, but could be explained
with the presence of very-high-density residential zones in
many peri-urban departments (e.g., Montrouge, Malakoff are
among the highest density communities in Europe): during
the event, people gathering elsewhere might decrease the ratio
of very-high density residential IRISs. Moreover, during the
event opposite behaviors are exalted, i.e., users usually not
surfing much, surf even less, and those usually surfing more,
surf even more. This latter aspect seems being confirmed by

the differential density distribution in Fig. 3(a) and Fig. 3(b).
We can observe that traffic density difference distribution
roughly follow a normal distribution, and that user density
difference distribution is dominated by positive differences
(higher densities in normal days).

There are therefore important differences in the geograph-
ical localization of content consumption hotspots. As evi-
denced, their location can change at different periods of the
week and of the day. Moreover, a large majority of the traffic
volume is related to bulk transfer and web-related services
whose content could be either partially cached or whose Cloud
server could be located close to the hotspots to well manage
the cloud and the content offloading. Users could indeed be
better served if delivery facility could be located closely to
the hotspots. The backhauling network performance could
also benefit from traffic offloading and traffic engineering
techniques aware of user mobility and content consumption
point deflections (e.g., adjusting link auto-bandwidth, path
reservations and packet tunneling).

IV. ESTIMATION OF HOTSPOT CELLS

The type of dataset we use is easily available in most of
mobile cellular network carriers. These data are derived from
network management tickets and generated in real-time as the
user consumes cellular network services, it appears technically
feasible to implement a hotspot estimation technique indicat-
ing where the traffic load is going to increase closely.

A. Related Work

A limited amount of work exists in the literature on the es-
timation of hotspots and rendez-vous points in wireless access
networks. E.g., in [3] vehicular data is exploited to determine
accident-risk points. Authors in [4] propose a framework that
discovers regions of different functions in a city using both
human mobility among regions and points of interests located
in a region. Many other works, such as [5], [6], [7], and [8],
while assuming the availability of mobility information, focus
in user-profile aware QoS provisioning, load balancing and
network signaling improvement techniques.

Traffic load forecasting has also been investigated from
an analytical and mathematical modeling perspective. For
example, authors in [9] show how under certain conditions
periodic sinusoidal functions can be used as cellular traffic
profile. Unfortunately the simplicity and the too theoretical
properties of these approaches fail from precisely matching
with the actual real traffic load, which is a strict requirement
of our investigation. In this direction, relevant works targeting
mobility pattern detection from real cellular network data
have been studied, e.g., [10] [11] [12]. In particular, authors
in [12] categorize users with respect to their radius of gyration,
allowing to define a circle, centered at user’s centroid, around
which a user is expected to geographically move.

B. Mobility-Aware Hotspot Estimator

Following [12], given a user u ∈ U who has been located
at nu(t) locations until time t, its centroid ~rucm(t) can be



Fig. 4. Illustration of two user’s radius of gyration around their centroids.

computed as the location pointed by the sum of all vectors
related to all previous sampled positions ~rui (t), i.e.:

~rucm(t) =
1

nu(t)

nu
c∑

i=1

~rui (t) (1)

The radius of gyration can then be computed for each user
as:

rug (t) =

√√√√ 1

nu(t)

nu(t)∑
i=1

|~rui (t)− ~rucm(t)|2 (2)

Aiming at defining an adequate and implementable hotspot
cell estimator for cellular network management, we adopt as
estimation parameters the centroid and the radius of gyration
to account for user’s spatial coverage. The ‘territory’ of a
user can therefore be defined as the area covered by a circle
centered at its centroid with a radius equal to the radius
of gyration. Our proposed estimator takes into account the
non negligible intersections of different users’ territories to
estimate the cellular user density. For example, in Fig. 4, based
on the centroid and radius of gyration of the two users, it is
reasonable to account for the possibility that the two users pass
by site A. The efficiency of the estimator should be evaluated
toward its capability of estimating hotspot cells rather than
lightly loaded cells.

Let m[rug (t), ~r
u
cm, c, u, t] be a spatial mapping counter equal

to 1 if the circle of user u, with radius rug (t) around the
centroid ~rucm at time t, covers at least 10% of cell c, 0
otherwise (i.e., the 10% is actually 10% of the area of each cell
presented in Fig. 1); other thresholds than 10% could certainly
be considered, depending also on the way the environment is
architected, its aim being to avoid the small overlaps since not
all the cells covered by one user’s radius will reasonably be
visited.

Hence such a spatial mapping counter is the core metric of
our estimator. However, alone it is not precise enough. Simply
counting the number of intersections significantly covering a
given cell would certainly lead to an over counting that needs
to be appropriately scaled. A simple scaling could be, e.g., to
divide it by the average number of users per cell during the past
measurements, yet this does not prevent from high deviations.

Fig. 5. Radius of gyration and traveled distance CDFs

We propose to scale it by the scale factor that would generate
null estimation error in an arbitrary instant t−T in the recent
past, with a regression time T adequately set.

Then, as an estimator of the number of users per cell c, we
propose:

ê(c, t) =

∑
u∈U m[rug (t), ~r

u
cm, c, u, t]∑

u∈U m[rug (t), ~r
u
cm, c, u, t− T ]

∗ n(c, t− T ) (3)

It uses therefore a linear regression over past measurements
to adequately weight the spatial mapping counter. Intuitively,
the smaller T is, the closer ê(c, t) is to the unknown n(c, t),
i.e., the more accurate the estimation is. However, T should be
big enough to allow network management system to retrieve
the real number of users in cell c at time t−T , i.e., n(c, t−T ).
Depending on network management tickets, session duration,
network latency and network size, this parameter T could
range from a few dozens of minutes to a few hours.

V. ESTIMATOR EVALUATION

We evaluate our estimator using an available network
management dataset of the Orange France cellular network,
in an arbitrary working day, computing centroid and radius
of gyration of all users passing by the considered region,
discarding those sampled positions falling outside the Paris
metropolitan area network.

In order to qualify the dataset, Fig. 5 reports the CDFs of the
users’ radius of gyration and of the overall traveled distance,
and Fig. 6 shows the CDF of the real number of users per
cell at a given instant (the end of the sampled day). We can
appreciate that the radius of gyration adequately represents
the user mobility habits as it increases in parallel with the
traveled distance. Moreover, 40% of the cells have more than
100 users, and 10% of the cells have more than 400 users.
It is worth noting that the distance between two neighboring
cells is typical of a few hundreds of meters.

A. Hostpot cell estimation accuracy

We intend to estimate hotspot cells positions using our
proposed estimation technique (3). In this evaluation, to in-



Fig. 6. CDF of the real number of customers per cell

crease the estimation pertinence, we further segment each IRIS
into smaller cells, each cell grouping few co-located antennas.
Moreover, we set a regression time T to 1 hour, which is a
quite pessimistic value (in practice, in carrier grade networks,
it could even be set to a few minutes, hence allowing a higher
accuracy). We consider the user position samples from the
whole day (more precisely, the sample temporal window is
24−(t−T ) = 23 hours) in the computation of users’ centroids
and radius of gyration.

To qualify the accuracy of the proposed hotspot detection
method, we analyze the estimation error (i.e., the difference
between the real and the estimated number of users, to the real
number of users) for all the cells in the Paris metropolitan area
network.

Fig. 7 depicts the CDF of the absolute value of the es-
timation error defined previously. Fig. 8 is a log-log scatter
representation of the estimation error as a function of the real
number of users per cell. We can observe that the estimation
error decreases more than linearly as the cell load increases.
In particular, the CDF shows that including all cells, the
estimation error is always lower than 50%, and the median
error is lower than 10%. Including only cells with a load higher
than the load of 60% of the cells, i.e., 50 users, the error is
inferior to 5%. With stricter definitions of the load threshold
beyond which a cell is considered as a hotspot, 100 (70%
percentile) and 200 (80% percentile) users, the error becomes
negligible.

To further check the accuracy of the proposed method, we
evaluate type I and II errors in hotspot identifications, i.e.,
false positive (a cell is identified as a hotspot when it is
not) and false negative (a cell is not identified as a hotspot
when it is a hotspot) errors, respectively. We choose five
different thresholds beyond which we can say that a given
cell is a hotspot one: at the 50th percentile (≈35 users),
the 60th percentile (≈50 users), the 70th percentile (≈100
users), the 80th percentile (≈200 users), the 90th percentile
(≈400 users). We plot for each threshold case the false
positive and false negative ratios evaluated by directly counting

Fig. 7. Absolute Estimation Error Distribution

Fig. 8. Scatter of the estimation error as a function of real cell load

from the complete dataset against these obtained through our
proposed method. Fig. 9 shows encouraging results with more
and more negligible and decreasing erroneous identifications
with stricter definitions of hotspots. Especially, for the 80th

percentile case the error is inferior than 1%, and for the 90th

percentile case, no false negative occurred and only 0.2% false
positive.

Fig. 9. Type I and Type II errors as a function of hotspot thresholds.



In our opinion, these are extremely encouraging results.
Our estimator permits reaching an excellent accuracy. It can
be used to feed a network management policy aiming at
taking a decision when detecting a hotspot (e.g., link auto-
bandwidth bounds setting in mobile backhauling, adaptive
content-delivery-network redirections, adaptive virtual ma-
chine migrations, etc.). For operational consideration, we
however need to qualify its scalability.

B. Implementation complexity and scalability performance

Our estimator (3) is of a rather simple and intuitive nature.
Certainly, a more complex estimator, e.g., weighting by a
user-cell crossing probability computed using other mobility
information, might be defined to reach lower errors and can be
left for future work, yet the estimator computation complexity
has to be as low as possible, and the utility of having a more
precise estimator is a matter of discussion since the accuracy
of (3) is already extremely high.

With our estimator, for each new user position, (1) and (2)
could be updated handling only a limited arbitrary number
N of last positions, then (3) can be updated. Hence, all these
operations have a O(N∗|Um(t)|) time complexity, Um(t) ⊂ U
being the subset of users moving and sampled in the sampling
interval (t−T, t). As already mentioned, the regression time T
and the estimator’s recomputation interval, should be chosen
so that it is sufficiently higher than the (3) computation time.

However, from a more practical perspective, in very high
mobility environments the above complexity could become
quadratic, which may rise scalability concerns. Scalability
concerns could also rise from the volume of the data to mine
in order to extract estimator’s metrics. The larger the sample
temporal window is, the larger the data volume is and the
higher the computation complexity is. Hence the last questions
we want to answer are: is the hotspot detection accuracy
decreasing with the sample temporal window? What happens
at different times of the day?

Fig. 10. Hotspot detection accuracy and ratio of hotspots as a function of
time and sample regression window

In order to answer these two questions jointly, we test our
estimator in the same day, with a sample temporal regression
ranging from 1 to 23 hours (it is worth remembering that the

sample regression window of the previous simulations is 23
hours), and the sample time ranging from 1:00 in the morning
to 23:00 in the evening.

Fig. 10 indicates our evaluation results in different instants
of the day, with a step of 1 hour starting by 2:00. For example,
when performing the hotspot estimation at 10:00, we exploit
the data collected from 0:00 to 9:00 (as before, T is set to 1
hour). These results highlight two important aspects. Firstly,
the accuracy is influenced by the time of the day, and hence
the user propensity to move; it is extremely high when most
users maintain fixed positions (i.e., around 4:00 am when
people rather sleep than move around), and decreases when
most users move out (i.e., around 9:00 am). The decrease is
however relatively low (9% gap). Secondly, whenever users
are on the move, they generate a higher number of sample
positions. Hence we see that the more mobility data is taken
into account, the more accurate estimations become (i.e., from
9:00 to 24:00, the accuracy is monotonously increasing). When
instead most users are sedentary (i.e., from 4:00 to 9:00), even
if the sample temporal window increases, the accuracy slightly
decreases. An important aspect therefore is that the number of
detected hotspots, also depicted in Fig. 10, increases when the
overall user mobility decreases, and viceversa.

VI. CONCLUSION

A present matter in mobile access network management is
to find scalable and effective ways to offload the backhauling
and core network as a function of user mobility and con-
sumption patterns. The motivation is the arising weight mobile
Internet traffic taked over legacy wireline access traffic in
todays Internet Service Provider networks. Different offloading
techniques are currently studied which could be classified as
traffic offloading (e.g,Wifi offloading [14]), content offloading
(e.g, ICN [13]) and Cloud (computation) offloading (e.g.,
CloudLet [15] [16]). In this scope, the contribution of this
paper is twofold.

Firstly, working on real network probe data from the Orange
cellular network of the Paris metropolitan area, we show how
content consumption hotspots spatially move as a function
of the occurrence of special events. We provide useful user,
traffic density and traffic type experimental distributions to the
research community.

Secondly, motivated by the experimental findings, we pro-
pose a hotspot cell estimaton technique based on two compact
and easy-to-compute user mobility metrics, i.e. the user’s
centroid and radius of gyration, and relying on linear regres-
sion. The technique basically consists of measuring the cell
intersections between users’ geographical ‘territories’ defined
by users’ centroids and radius of gyration, weighting it by a re-
gression factor while accounting for the gap between estimated
and real numbers in the recent past. Results on real data show
that the error of our estimator exponentially decreases with the
cell load, and that the hotspot identification presents a quite
small estimation error for the most loaded cells, becoming
negligible (< 1%) when defining the hotspots as those 20%
more loaded cells. We also stressed our estimator for more



challenging conditions with smaller regression window and
at different time of the day. We show that the estimation
accuracy remains very high, and only marginally decreases
in high mobility temporal slots.
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