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a b s t r a c t 

In-network caching is an important solution for content offloading from content service providers. How- 

ever despite a rather high maturation in the definition of caching techniques, minor attention has been 

given to the strategic interaction among the multiple content providers. Situations involving multiple con- 

tent providers (CPs) and one Internet Service Provider (ISP) having to give them access to its caches are 

prone to high cache contention, in particular at the appealing topology cross-points. While available cache 

contention situations from the literature were solved by considering each storage as one autonomous and 

self managed cache, we propose in this paper to address this contention situation by segmenting the stor- 

age on a per-content provider basis (e.g., each CP receives a portion of the storage space depending on 

its storage demand). We propose a resource allocation and pricing framework to support the network 

cache provider in the cache allocation to multiple CPs, for situations where CPs have heterogeneous sets 

of files and untruthful demands need to be avoided. As cache imputations to CPs need to be fair and 

robust against overclaiming, we evaluate common proportional and max–min fairness (PF, MMF) alloca- 

tion rules, as well as two coalitional game rules, the Nucleolus and the Shapley value. When comparing 

our cache allocation algorithm for the different allocation rules with the naive least-recently-used-based 

cache allocation approach, we find that the latter provides proportional fairness. Moreover, the game- 

theoretic rules outperform in terms of content access latency the naive cache allocation approach as well 

as PF and MMF approaches, while sitting in between PF and MMF in terms of fairness. Furthermore, we 

show that our pricing scheme encourages the CPs to declare their truthful demands by maximizing their 

utilities for real declarations. 

© 2016 Elsevier B.V. All rights reserved. 

1

 

t  

h  

i  

t  

a  

n  

s  

s  

p  

D  

p  

t  

C

r  

c  

s  

t  

o  

o  

t  

t  

r

 

i  

i  

i  

s  

t  

h

1

. Introduction 

With the advent of broadband and social networks, the In-

ernet became a worldwide content delivery platform [1,2] , with

igh bandwidth and low latency requirements. To meet the always

ncreasing demand, contents are pushed as close as possible to

heir consumers and content providers (CP) install dedicated stor-

ge servers directly in the core of Internet Service Provider (ISP)

etworks [3] . However, the TCP/IP protocol suite uses a conver-

ational mode of communication between hosts that can be con-

idered not appropriate for content delivery [2] . Therefore, a com-

lex machinery is developed (around the Domain Name System,

NS, protocol and the HyperText Transfer Protocol, HTTP) to com-

ensate the limitations of the TCP/IP protocol suite. Conscious of

he mismatch between the network usage and its conception, the
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esearch community recently proposed the concept of in-network

aching (e.g., Information Centric Networking (ICN) [2,4] ). For in-

tance, in ICN, content objects can be accessed and delivered na-

ively by the network according to their name rather than relying

n IP addresses [2] . Hence, this technology removes the concept

f location or topology from communication primitives and uses

he notion of contents and their name instead. These contents can

herefore be found potentially anywhere in the network, moved or

eplicated at different locations [4–6] . 

ISP networks then become native distributed storage systems,

.e., network cache providers that can directly sell caching capabil-

ties to content providers instead of hosting their servers. However,

t is most probable that the storage demand exceeds the total ISP

torage offer, at least for the content caching locations the closest

o the users. So far, the contention is solved by considering each

torage as one autonomous and self managed cache (e.g., using a

RU, least-recently-used, mechanism), as depicted in the rightmost

art of Fig. 1 . With this approach CPs are unable to provision their

wn infrastructure accurately as they cannot predict what contents

http://dx.doi.org/10.1016/j.comnet.2016.04.006
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Fig. 1. Representation of segmented and unsegmented caches with many content 

providers (CPs). 
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i  
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c  
will be cached by the ISP as it depends on the workload of the

other CPs using the ISP infrastructure. 

In this paper, we propose to address this contention situation

by segmenting the storage on a per-content provider basis, as de-

picted in the leftmost part of Fig. 1 . It is worth mentioning that, to

the best of our knowledge, this is the first work in the literature

to propose such a partitioning of the ISP cache to CPs. Thus the

viability of the model is not yet investigated . However, we believe

it would be rather straightforward to deploy, at least from a tech-

nical standpoint. Maybe it would be less straightforward from an

ICN protocol design standpoint, if for some reasons it can be use-

ful to compute and disseminate the content cache segmentation to

other ICN nodes in a distributed fashion. We believe these details

are implementation-specific and do not warn against the validity

of our work. 

Hence in our proposition, each content provider receives a por-

tion of the storage space depending on its storage demand. For

this, based on application of results in economics and game the-

ory to the target problem, we propose a 2-step mechanism de-

sign [7,8] that computes a fair and rational sharing of resources

between CPs. The first step relies on a content cache allocation al-

gorithm where, as a function of content cache demands coming

from CPs, the network cache provider decides the imputation of

cache spaces to CPs. The second step uses a predefined payment

rule by auctions to decide the selling price of the storage unit in

the network; its purpose is to prevent content providers from ly-

ing about their true demands. The paper is organized as follows.

Section 2 presents an overview of related works. In Section 3 , we

analytically introduce the context of our work: Section 3.2 presents

the resource allocation problem by modeling it as a coopera-

tive game, and Section 3.4 develops our pricing scheme based on

mechanism design theory. Section 4 presents the implementation

of our proposed pricing scheme for the different cache imputa-

tions. Section 5 compares the proposed cache allocation rules with

other schemes. Finally, Section 6 concludes the paper. 

2. Background 

Several researches have recently proposed various cache alloca-

tion solutions. Rossi and Rossini compare the in-network caching

performance in homogeneous (i.e., where the routers have the

same overall cache size) and heterogeneous cache deployments

(i.e., where the routers have not the same cache size) [9] . In the

latter case, they propose to allocate cache capacity proportion-

ally to the router centrality metric measured according to dif-

ferent criteria: degree, stress, betweenness, closeness, graph, and

eccentricity centrality. Authors of both [9] and [10] show that

allocating cache capacity across the network in a heterogeneous
anner slightly improves network performance compared to the

omogeneous manner; however, the benefits of heterogeneous de-

loyments become apparent with larger networks (e.g., more than

00 nodes). Moreover, Wang et al. study the influence of con-

ent popularity distribution on network performance showing that

i) for uniformly distributed content demands (e.g., catch-up TV),

ushing caches into the core yields better performance while (ii)

ighly skewed popularity request patterns (e.g., YouTube, mobile

oD system or Vimeo) are better served by edge caching [10] . This

atter point is confirmed by Fayazbakhsh et al. [11] . 

Recently, there has been significant interest in applying game

heory to the analysis of communication networks, with the aim

o identify rational strategic solutions for multiple decision-maker

ituations. Indeed, as opposed to mono-decision maker problems,

ame-theoretic approaches adopt a multi-agent perspective to ac-

ount for different objective functions and counter objections to

ationally non-justified solutions [12] . 

Thus far, many papers from the literature have tackled game-

heoretic approaches for cache allocation using non-cooperative

ame theory. These papers consider servers or routers or networks

s selfish entities seeking to maximize their own profit at the ex-

ense of globally optimum behavior. For example Pacifici and Dan

tudy a non-cooperative game to characterize the problem of repli-

ation of contents by a set of selfish routers aiming to minimize

heir own costs [13] . In the same context, Chun et al. characterize

he caching problem among selfish servers using a non-cooperative

ame [14] . For each content in the network, selfish servers have

wo possible actions: either caching the content if all its replicas

re located too far away or not caching it if one of its replicas is

ocated at a nearby node. As in [13] , they show the existence of

ure strategy Nash equilibrium of the caching game. 

Motivated by the intuition that forms of collaboration between

ifferent network cache providers could yield an enhancement in

etwork performance, some of the papers have tackled cache allo-

ation problem using cooperative game theory. For instance, au-

hors in [15] propose a cooperative game whereby the routers

ehave as rational agents that seek to minimize their aggre-

ate content access cost. Going beyond routers, Saucez et al.

16] describe how content providers could shape their content ac-

ess prices and discounts to favor the emergence of cache space

istribution overlays across independent networks, toward the for-

ation of incentive-prone overlay equilibria. 

Under the similar rationale of collaboration between different

ontent providers, yet a broader context, in this paper we fo-

us on cooperative game theory. We investigate how the network

ache provider, modeling CPs as players of a cooperative game,

an design a cache allocation framework so that cache imputa-

ions to CPs are strategically fair and robust against cache space

ver-claiming, while outperforming legacy approaches in terms of

ontent access latency. Up to our knowledge, there are no other

orks precisely addressing this problem, despite the above-cited

orks do share similar concerns in cache allocation and compo-

ent sharing but do no tackle the over-claiming cache space is-

ue. As detailed in the following, we propose various cache alloca-

ion rules, including coalitional game theory rules for bankruptcy

ituations [17] to solve the atomic cache contention problem,

otivated by the fact that a similar algorithmic approach has

hown high performances in strategic shared spectrum allocation

roblems [18,19] . 

. Cache allocation framework and rules 

In the context of a network cache provider, the cache capac-

ty is used to host content files in order to enhance users’ qual-

ty of experience by decreasing content access latency. Assuming

ontents are owned by external CPs, the network cache provider
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Table 1 

Summary of the general notation. 

Notation Explanation 

CP i i th content provider 

ISP Internet Service Provider 

PF Proportional fairness 

MMF Max–min fairness 

ICN Information Centric Networking 

n Number of content providers 

d i Cache space demand of the CP i 
�
 d Vector of all demands 

E Global cache space of the network cache provider 

x i Imputation of CP i i th 

�
 x Vector of imputations of all content providers 
�
 d −i Vector of demands of all the content providers other than CP i 

x̄ i Normalized imputation of CP i i th 

N Set of players/claimants 

S Coalition of players in the game 

v Characteristic function of the game 

RP Router Proximity to network edge 

RD Router Degree 

RB Router Betweenness 

C r Cache capacity of each router 

R c Set of routers in the cluster c 

b i Declared demand by CP i i th 

�
 b Bid vector (i.e., the declared demands of all CPs) 
�
 b −i Bid vector of all the content providers other than CP i 

p i Price of the allocated CP i cache space i th 

�
 p Price vector of all CPs 

P j Popularity of content j 

C L Content level 

LRU Least recently used 

J I Jain’s fairness index 

A I Atkinson’s index 
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W  
ould need to offer a neutral interface to access its caches, guar-

nteeing a fair allocation of caches with respect to cache space de-

ands, which are in turn a function of content popularities. As a

atter of fact, discriminating cache access between different CPs

i.e., possibly offering different prices to different classes) would

e easily considered as a behavior violating network neutrality,

ubject to regulation in some countries. For this reason, the ISP,

n this paper, is considered neutral and it is supposed to follow

 non-discriminatory policy in cache allocations. Nonetheless, the

onsideration of multiple classes of CPs, i.e., giving higher priori-

ies to some CPs in getting access to the network cache would be

 straightforward extension to the provided model: the cache con-

ention would be iterated going from the highest priority CP class

rst to the lowest ones. In this section, we formulate the prob-

em, and then we detail the cache allocation algorithm and the

orresponding pricing framework. A summary of the notation used

hroughout this paper is shown in Table 1 . 

.1. Problem formulation 

Let us assume that there are n content providers (CPs), and each

P owns a given number of files. With the possibility to cache

ome files in the network between them and the users (by renting

ache space from the network cache provider), the CPs can reduce

heir CAPEX by reducing the load on their servers and enhance

heir users’ quality of experience by decreasing content access la-

ency. The demand for a cache space by each content provider de-

ends on how much cache space each provider is willing to pay

or (i.e., the volume of files the CP is interested in caching in the

etwork). We note that the demand of a CP may not cover all its

atalog size as it might be interested in caching only the files with

he highest popularity. In the following, d i denotes the cache space

emand of the i th CP, indicated in the following as CP i ; 
�
 d denotes

he vector of all demands. 
We denote by E the global cache space of the network cache

rovider. We target the expected situation for an economically vi-

ble cache deployment in which the network cache provider re-

eives more demands than what it can satisfy, i.e., 
∑ n 

i =1 d i ≥ E. If

his was not the case, i.e., if the total demand is less than the

vailable space, then the network cache provider would be able to

llocate for every CP the exact space demanded. Contention would

ikely still manifest for at least those few best nodes that are at the

ost attractive cross-points of users’ demands (as far as these few

est nodes would not be able alone to satisfy the whole demand). 

In this context, there is a competition in accessing the network

aches. Even if unlikely, the risk from a network cache provider

erspective is that CPs partially ally between each other, forming

ub-coalitions when designing their respective demands. To be ro-

ust to such behavior and avoid the formation of oligopolies, the

etwork cache provider shall take into account the possible sub-

oalitions in the allocation of cache sizes to CPs, designing an ap-

ropriate pricing framework. More precisely, the network cache

rovider (e.g., ICN provider) has to: 

1. Decide on the allocation rule , i.e., how to assign cache space to

each CP based on CPs individual content cache size demands. 

2. Decide on the payment rule , i.e., how to fix prices for the allo-

cated space given by step 1. 

To emphasize the need of these two separate provisioning rules,

et us explain the rationale with the following three interaction

ases (unrealistic, naive, and wise cases). First, let us consider the

unrealistic) case where the network cache provider announces

hat the space is given for free for the highest demand: every CP

ould then have an incentive to announce a very high demand,

ying on the value of their real needs, to get free space. Suppose

ow another (more realistic, but naive) case with an announced

xed price per unit of cache: also in this case, because the space

s limited, each CP has an incentive to announce a higher untruth-

ul demand so that it can get more space. In order to avoid these

ituations, the network cache provider should (wisely) design both

teps in advance to make sure that the outcome of the overall

cheme is a desired one. For this purpose, we propose to adopt

echanism design theory concepts [7] . In particular, we refer to ap-

roaches for single-dimensional environments to make sure that

he allocation scheme provides strong performance guarantees (as

xplained hereafter, performance guarantees are based on fairness

riteria), and at the same time it provides strong incentives for the

Ps to be truthful in communicating their real demand. 

The allocation and payment rules are interrelated in general.

owever, the mechanism design theory successfully deals with

he two steps in a consecutive manner. First we suppose that the

Ps are communicating their truthful demand. Based on these de-

ands, we design a cache allocation scheme giving each CP its

hare of the limited resource E . Then, we design a payment rule

or the CPs such that the dominant strategy for the CPs is to send

heir real demand (i.e., with no incentives to lie about it). Under

his approach, the network cache provider can shape a strategic al-

ocation making its provisioning architecture rationally acceptable

nd attractive for additional CP customers. 

.2. Cache allocation to content providers 

An allocation rule is a function f having as an input the de-

ands of the CPs (the demand vector � d ∈ R 

n + ) and the total avail-

ble cache space E ∈ R + , and giving as output an imputation vector

  ∈ R 

n + containing the cache space portion to allocate to each CP

i.e., the values in 

�
 x ranges between 0 and E such that 

∑ n 
i =1 x i = E),

.e., f : ( � d , E) → 

�
 x . 

Let � d −i be the vector of demands of all the CPs other than CP i .

ith a little abuse of notation, let us indicate the imputation for
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1 The core of a game contains the imputations satisfying coalitional rationality 

and efficiency constraints, such that no player or coalition gains by seceding from 

the grand coalition, i.e., the core is a stable set. The core in general might not exist, 

but for bankruptcy games it does (i.e., it is not empty). 
CP i as x i = f i (d i , 
�
 d −i , E) . For convenience, we also define x̄ i = x i /E

as the normalized imputation, i.e., the proportion of E allocated to

CP i . Let us give the following definition. 

Definition 1. (Monotone allocation rule). An allocation rule is

monotone if for each ( � d , E) and for each CP i the following state-

ment holds: 

If d ′ i > d i , then f i (d ′ i , � d −i , E) ≥ f i (d i , � d −i , E) , (1)

In other words, fixing all the other CPs demands � d −i , if the de-

mand of CP i increases from d i to d ′ 
i 
, then the new imputation of

CP i x ′ 
i 

should be higher or equal to its old imputation x i ( x ′ 
i 
≥ x i ).

Monotonicity plays an important role in designing the payment

rule (we get back to this issue in Section 3.4 ). 

The allocation of resources to those claiming higher demands

than what is available is referred to in the literature as a

bankruptcy problem (the term derives from the evident connection

with the problem of bankruptcy where a person or other entity

cannot repay the debts claimed by creditors). For this reason, in

the following we sometimes refer to the CPs as claimants , or the

total available cache space to partition as the estate . 

There are different possible approaches from the literature that

can be used as allocation rules for a bankruptcy situation. We

present thereafter the most common. 

3.2.1. Allocation by proportional fairness (PF) 

Proportional fairness distributes the resources proportionally to

the demands subject to total space constraint [20] , i.e., 

f i ( � d , E) 

d i 
= 

f j ( � d , E) 

d j 
for any pair of CPs (i, j) . 

It is straightforward to note that PF is monotone. 

3.2.2. Allocation by max–min fairness (MMF) 

MMF maximizes the profit of the lowest claimant, then it maxi-

mizes the second lowest demand in the game, and so on [21] . For-

mally, if we order the CPs according to their increasing demand,

i.e., d 1 ≤ d 2 ≤ · · · ≤ d n , then MMF allocates the available space E as

follows: 

f i ( � d , E) = min 

( 

d i , 
E − ∑ i −1 

j=1 f j ( 
�
 d , E) 

n − i + 1 

) 

for i = 1 , . . . , n. 

Intuitively, MMF gives the lowest claimant (assuming min i d i ≤
E 
n ) its total demand and evenly distributes unused resources to the

other users. It is also straightforward to note that MMF is mono-

tone. 

Both MMF and PF allow computing fair imputations without

considering the possibility that CPs could ally when formulating

their demands. Alternatively, game theoretic allocation rules can

be attractive toward the computation of a strategically fair impu-

tation. Before presenting some game-theoretic allocation rules, let

us formally define the bankruptcy game for our settings where the

CPs are the players. 

Definition 2 (Bankruptcy game [17] ) . A bankruptcy game, denoted

by G (N , v ) , is a cooperative game where N represents the set of

claimants of the bankruptcy situation (i.e., the CPs with |N | = n )

and v is the characteristic function of the game given in Eq. (2) that

associates to each coalition S its worth defined as the part of the

estate (i.e., the global cache space), not claimed by its complement.

v (S) = max ( 0 , E −
∑ 

i ∈N\ S 
d i ) , ∀ S ⊆ N \{∅} (2)

where E ≥ 0 is the estate that has to be divided among the mem-

bers of N , S is a coalition of players, and 

∑ n 
i =1 d i ≥ E. 
After defining the characteristic function of each possible coali-

ion in the game by Eq. (2) , then f ( � d , E) gives the imputation us-

ng well known fairness concepts in cooperative games. Imputa-

ions for cooperative games are essentially qualified with respect to

he satisfaction of individual and coalitional rationality constraints,

esirable properties and existence conditions. Among the different

llocation rules proposed in the literature for cooperative games,

he Shapley value and the Nucleolus are particularly attractive, as

hey guarantee existence and uniqueness to the imputation while

atisfying other desirable properties especially in terms of fairness.

ertainly, other power indexes allocation rules guaranteeing exis-

ence and uniqueness exist, often defined as algorithmic variations

f the Shapley value, as reviewed in [22] . Such alternative alloca-

ions could be considered too. Nonetheless, there is no work at the

tate of the art comparing the fairness of all the eligible power in-

exes as a function of the estate contention level, as of our knowl-

dge. This is an interesting research topic we are currently inves-

igating. Our choice is mainly driven by previous works, already

ited in [18,19] , where both the Nucleolus and Shapley proved to

e both well behaving in bankruptcy situations. 

.2.3. Allocation by Shapley value 

The Shapley value [23] is the center of gravity of the core 1 of a

ankruptcy game. It is defined as: 

f i ( � d , E) = 

∑ 

S⊂N\{ i } 

| S| !(|N | − | S| − 1)! 

|N | ! [ v (S ∪ { i } ) − v (S)] (3)

n other terms, the Shapley value is computed by averaging the

arginal contributions of each player in the game in each strategic

ituation (i.e., players’ permutation). The Shapley value has been

lready proposed for a variety of situations in networking, such

s inter-domain routing [24] and network security [25] , because

t shows desirable properties in terms of correct modeling of null

layer situations, symmetry, individual fairness, and additivity. 

Moreover, the Shapley value allocation rule for bankruptcy

ames is monotone because Eq. (3) can be rewritten using

q. (2) as follows: 

f i (b i , � b −i , E) = 

∑ 

S⊂N\{ i } 
αS φS (b i ) , (4)

here αS = 

| S| !(|N |−| S|−1)! 
|N | ! and: 

S (b i ) = 

{
b i if b i ≤ max (0 , E − ∑ 

j∈N\{ S,i } b j ) 
max (0 , E − ∑ 

j∈N\{ S,i } b j ) otherwise 
(5)

o by fixing � b −i , the function φS ( b i ) is a non-decreasing function in

 i for any set S . Thus, the Shapley value allocation is monotone. 

.2.4. Allocation by Nucleolus 

The Nucleolus [26] is the unique consistent solution in

ankruptcy games that minimizes the worst inequity. The Nucle-

lus lies in the core and it is computed by minimizing the largest

xcess of different coalitions of the game. The excess is expressed

s: 

 

(
f ( � d , E) , S 

)
= v (S) −

∑ 

j∈ S 
x j , ∀ S ⊆ N (6)

his excess measures the amount by which the coalition S falls

hort of its potential v ( S ) in the imputation 

�
 x . 

To give the formal definition of the Nucleolus for bankruptcy

ames, denote O ( � y ) = ( e ( � y , S 1 ) , e ( � y , S 2 ) , . . . , e ( � y , S 2 n ) ) , where
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Algorithm 1 Cache allocation algorithm 

1: Form clusters of routers by grouping together those having 

the same contention metric, and order these clusters from the 

highest importance (in terms of total cache space in each clus- 

ter of routers) to the lowest one; 

2: Take the cluster with the highest importance and apply the al- 

location rule to routers of the cluster; 

3: Decrease the demand of each CP by the amount allocated in 

the cluster; 

4: Take the next cluster and apply the allocation rule; 

5: Stop when all clusters are treated or there is no remaining de- 

mand. 
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 ( � y , S k ) ≥ e ( � y , S k +1 ) , k = 1 , . . . , 2 n − 1 . Among all the imputations

  satisfying: 
∑ n 

i =1 y i = v (N ) = E, the Nucleolus gives the unique

mputation 

�
 x such that O ( � x ) < L O ( � y ) ∀ 

�
 y , where < L is the lexico-

raphic order. 2 In other terms, the Nucleolus is the solution that

mproves the situation of the player in the worst case; so it intro-

uces a degree of fairness in its imputation. It is monotone thanks

o the intrinsic consideration of individual rationality constraints.

he Nucleolus is used for instance in strategic transmission com-

utation [18,27,28] because it satisfies desirable properties, e.g., it

mproves the situation of the player that is worst off while being

onsistent (i.e., no player or group of players can gain more by

nilaterally deviating from an imputation). 

.3. Cache allocation algorithm 

The total cache space in the network is formed from the col-

ection of the router caches. These caches are distributed in dif-

erent locations in the network (some of them are close to end

sers while others are far). For instance, it might be more con-

enient for CPs to be allocated a cache space closer to the end

sers (thus their contents are closer to clients reducing content

ccess latency). Therefore, it is important that the network cache

rovider distributes a homogeneous cache space to CPs 3 (every

nit of cache space should have the same value from the con-

ent providers perspective). For this aim, the cache provider should

luster routers that have similar properties from the CPs’ perspec-

ives (i.e., the cache space of the routers within the same cluster

ave the same value from the CPs’ perspectives). It is worth men-

ioning that this clustering permits a fair allocation of cache spaces

mong CPs. According to Rossi and Rossini [9] and Wang et al.

10] , three commonly accepted criteria for grouping the routers

re: the proximity to the user-network edge, the Router Degree,

nd the router centrality (betweenness). More precisely, the con-

ention metrics that we investigate are defined as follows: 

• Router Proximity to network edge (RP) : the number of hops sep-

arating a router from network edge. 

• Router Degree (RD) : the number of links incident to a router. 

• Router Betweenness (RB) : the number of times a node is along

the shortest path between two other nodes. 

Following the ranking of routers according to the contention

etric, we propose the following allocation algorithm: 4 

For the game-theoretic allocation rules, this corresponds in it-

rating a game G (N , v ) differing in that, at each iteration: 

• N includes all the CPs, but with different demands d i . 

• The available cache size ( E ), varies as a function of the cluster

size and the capacities of routers in the cluster. For instance,

if the cache capacity of each router is given by C r , the corre-

sponding estate is given by: E = 

∑ 

r∈R c 
C r where R c is the set

of routers in the cluster c . 

It is worth noting that since the routers within the same cluster

ave the same contention metric, the allocated cache space to each

P in a cluster can be evenly allocated from any cache among the

outers in that cluster. 

emark. Algorithmic game theory adds one more requirement to

he design of the system: the complexity of obtaining the alloca-

ion should be computationally efficient. As a matter of fact, the
2 We say that a vector � u is lexicographically larger than � v (denoted by � v < L � u ) if 

here exists k such that u i = v i for all i ∈ { 1 , 2 , . . . , k − 1 } and u k > v k . 
3 The homogeneity of a cache space here is in terms of its the value from the 

ontent providers’ perspective not in terms of its size. 
4 The proposed allocation algorithm can be performed upon significant changes 

f content providers’ demands 

n  

c

i  

t  
omputation of the Shapley value is generally done using (3) ; how-

ver, in games with a large number of players the computational

omplexity of the Shapley value becomes too large. In our instance

his does not cause a real problem because the number of CPs ask-

ng for the resource in a network is typically low (less than 10)

nd the complexity of the allocation scheme is a function of the

umber of CPs (and not a function of the potentially huge number

f content files). �

For computing the Shapley value in reasonable time, several an-

lytical techniques have been proposed such as multi-linear exten-

ions [12] , and sampling methods for simple games [29] , among

thers. The process for computing the Nucleolus is however more

omplex than for the Shapley value. It is described as follows. First,

e start by finding the imputations that distribute the worth of

he grand coalition in such a way that the maximum excess (dis-

atisfaction) is minimized. In the event where this minimization

as a unique solution, this solution is the nucleolus. 5 Otherwise,

e search for the imputations which minimize the second largest

xcess. The procedure is repeated for all subsequent excesses, un-

il finding a unique solution which would be the nucleolus. These

equential minimizations are solved using linear programing tech-

iques [30] . 

.4. Pricing framework 

As already argued, a robust pricing framework needs to be de-

igned by the network cache provider to ensure true demands are

ormulated by CPs. Actually, the same unit of cache space may have

ifferent values for the different CPs, those with higher traffic (i.e.,

igher demand) are willing to pay more for a cache space unit to

ccommodate the high traffic volume. Taking into account this de-

ign goal, in our model we consider that the value of a unit of

ache space for a given CP is a given function of its clients’ traffic. 

Along with the fairness of the allocation scheme, the payment

ule should be designed to give strong guarantees that the CPs are

ruthful in communicating their real demand. Under this perspec-

ive, it becomes natural to think of the demands as bids (as in auc-

ions), and the cache partitioning as the allocation outcome from

n auction. The demand vector is given by � d where d i is the (true)

emand by CP i (also considered as the private value of i ). The bid

ector is given by � b where b i is the value communicated by CP i to

he network cache provider (could be equal to d i if i declares the

ruth). 

The truthful communication of demands should be a domi-

ant strategy. This is known as the dominant-strategy incentive-

ompatible (DSIC) property [8, p. 415] . The normalized allocation x̄ i 
s the proportion of the full available cache space allocated to con-

ent provider i (i.e., x̄ i ranges in the interval [0, 1]). The payment
5 For the class of bankruptcy games, the nucleolus always exists. 
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Fig. 2. The solid curve (in blue) is the piecewise-linear allocation function x̄ i given 

by x ( z ) for CP i when varying its demand from 0 to b i ( z axis). The area above the 

curve (in red) is the payment rule (price to pay by the CP). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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rule is given by � p , where p i is the price of the allocation paid by

CP i . The utility of a content provider is given by: 

 i = V i (d i , f i (b i , � b −i , E)) − p i (b i , � b −i , E) (7)

where V i (d i , f i (b i , 
�
 b −i , E)) = d i ̄x i is the value of the allocated space

from the CP i perspective, 6 

Definition 3 (DSIC) . The tuple ( � x , � p ) is DSIC if: (1) each truth-

telling CP is guaranteed a non-negative utility and (2) each CP has

as dominant strategy the communication of its truthful demand,

i.e., for all CPs, and for any b i , 

 i (d i , f i (d i , � b −i , E)) − p i (d i , � b −i , E) 

≥ V i (d i , f i (b i , � b −i , E)) − p i (b i , � b −i , E) 

Then, the tuple ( � x , � p ) is DSIC if when b i = d i , this strategy max-

imizes the utility of CP i no matter what the other CPs do. Being

that the utility U i = d i ̄x i − p i , for example with the pricing rule

p i = b i ̄x i , no one has an incentive to communicate the true de-

mand. Because with that pricing rule, the utility would be U i = 0

for truth-tellers while it can be increased if everyone declared

a slightly lower demand. This would lead to a situation where

everyone declares a lower demand than their real one. On the

other hand, for a fixed price per storage space (i.e., p i = αx̄ i for

a given α ∈ R + ) every CP having d i > α has an incentive to in-

crease its communicated demand ( b i ) to receive more space in-

creasing its utility. We thus have to determine what pricing rule

ensures that the CPs have no incentives to lie (given the Shapley

and the Nucleolus-based allocation rules). It turns out that by My-

erson’s lemma [31] from mechanism design theory we can design

the prices to meet our objective: 

Theorem 1 (Myerson’s lemma [31] ) . If � x is monotone, then there is

a unique payment rule � p such that the mechanism ( � x , � p ) is DSIC. 

The monotonicity is given by Definition 1 , and the four pre-

sented allocation rules are monotone as already discussed. The

price of each CP i does not only depend on its own declared de-

mand, b i , but instead depends on the declared demands of all

other CPs, � b −i . It is given by Myerson’s lemma [31] as follows: 

p i (b i , � b −i , E) = b i 
f i (b i , � b −i , E) 

E 
− 1 

E 

∫ b i 

0 

f i (z, � b −i , E) d z (8)

We note that for the pricing rule given in Eq. (8) , the four

proposed allocation rules satisfy the property that if two con-

tent providers CP i and CP j communicate the same demands (i.e.,

b i = b j ), they have to pay the same price p i = p j . 

For a constant vector of declared demands of all the CPs other

than i ( � b −i ), the allocation of CP i as function of its declared de-

mand b i looks as in Fig. 2 . The price can be interpreted as an area

above the curve (as given by Fig. 2 ). Notice that by considering

this pricing rule, each content provider maximizes its utility U i by

communicating its true demand no matter what others do, i.e., U i 

is maximized when b i = d i for every � b −i . 

Remark. For the Shapley value allocation, the allocation is piece-

wise linear as function of b i and we can identify precisely the

points where the curve in Fig. 2 changes its slope, and thus closed-

form pricing equations can be derived for Shapley value. Closed-

form pricing equations can also be derived for PF and MMF allo-

cations. The transition points of the curve in the case of Nucleolus

allocation cannot be found in closed-form, and thus we refer to

numerical methods as we demonstrate in the next section. �

As a result, the network cache provider can declare a pricing

accordingly to (8) to all the CPs, so that none of the CPs has an
6 For simplicity, we consider that the value of a unit storage is considered pro- 

portional to the demand V i = d i ̄x i , however other functions of V i could also be used. 

T∫
ncentive to declare a different demand than their real one, and

ased on these (truthful declarations) the allocation using the pro-

osed cache allocation algorithm is carried out. It is important to

ote that this pricing framework does not necessarily maximize

he profit for the network cache provider, but it is the unique pric-

ng rule [31] that provides strong incentives for truthful declaration

f demands by the CPs. Any other pricing rule can cause the CPs

o communicate false demands to maximize their utilities. 

emark. In reality, many companies use business models that

o not necessarily maximize their profits. For example, eBay on-

ine auctions (using proxy bidding feature) resembles a theoretical

econd-price sealed-bid auction closely. Its purpose is not to max-

mize the profit of the company but to have participants bid their

eal values of the items [32] . Another example is Google sponsored

earch auction that identifies which advertisers’ links are shown

nd in what order after every search query to Google engine. Also

n this model, Google uses “generalized second price” auction for-

at whose primary objective is not to maximize the profit, but for

idders to give their real value for the position of their link (this

odel gave over 98% of Google total revenue in 2005 [33] ). �

. Pricing implementation 

The pricing rule given in the paper is of the form 

p i (b i , � b −i , E) = b i 
f i (b i , � b −i , E) 

E 
− 1 

E 

∫ b i 

0 

f i (z, � b −i , E) d z (9)

Thus we need to calculate f i (z) = f i (z, � b −i , E) as an intermedi-

te step in calculation of the price. Closed-form equations can be

ound for PF, MMF, and Shapley value. For the case of the Nucleo-

us, f i can be calculated only for a given z , so numerical methods

re needed to give an approximation of the price. 

.1. Proportional fairness 

The allocation for proportional fairness is given by 

f i 
b i 

= 

f j 

b j 
for all CPs i, j, 

hen since 
∑ 

i f i = E we can write 

f i (z) = 

Ez 

z + 

∑ 

j  = i b j 
. (10)

hen 

 b i 

0 

f i (z) d z = E b i − E ( 
∑ 

j  = i 
b j ) log 

( ∑ 

j b j ∑ 

j  = i b j 

)
, 
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o  
nd the resulting price to pay by CP i knowing that the bids are

 1 , . . . , b n is 

 

(prop) 
i 

= 

b 2 
i ∑ 

j b j 
− b i + ( 

∑ 

j  = i 
b j ) log 

( ∑ 

j b j ∑ 

j  = i b j 

)
. (11)

n interesting observation about this pricing rule is that it is inde-

endent of E . Which means that as long as the ratio between the

emands is the same, even if E increased the allocation changes,

ut the price remains the same. 

.2. Max–min fairness 

Assuming that the bids are placed in increasing order b 1 ≤ b 2 ≤
· · ≤ b n , then the allocation of max–min is given by 

f i (z) = min 

( 

z, 
E − ∑ i −1 

j=1 f j ( 
�
 b , E) 

n − i + 1 

) 

for i = 1 , . . . , n. 

he equation shows that as we increase z from 0 to b i we have 

f i (z) = 

{
z if z ≤ C i 
C i if z > C i , 

(12) 

here C i is the critical point when the curve becomes constant to

e determined. To find C i we can calculate f i for any sufficiently

arge z . This sufficient large number can be chosen to be E because
E −∑ i −1 

j=1 
f j ( 

�
 d ,E ) 

n −i +1 
≤ E for any vector b . Then 

 i = f i (E) . 

We can now calculate the following integral: 

 b i 

0 

f i (z) d z = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

b 2 
i 

2 

if b i ≤ C i 

C 2 
i 

2 

+ (b i − C i ) C i if b i > C i , 

nd the corresponding price for CP i is 

 

(maxmin ) 
i 

= b i 
min (b i , C i ) 

E 
− ( min (b i , C i )) 

2 

2 E 
. 

.3. Shapley value fairness 

The allocation for Shapley value is given by Eqs. (4) and (5) .

n order to determine the price; Eq. (4) can be reformulated using

q. (5) as follows: 

f i (z, � b −i , E) = g( � b −i ) + 

( ∑ 

T ∈T 
αT 

) 

z (13)

here g( � b −i ) is a scalar function independent of z , and T is a rele-

ant set of the sets T ⊆ N \{ i } . Eq. (13) demonstrates that the curve

f Fig. 2 is piece-wise linear for the Shapley value allocation. 

For every content provider i and for any set S ∈ N \ i, we can de-

ne a function q i (S) = max (0 , E − ∑ 

j∈N\{ S,i } b j ) . Since the domain

f definition of q i (.) has finite elements, then we can define a vec-

or � ∈ R 

2 n −1 
to be the image of the function (i.e., for any S ∈ N \ i,

here exists an index m such that �m 

= q i (S) ). Then each element

f this vector corresponds to a set of CPs without CP i . Define � a

ector that has elements αS = 

| S| !(|N |−| S|−1)! 
|N | ! where S is the corre-

ponding set index. 

Let us define ˆ � the vector having the elements of � sorted in

ncreasing order. And define ˆ � to be the vector having the ele-

ents for the corresponding αS (note that ˆ � is not necessarily in

ncreasing order). 
The allocation function f i ( z ) is piece-wise linear defined on the

nterval [0, b i ] having f i (0) = 0 and slopes given as follows: 

∂ f i (z) 

∂z 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∑ 2 n −1 

j=1 
ˆ � j for 0 < z < 

ˆ �1 ∑ 2 n −1 

j= k +1 ;k =1 , ... , 2 n −1 −1 
ˆ � j for ˆ �k < z < 

ˆ �k +1 

0 for ˆ �2 n −1 < z < b i . 

(14) 

ote that the points that the curve changes its slope are the points

 ∈ [0, b i ] such that z = 

ˆ �k . As we know that the function satisfies

f i (0) = 0 , then we can use (14) in a recursive way for the exact

alculation of the integral 
∫ b i 

0 
f i (z) d z and the corresponding price. 

.4. Nucleolus fairness 

In case of nucleolus, the curve f i ( z ) is also piece-wise linear

ith z . But the critical points for which the slope can change can-

ot be given in closed form solution. The integral can then be

umerically approximated. Since we know that the slope cannot

hange more than 2 n −1 times, we can divide the interval [0, b i ] into

 

n −1 + 1 equal intervals where the length of an interval is given

y 

= 

b i 
2 

n −1 + 1 

. 

hen the integral can be discretized and approximated as follows: 

 b i 

0 

f i (z) d z ≈
2 n −1 ∑ 

k =0 

(
f i (k �)� + 

�

2 

[ f i ((k + 1)�) − f i (k �) ] 

)

nd the resulting price follows directly from (9) . 

. Performance evaluation 

We consider a network composed of 25 caching-routers of same

torage capacity C (i.e., homogeneous cache size). We consider two

etworks with a tree (where there is only one path from an end-

ser to a CP) and a partial mesh (where there can be multiple

aths from an end-user to a CP), having both an edge-to-CP short-

st path length up to 6 hops. To have comparable results that are

ndependent of the CPs’ locations and their connections to the net-

ork, we use symmetric topologies. This is especially important as

he results obtained through asymmetric topologies highly depend

n the way each CP is connected to the network. For this aim, in

he simulations, the tree topology consists of connecting the CPs

o the root router of the tree while connecting the end-users to

ts leaves. Besides, in the partial mesh, the CPs are all connected

o one router in the network, while the end users are connected

andomly to some of the other router nodes of the network. 

We include 5 CPs, denoted CP i for i = 1 , . . . , 5 , connected all to

he same router and each supplying different contents (i.e., files).

ig. 3 shows an example of a tree and a partial mesh topology with

 CPs (in red) and 25 routers. The edge routers are connected to

he end users. We assume that each content j has a uniform size

1MB for example) and a randomly chosen popularity P j ∈ [0; 1]

eflecting the request frequency made by end-users for the content

i.e., the number of times end users issue ‘interest’ messages to

etrieve the content) [2] . We should note that the sum of all files’

opularity in the network is equal to 1, i.e., 
∑ 

j P j = 1 . 

In the simulations, we model a practical ICN scenario with high

eterogeneity in content popularity. The popularity of contents in

he network are determined using Zipf’s law [34] that quantifies

he frequencies of occurrence of the contents in the network (we

et Zipf’s law exponent to 1). Each CP runs the LRU cache replace-

ent policy that we model using the Che approximation [35] . We

hould note that we extend the Che approximation to the case

f multiple LRU caches. According to the Che approximation, the
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Fig. 3. An example of a tree and a partial mesh topology with 5 content providers and 25 routers. The CPs are all connected to the same router. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.) 
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probability that a content j , taken from a catalog of K contents, is

available at the router R i having a cache size C r is given by: 

ω( j, i ) ≈ 1 − e −q i ( j) .T C r (15)

where q i ( j ) is the probability that the node R i receives an interest

packet for content j , and TC r is the root of the following equation:

K ∑ 

j=1 

1 − e −q i ( j) .t = T C r (16)

Contents are always delivered via a shortest path. We recall we

assume that each content is offered by only one CP. To take into

account network cases with a heterogeneous set of demands, we

suppose that, among the five CPs, the CP 1 has the lowest demand

d 1 , and that CP 2 , CP 3 , CP 4 , and CP 5 have, respectively, three, five,

seven and nine times the demand of CP 1 . The overall demand of

CP 1 is set to 80 files (i.e., 80MB), hence the demands of other CPs

( i.e., CP 2 , CP 3 , CP 4 , and CP 5 ) are 240, 400, 560 and 720, respec-

tively. 7 The contention level in the network is then computed as

the ratio of the difference between the available cache space and

the total demand of CPs to the total demand of CPs. This can be

expressed by the following formula: 

 L = 1 −
( 

25 C r / 

5 ∑ 

i =1 

d i 

) 

(17)

Where 25 C r represents the total available cache space in the

network (we have 25 routers and each of them has a caching ca-

pacity C r ). It is worth mentioning that, as we are considering only

the cases where the total demand of CPs exceeds the available

cache space in the network, C L is always positive. 

We do compare the results under different allocation rules also

for the case of a network without in-network caching, i.e., in which

end user requests need to go all the way up from the edge to the

CP containing the needed file at the network provider CP edge.

Moreover, for the in-network caching cases, we include a naive

cache allocation approach in which there is no router clustering

and there is no CP-specific cache allocation [4] ; instead, contents

are delivered following the shortest path and cached on-the-fly by

the LRU caches collocated on the traversed routers. As a reminder,

we evaluate the four allocation schemes listed in Section 3.2 : PF,

MMF, Shapley value, and Nucleolus. The following evaluation fo-

cuses on a performance analysis based on content access latency

reduction, on fairness analysis and on the benefits of declaring
truthful demands. 

7 We note that the demand of the CPs can be, in general, a generic function of 

the number of files and contents priorities. 
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l  
.1. Content access latency 

We evaluate the performance of different approaches with re-

pect to the most important user’s quality of experience metric i.e.,

he content access latency. We compute the average content access

atency (expressed in number of hops) as a function of the edge-

o-content path, and the average hit ratio on each router along the

ath as given by the Che approximation [35] . To model the case

f high cache contention situation, we set C L to 80% (i.e., the total

ache space is equal to only 20% of the total CPs demands). 

Figs. 4 and 5 show the boxplot statistics (max, min, quartiles,

edian as a red line, average as a star) of the content access la-

ency for the network contents using the above mentioned metrics

or the tree and partial mesh topology, respectively. We can notice

hat: 

• Comparing in-network caching approaches to the one without

caching, the former outperforms the latter one for all the cases;

e.g., for the partial mesh topology and using the RD metric, the

median content access latency decreases, from the approach

without caching, by 9% with the game-theoretic approaches, 8%

for the MMF, 4% with PF, and 2.5% for the naive ICN approach. 

• Comparing the naive ICN approach to the router aggregation

case with the four allocation rules, the content access latency

decreases with the latter one for all the cases (e.g., for the par-

tial mesh topology and RD metric, the median access latency

decreases from basic ICN by 3% with PF, 5.6% with MMF and

6.5% for game-theoretic approaches). 

• The game-theoretic approaches, Nucleolus and Shapley value,

give very close performances for the different cases. They out-

perform the PF and MMF approaches for all the cases; e.g., for

the tree topology and using the RB metric, the median content

access latency is lower by 2.5% with respect to PF, and by 1.6%

with respect to MMF. 

• The partial mesh topology outperforms the tree one, likely be-

cause it allows multiple paths between network routers dif-

ferently than the tree topology with a single path from each

router to the root. 

• The RD router clustering metric outperforms the other metrics

for all the in-network caching cases; e.g., in the mesh topology,

the content access latency for the Nucleolus decreases from the

RP by 3% and 1.25% to the RD and RB metrics, respectively.

This somehow confirms previous findings of Rossi and Rossini

[9] where RD was shown to be superior to all other metrics. As

a new insight, the gain of RD with respect to RB is less impor-

tant than with respect to RP. 

All in all, these highlights show that game-theoretic approaches

ncrease content access performance. It is also worth mentioning

hat even if naive LRU driven in-network caching permits to reduce

atency, it does not accomplish as much one could expect, mostly
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Fig. 4. Content access latency distributions for a tree topology and with different router clustering metrics. (For interpretation of the references to color in this figure, the 

reader is referred to the web version of this article.) 

Fig. 5. Content access latency distributions for a partial mesh topology and with different router clustering metrics. (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.) 

b  

w

5

 

F  

e  

a  

a  

M  

t  

a  

c 1  
ecause of the potentially high replication of contents in the net-

ork [36] . 

.2. Fairness of cache imputations 

In order to further investigate on the cache allocation results,

ig. 6 shows the imputation distribution (i.e., the ratio of the cache
ach CP obtains as a function of the total available cache) as well

s the satisfaction rate (i.e., the ratio of the cache each CP obtains

s a function of its demand), for the different allocation cases (PF,

MF, Nucleolus, Shapley value, and naive ICN). The partial mesh

opology with the RD metric case is considered (similar results

re obtained for the tree topologies). We can observe that the Nu-

leolus and Shapley value give the lowest claimant (i.e., CP ) an



138 S. Hoteit et al. / Computer Networks 103 (2016) 129–142 

Fig. 6. Cache size distribution and satisfaction rates, as a function of the CP demand, for a partial mesh topology using the RD metric. 
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imputation in-between those obtained by PF and MMF: CP 1 gets

by Nucleolus and Shapley value 18% and 11% respectively of the

total estate, while PF and MMF give respectively 5% and 20% of the

total estate (20% corresponds actually to the totality of its demand,

indeed the satisfaction rate of CP 1 is 100% with MMF). The same

behavior can be seen also for the highest claimant ( CP 5 ) whose

imputation by Nucleolus and Shapley value is in-between those of

MMF and PF. This indicates that game-theoretic approaches do not

favor low demands as MMF does, or high demands as PF does, but

instead distribute the estate in a way that discourages too greedy

demands at the benefit of lower demands. 

It is also worth noting that the naive approach with ICN is

closer to the PF approach than the others. Intuitively, this can be

explained by the fact that as the claim increases, the probability

of finding claimant’s files in the network likely proportionally in-

creases. 

Furthermore, in order to qualify the fairness of the solutions,

we evaluate them with respect to two notable fairness indexes:

Jain’s fairness index ( J I ) [37] that rates the fairness of a set of val-

ues and defined as: 

J I = 

( 

n ∑ 

i =1 

(x i /d i ) 

) 2 

/ 

( 

n 

n ∑ 

i =1 

(x i /d i ) 
2 

) 

(18)

which in fact has been conceived to be better the closer the solu-

tion is to the PF, and Atkinson’s index ( A I ) [38] which is one of the

commonly used measure of inequality, computed as follows: 

A I = 1 − n 

n ∑ 

i =1 

x i 

( 

1 

n 

n ∑ 

i =1 

x (1 −ε) 
i 

) 1 / (1 −ε) 

(19)

which conversely has been conceived to be better the closer the

solution is to an even division ( A I = 0 means perfect equality while

A I = 1 expresses maximal inequality). ε is chosen in practice be-

tween 0.5 and 1.5 (we set a value of 1.5 in our case). 

Fig. 7 shows the fairness index results, as a function of the con-

tention level C L . We can state that: 

• PF offers the best Jain’s fairness index but the worst Atkinson

index for the different contention levels. 

• MMF provides the best Atkinson fairness index with high con-

tention levels but the worst Jain’s fairness index for different

contention levels. 

• The Nucleolus and Shapley value sit in-between PF and MMF

for both indexes and hence offer a better fairness on average of

both indexes. 

• Fairness indexes confirm the close behavior between naive ICN

and PF. Both appear as independent of the contention level – PF
gives the best for Jain’s index and the worst for the Atkinson’s

one, and naive ICN gives better Atkinson’s index values than PF.

• Comparing the Nucleolus and the Shapley value for both met-

rics, the latter is strictly the closer one to the PF, while the

former is closer to MMF. The gap between them, PF and MMF

strictly decreases as the contention level decreases. 

Overall, depending on the desired fairness behavior, PF or MMF,

he network provider can refer to the Shapley as the one closer

o PF, and the Nucleolus closer to MMF, being reassured about the

act that they bring a gain in terms of content access latency. Sim-

ly using the naive ICN approach would be a good approximation

f the PF rule, with however a lower content access performance. 

.3. Utility maximization by truthful declaration 

The pricing criteria given in (8) is based on mechanism design

heory. Its objective is to prevent the content providers to lie about

heir real demand value. In this subsection we study the utility of

he content providers as function of their declaration. We consider

he same simulation scenario where five CPs whose demands are

iven as follows: 

�
 

 = 80 × [1 , 3 , 5 , 7 , 9] T , 

here d i is the real demand of CP i . The price to pay for the allo-

ated cache to a CP depends not only on the allocated space, but

lso on the claimed demand. Given the allocation and the price,

he utility of the content provider is the difference between the

alue the CP evaluates the allocated space and the price the CP

as to pay for the ISP (given by (7) ). Fig. 8 shows that, given that

he pricing equation is known to all content providers, if any of

he content providers declares a demand that is different from its

eal one ( b i  = d i ), its utility does not increase. In other terms,

he utilities of different content providers are maximized by an-

ouncing their real demands(e.g., the utility of CP 1 is maximized

hen it declares a truthful demand that is equal to 80). This shows

hat the proposed pricing rule gives an equilibrium where the CPs

ave no incentives to deviate from declaring their truthful de-

ands as they will not gain in terms of utility. That encourages

ll content providers to declare their real demands ( Theorem 1 ).

he figure also reveals some robustness properties of these equilib-

ium points. They show that the Shapley and PF provide more ro-

ust equilibrium than MMF and Nucleolus because shifting slightly

way from the equilibrium point (by declaring slightly different de-

and than the truthful one) causes the utilities of the Shapley and

F to strictly decrease which is not always the case for MMF (see

P and CP utilities) and Nucleolus (see CP utility). 
3 5 5 
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Fig. 7. Fairness indexes as a function of the contention level (the lower the contention level, the higher the available cache size with respect to demands), for different 

allocation rules. 

Fig. 8. The utility of different content providers as a function of their declared demands. The total available space is E = 10 0 0 . 
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.4. ISP profit 

We further investigate the pricing rule for the different allo-

ation schemes. The price is not designed to maximize the ISP

rofit, but rather to drive the CP to be truthful. However, differ-

nt allocation schemes can give different profit. Fig. 9 shows the

otal profit of the ISP as function of his total caching space (es-

ate). In particular we identify some interesting points from the

gure: 

• The profit due to proportional fairness allocation does not

change with increasing the estate, this is because Eq. (11) is in-

dependent of E . This shows that PF gives a “monopoly” pricing

when the available cache space (the estate) is small because the

ISP pricing in this case depends only on the CP demands with

no considerations to the available caching space. Therefore, ap-

plying such a pricing rule in a multi-supplier market can lead

to clients shifting to another ISP. 

• MMF gives the lowest profit for the ISP. This is consistent with

the interpretation that MMF favors, in its allocation, the low
demand CPs that have less purchasing power with respect to

CPs with high demand. 

• The Shapley allocation provides a better profit than the Nucle-

olus and MMF for small estates. The profit is monotonically in-

creasing with the estate size, however the slope of the profit is

higher for low estate sizes ( ≤ 700) then it starts to decrease

with high estate sizes. 

• The profit due to Nucleolus provides an interesting behavior. It

shows that the ISP profit increases with the estate until a point

where it reaches a maximum, then it decreases again. From the

ISP perspective, this counter-intuitive result shows that adding

more cache space in the network can lead to lower profit. This

can be interpreted by the fact that the pricing of Nucleolus bal-

ances between the fairness and the contention level of CPs, so

when the available cache size is high, the prices decrease to

achieve fairness. It can also provide the ISP with an impor-

tant information about how to dimension his network given

the demands to maximize his profit. According to the figure,

in our network scenario, the ISP should place around a total of

1200MB available cache memory to CPs to maximize his profit.
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Fig. 9. The total profit for the ISP for different allocation approaches. 
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6. Conclusion 

Novel technologies are difficult to adopt as it has to be proven

that they are incentive compatible for all the involved stakehold-

ers. In this paper, we address a multi-stakeholder situation (i.e.,

involving more than one provider) that appears as a win–win set-

ting toward ICN deployment, i.e., the case of an Internet Network

Service Provider deploying ICN for external content providers, of-

fering a neutral interface and pricing to multiple content providers.

The network cache provider hence allocates to external content

providers spaces in its ICN router caches for content delivery. 

In this context, we argue that the proper way the network

cache provider shall design the cache allocation framework and

model the behavior of external content providers is game theory,

so as to qualify and counter-balance their natural tendency to form

oligopolies and to ally to have a stronger position in getting the

available caching resources. We investigate the application of well-

known concepts from cooperative game-theory showing desirable

properties, the Nucleolus and the Shapley value, as well as other

principles commonly adopted in networking research, the propor-

tional fairness (PF) and the max–min fairness (MMF). We propose

a cache allocation algorithm, applied in the context of ICN, that can

be performed upon significant changes of content providers’ de-

mands. This algorithm is able to incorporate these different alloca-

tion rules applying them to clusters of routers ordered with respect

to centrality metrics suggested in the literature. Moreover, we pro-

pose a pricing framework that, taking advantages of the mono-

tonicity of the presented cache allocation rules, correctly nullifies

the threat of malicious behaviors in formulating content caching

demands. 

Results from simulations show that the game-theoretic ap-

proaches offer a sensible access latency gain with respect to both

PF and MMF, and the naive ICN approach (without cache alloca-

tions and using least-recently-used cache management) to content

providers. Among the Nucleolus and the Shapley value approaches,

the former could be considered more interesting given that it max-

imizes the ISP profit for a well dimensioned caching space in the

network. In terms of fairness, the Nucleolus and the Shapley val-

ues sit in-between PF and MMF allocation rules, balancing their

well-known weaknesses and strengths, so that the Shapley value

is close to PF and the Nucleolus very close to MMF. It is also valu-

able to report that the naive ICN approach permits to approxi-

mate PF without having to compute cache imputation (at the ex-

pense, however, of worse content access performance). Moreover,

we show that declaring truthful demands yields better CPs’ utili-

ties for the different cache imputations where the Shapley and PF
re more robust than Nucleolus and MMF in terms of utility max-

mization for truthful declaration. 

The results in this paper are obtained for a fixed number of con-

ent providers with only one ISP. Having multiple competing ISPs

here CPs have the option to switch between the ISPs depending

n the prices offered is a future research direction. Moreover, we

re planning to generalize the results to settings where the con-

ent providers have overlapping contents and the contents from

he content providers are dynamic. The positive performance of

he game-theoretic approaches, which balance the strengths and

eakness of both PF and MMF in terms of fairness, opens the

ay to revisiting former applications of PF and MMF to other net-

orking situations (scheduling, load-balancing, resource reserva-

ion), in which behind the network decision rational and indepen-

ent agents can be identified. 
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