
Differentiated Pacing on Multiple Paths to Improve
One-Way Delay Estimations

Matthieu Coudron, Stefano Secci, Guy Pujolle
Sorbonne Universites, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France.

Email: firstname.lastname@upmc.fr

Abstract—Several works in the literature show that accurate
estimations of the actual One-Way Delays (OWD) could improve
the performance of various network protocol, such as Transport
Control Protocol (TCP) throughput. With the emergence of
multipath transport protocols like Multipath TCP or the Stream
Control Transport Protocol (SCTP), the potential impact can
be even higher. Indeed, as multipath transport protocols send
data concurrently on heterogeneous paths, the knowledge of
corresponding OWDs can greatly help mitigating packet arrival
disorder. Theoretically, clock synchronization protocols between
endpoints could ensure OWD knowledge, but their efficiency at
the Internet scale is debatable. In practice, TCP uses the Round
Trip Time (RTT) to take into account congestion or to compute
retransmission timeouts, and the OWD is assumed to be half
the RTT. However, numerous studies show that a majority of
Internet connections experience latency asymmetry. In this paper,
we propose a technique based on differential pacing over multiple
paths to obtain an estimation of the difference in OWDs between
the different paths, motivated by its strong utility for multipath
transport protocols such as MPTCP and SCTP. Simulations show
which are the interesting scenarios of application.

I. INTRODUCTION

Accurate estimations of One-Way Delays (OWDs) in net-
works could improve network utilization and in particular
user’s quality of experience (QoE): applications such as voice-
over-IP or video streaming depend more on the forward time
delay than the reverse one, for example. As another example,
the TCP vegas [1] family of congestion control algorithms rely
on Round-Trip Time (RTT) inflation to detect congestion but is
unable to distinguish between forward or reverse path inflation.
Including congestion control also on acknowledgments (ACK)
and not only on data packets would likely increase TCP
performance as noted by [2].

Among the most promising evolution at the transport layer
we can cite the Stream Control Transport Protocol (SCTP [3])
and Multipath TCP (MPTCP [4]), the latter experiencing
a broad deployment recently. The two protocols differ in
terms of incremental deployability features, but both can
significantly increase resiliency, security and throughput. In
particular, throughput increase, though an important driver
for multipath transport protocols, is harder to achieve than
it seems. Indeed, sending packets along heterogeneous paths
(e.g., paths that differ in latencies, loss rates, etc) can result
in head of line blocking, which decreases throughput, to the
extent that sometimes MPTCP, e.g., would achieve even less
than a legacy TCP connection [5]. The OWD knowledge -
or rather the ∆OWD between subflows - is then even more

crucial in multipath communications than in single path com-
munications, knowing the forward ∆OWD allows to reduce
in-arrival packet disorder, thus reducing buffer requirements
or increasing throughput. In [6], a multipath UDP scheduler
leads to a 30% increase in throughput when taking into account
∆OWD. A recent MPTCP scheduler [7] achieves a similar
gain via modifying both the sender and the receiver.

As for the reverse ∆OWD, knowing which is the fastest
reverse path lets the multipath transport protocol the possibility
to acknowledge packets on the fastest path. Coupled with
non-renegable selective acknowledgments, this allows to free
sooner the send buffer in order to send fresh data faster [8].

While the benefits of knowing ∆OWDs look interesting,
propositions to retrieve the information rely either on clock
synchronization or some form of cooperation, none of them
being standardized. With these constraints in mind, we elabo-
rate an alternative to estimate the difference in OWDs between
subflows of two end hosts.

The rest of the paper is organized as follows. Section II de-
scribes related work on OWD estimation. Section III precisely
describes our solution. Finally, in section IV we expose and
discuss simulation results.

II. RELATED WORK

In this section we present OWD and ∆OWD online es-
timation techniques for the single path case first, followed
by techniques specific to multipath protocols. Offline OWD
estimation techniques (i.e. where transit times are corrected a
posteriori, as in [9]) also exist but they require cooperation
from the network, or clock synchronization between end hosts.
Thus we only consider in the following online techniques, able
to dynamically adjust scheduling parameters.

From a practical point of view, the presented techniques may
better apply to Wide Area Network (WAN) communications
than to Local Area Network (LAN) communications (or intra-
datacenter communications) as LAN smaller RTTs require
more precision.

A. Clock synchronization in packet switched networks
The dissemination of clock synchronization information in

packet-switching networks can be achieved through different
protocols, with different precision levels. The most adopted
solutions being the Global Positioning System (GPS) [10], the
Precision Time Protocol (PTP) [11] and the Network Time
Protocol (NTP) [12].

978-3-901882-76-0 @2015 IFIP 672



A GPS terminal can infer the clock by correlating the
positioning signals from a constellation of satellites, each
satellite embarking several atomic clocks, reaching a precision
skew of a few nanoseconds only. GPS receivers are precise but
expansive, thus not all computers can be equipped with one:
time has to be distributed.

PTP [11] is able to distribute this time in packet-switched
networks through continuous offset correction between a
grandmaster clock and hierarchy of master-slave clocks. With
sub-microsecond accuracy, this approach allows reaching very
high precision, suitable for 4G base station synchronization.

Similarly NTP relies on a hierarchy of clocks, the higher
the stratum, the lower the precision, which is in the order
of a milliseconds at the endhost. NTP assumes that OWDs
are half the RTT, which is an approximation considered as
too coarse by many studies [13] [14]. As noted in [15], when
applied to Internet connections this approximation may lead to
noticeable errors as the internet does not guarantee symmetric
routing. Even when routing is symmetric, there can still be
noticeable differences between OWDs: because directions may
have different characteristics (loss rates, capacities) due to
policies (e.g., different resource reservation levels in cellular
networks) or physical constraints (e.g., asymmetric bandwidth
in ADSL networks).

B. TCP variations
Some variations of TCP such as TCP Vegas [1] try to infer

the congestion level of the network from the evolution of the
RTT. Two ways exist to retrieve the RTT for a TCP sender:

1) Compute the time needed to send a full window and
receive the matching acknowledgments.

2) Use the TCP Timestamp option [16].
The TCP timestamp option can be used for RTT measurement.
Its usage must be negotiated between the end-hosts during the
connection establishment. Once negotiated, each host records
the time at which it created a packet into this very packet.
Upon reception of that packet, the receiver puts its own
timestamp along the received one and returns the packet. Upon
reception of the acknowledgment, the TCP sender retrieves
the timestamp it previously sent and subtracts its value to the
current node time.

There is little one host can deduce from the remote host
timestamps since the standard only guarantees the remote
TCP clock to be ‘monotone-increasing’ [16]. Alternatively,
propositions exist to negotiate the clock skew during the
connection establishment, as presented in [17]. This would
allow each host to interpret the timestamp of the remote host.
Knowledge of the receiver skew allows the sender to correct
the remote timestamp so that the duration matches its local
skew. It also gives an indication on the possible precision. The
major drawback of TCP variations relying on RTT estimations
is that TCP takes a coarse decision based on the maximum
level of congestion between the forward and backward paths.

Choi et al. [18] modify the roles of the fields in the
timestamp option: timestamps are replaced with the actual
RTT values measured by the different nodes. Providing both

hosts relayed RTTs to their peer since the beginning of the
communication, the OWDs can be computed analytically with
a precision depending on the value guessed for the first OWD.
Gurewitez and al. [19] take another approach that requires
cooperation from the network for the forwarding aspect, but
no clock synchronization. To remove the uncertainty about an
untrusted remote clock, a node sends probes through different
paths in the network (there must be some mechanism to
enforce these paths, e.g., source routing, traffic engineering)
that must come back to the initial sender. The different values
obtained through the use of the probes add constraints over the
values of the different OWDs. When enough constraints have
been harvested to solve the system of equations, the algorithm
tries to determine the OWDs that yield the least square error.

C. Multipath control techniques

For a multipath transport protocol such as MPTCP, multiple
connection ‘subflows’ can be opened between the end-hosts,
regardless of the number of interfaces. Having an estimation
of the difference between subflow OWDs (noted as ∆FOWD
for the forward delta OWDs, and ∆BOWD for the backward
delta OWDs in the rest of the article) would already allow
some improvements. Moreover, in case of low traffic, this
knowledge should be needed by delay-sensitive applications
to send packets on the fastest path (provided loss ratios are
similar).

As for the ∆BOWD, the faster an ACK reaches the sender,
the faster the sender can free space in its send buffer and send
new data packets. The knowledge of the fastest reverse path
would thus let a multipath transport protocol such as MPTCP
the possibility to acknowledge packets on the fastest path, as
explained in [20].

Relying on [17], authors in [21] assume clock skew syn-
chronization based on the TCP timestamp option. The sender,
instead of discarding receiver timestamps, saves them; in
this way, it can deduce the difference in arrival time at
the receiver between packets that followed different paths.
The difference in backward and forward delay can easily be
deduced afterwards by the sender.

In [22], Zhou et al. propose to deduce the OWDs of two
subflows from the size of the receiver input buffer. The upside
is that it does not require any receiver modification or network
cooperation but it assumes constant transmission rates and no
loss. It also requires several measurements to get an accurate
value.

III. PROPOSED OWD ESTIMATOR

The primary objective of our estimator is to provide a prac-
tical estimation of forward ∆OWDs to a multipath transport
protocol. The desirable OWD estimator shall thus:

• not require clock synchronization nor network coop-
eration; timing should be done on the sender’s clock
exclusively;

• be able to deliver an estimation within a few RTTs since
most connections are short-lived.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Mini-Conference 673



Fig. 1. Illustration of used notations for two subflows.

Briefly, the OWD estimator algorithm we propose is such
that once it judges its ∆̃FOWD estimation as accurate
enough, it is able to identify the backward slow path and
provide improved estimations of OWDs, as compared to
halving the RTT.

In the following, we first present a few notations related to
our delay model, then we present our algorithm.

A. Delay model
This section exposes a few notations for a baseline 2-

subflow case. We make no assumption about the number of
interfaces of the host (mono or multihomed) or the physical
paths followed by the subflows (i.e., partially or fully disjoint).
The disjoint case seems popular though, as it is likely to exhibit
a higher difference between the OWDs, as it is the case for
smartphones with both cellular and wifi interfaces.

Let i ∈ {1, 2} be the subflow index, fi and ri be respectively
the forward and reverse transfer delay on subflow i.

The following notations are illustrated in Figure 1, let the
OWD of the Forward Fast Subflow (FFS), the Forward Slow
Subflow (FSS), the Backward Fast Subflow (BFS) and the
Backward Slow Subflow (BSS) be respectively:

fFFS = mini(fi) (1)
fFSS = maxi(fi) (2)
rBFS = mini(ri) (3)
rBSS = maxi(ri) (4)

It is worth noting that the Forward Fast Subflow (FFS) can
be a BSS, i.e., a subflow is not necessary the shortest in
both forward and backward directions. Obviously, the RTT
of subflow i can be computed as:

RTTi = fi + processing delay + ri (5)

fi and ri can be decomposed into a deterministic and a
stochastic part. The deterministic part corresponds to the time
needed for a bit to propagate through its medium (supposing
the route does not change during the connection) while the

stochastic part refers to generic queuing delays. The processing
delay refers to the time taken at each end-host for the packet
to be actually sent or received at the application layer. We
assume that the processing delay is negligible in (5) and thus
we neglect it in the following. By analogy with TCP, this
means that the Nagle algorithm [23] (which prevents TCP
from sending many small packets) and delayed ACKs [24]
(TCP receiver waits a certain amount of received packets or
a timeout before acknowledging packets) should be disabled
to keep the processing delay negligible. The sending buffer
should also be empty for the same reason, except if hardware
timestamping is in use. Duplicate acknowledgments caused by
probes should not trigger retransmissions either (it is already
true in MPTCP). Packet loss of any packet during a round can
be detected and results from the round dismissed. The forward
and backward delta delay are then defined as:

∆FOWD = fFSS − fFFS (6)
∆BOWD = rBSS − rBFS (7)

Both values are computed so that they are not negative.
The sender can easily retrieve the RTT, but it does not know

fi or ri and traditionally assumes that fi = ri = RTTi/2. In
the following paragraph, we describe our estimator algorithm
allowing to alleviate this issue.

B. Algorithm

As mentioned above, we aim to rely only on the sender’s
clock and require no cooperation with network elements.
Before describing the algorithm, we need to highlight the
following assumptions:

1) The clock precision is at least one magnitude higher than
the maximum RTT.

2) The hosts can send packets at a locally precise deter-
mined time.

3) The server acknowledges every received packet imme-
diately.

4) Timestamps can be embedded into packets
1) ensures that we can measure accurately enough the time we
want to estimate. 2) may be more or less feasible, but is re-
quired to pace packet emission. 3) is assumed for convenience,
but the algorithm could work with this additional constraint
at the expense of precision. 4) ensures the host can identify
each probe, to detect and discard rounds where probes arrive
in disorder or are lost.

The first objective of the algorithm is to compute ∆̃FOWD,
then it can compute a reverse ∆̃BOWD value and finally
provide an estimation for OWDs. The key idea to deduce
the ∆FOWD is to forcefully create and detect head of line
blocking at the receiver from the sender side, as depicted in
Figure 2 (the receive buffer is represented between square
brackets). This is done by sending a packet on the FSS, the
sender then waits for the currently estimated ∆̃FOWD and
sends a train of probes on the FFS until these probes match
either the head of line blocking pattern in Figure 3(c) or
that in Figure 3(d), i.e. packets sent on the FFS frame the

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Mini-Conference674



Fig. 2. An example of head of line blocking.

packet arrival on the FSS. Every probe embed its own unique
timestamp in order to identify itself.

More precisely, the algorithm runs in two steps:
1) the sender needs to determine which subflow is the FFS.

To do so, it sends two packets (one on each subflow)
with consecutive sequence numbers at the same time.
The server acknowledges each packet with the highest
in-order sequence number. Thus it is possible for the
sender to deduce from the ACKs which packet arrived
first at the remote host. Note that the FFS can be the
BSS, i.e., the first packet to come back to the sender is
not necessarily the one that arrived first at the remote
node. This step is quite straightforward and can be
obtained in one RTT as described in the algorithm 1
line 2.

2) the sender then computes ∆̃FOWD. This is an iterative
process that can run as long as FFS and FSS remain the
same, e.g., the algorithm could restart if RTT varies too
much. To achieve this, the sender sends a packet with
sequence number X + 1 on the FSS, then sends probes
(two for instance in Figure 3) with sequence number X
on the FFS with a delay close to the current estimation
of ∆FOWD. There are four different patterns of packet
arrival order at the receiver, all of them being visible on
Figure 3. Depending on the case, the current ∆̃FOWD
is updated accordingly:

• On Figure 3(a), all probes arrive before the packet
on the FSS. The sender can deduce it from the head
of line blocking exhibited by the acknowledgments
of the probes. If the packet on the slow subflow
arrives before any of the probes on the FFS, then
the server would acknowledge that probe with the
sequence number three. The sender can deduce from
this that the current delay before sending the probe
is underestimated.

• Contrary to the previous case, in Figure 3(b) all
probes arrive after the packet on the FSS. The sender
receives an out-of-order ACK on the FSS. This
means that all probes arrived after the packet on
the FSS, i.e., the current ∆̃FOWD is too high and

(a) Early probing: ∆̃FOWD is too low.

(b) Late probing: ∆̃FOWD is too high.

(c) Identical forward and backward fast subflows.
The algorithm has converged to a valid
∆̃FOWD.

(d) Different forward and backward fast sub-
flows.The algorithm has converged to a valid
∆̃FOWD.

Fig. 3. Exhaustive list of possibilities.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Mini-Conference 675



should be decreased.
• In Figure 3(c) are the cases that allow to deduce

more precisely the ∆FOWD, i.e., probes framing
the arrival of the packet on the FSS. The sender
identifies these cases when it receives successive
probes with different ACK numbers. To compute
the forward delay of the FFS, we consider that the
ACKs on each path were concurrently sent by the
server as shown on the similar Figure 1 - so the
estimations change as follows:

f̃FFS =
RTTFFS

2
(8a)

∆̃FOWD = TS2− TS1 (8b)

where TS2 and TS1 are the timestamps exposed in
Figure 1. Reverse OWDs are then deduced from the
RTTs as shown later.

• Figure 3(d) case differs from Figure 3(c) case in
that the FFS is the BSS. To compute the forward
delay of the FFS, we consider that the ACKs on
each path were concurrently sent by the server so
the FFS OWD estimation becomes:

f̃FFS =
RTTFSS − ∆̃FOWD

2
(9)

To summarize, when probes frame the packet arrival on the
FSS, the value ∆̃FOWD may be considered as correct and
allows to compute estimations for the following values:

f̃FFS = min(RTTFFS , RTTFSS − ∆̃FOWD) (10)

f̃FSS = ∆̃FOWD + f̃FFS (11)

r̃BFS = RTTFFS − f̃FFS (12)

r̃BSS = RTTFSS − f̃FSS (13)

IV. SIMULATION RESULTS

We have chosen to implement the algorithm in a network
simulator rather than doing real experiments because com-
paring delay estimations require very high precision values,
we would have needed either synchronized clocks or complex
tunneling to use the same host as client and server. Both
are no easy task so we have implemented the algorithm in
a slightly modified version of the network simulator ns3 [25]
(version 3.20). Ns3 is a well-maintained open-source event-
driven packet-level network simulator.

MPTCP being unavailable in vanilla ns3, we simulated its
behavior via two custom applications - client and server -
over UDP. The client application sends timestamped packets
with a sequence number over the different subflows. Upon
reception, the server generates a reply containing the received
timestamp, plus the server own timestamp and the highest
in-order sequence number it received. The server timestamps
allow the computation of the real OWDs (i.e. these values are
used for plotting but are ignored by the algorithm).

On the Internet, the asymmetry in OWDs can originate
from several reasons, asymmetric bandwidths or asymmetric

Algorithm 1 Instance of the algorithm with three probes
1: interval ← 3ms ◃ Time interval between probes on FFS

2: procedure FINDFORWARDFASTSUBFLOW(seqNb) ◃
Returns a tuple (FFS, FSS)

3: SENDPACKET(1, seqNb)
4: SENDPACKET(2, seqNb+ 1)
5: Wait for both acks
6: if (Ack received on path 0) = seqNb then return (1, 2)
7: else return (2, 1)
8: end if
9: end procedure

10: procedure SENDPACKET(pathId, seq)
11: Send sequence number seq on path pathId
12: end procedure

13: procedure STARTESTIMATIONROUND(FFS, FSS,
deltaEstimation)

14: SENDPACKET(FSS, roundLowestSeqNb+ 1, 0)
15: Wait for Max(deltaEstimation− interval, 0) ◃

Wait for a positive duration
16: SENDPACKET(FFS, roundLowestSeqNb)
17: Wait for interval
18: SENDPACKET(FFS, roundLowestSeqNb)
19: Wait for interval
20: SENDPACKET(FFS, roundLowestSeqNb)
21: end procedure

22: Begin
23: roundLowestSeqNb ← 0
24: ∆̃fOWD = 0 ◃ Start with an estimation of 0
25: FFS, FSS ← FINDFORWARDFASTSUB-

FLOW(roundLowestSeqNb)
26: while no drastic change in RTT do
27: roundLowestSeqNb ← roundLowestSeqNb+2
28: STARTESTIMATIONROUND(FFS, FSS,

∆̃fOWD)
29: Wait for all acknowledgments

◃ In case of losses, a timeout restarts a new round
30: situation ← DEDUCESITUATIONFROMACKS ◃

See Figure 3

31: if situation = Figure3(a) then ◃ Early probes
32: ∆̃fOWD ← ∆̃fOWD + interval
33: else if situation = Figure3(b) then ◃ Late

probes
34: ∆̃fOWD ← ∆̃fOWD − interval
35: else ◃ Probes on FFS framed packet arrival on

FSS
36: ∆̃fOWD ← Average delay of the 2 framing

probes
37: end if
38: end while
39: Restart algorithm from the beginning
40: End

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Mini-Conference676



Fig. 4. Test topology with asymmetric paths.

propagation delays. We test both of them via binding one
on/off TCP application on each client interface, to create jitter.
The topology used is visible on Figure 4 and the queue size
of the routers is set in packet unit. The source code of the
simulation is available at [26].

A. Results
While Figure 5 displays ∆̃FOWD at all times in order to

better understand the estimation update process, it is worth
noting that this estimation should be considered valid only
when ∆̃BOWD is plotted as well. This is particularly visible
from rounds 40 to 50. Around round 40, we simulate a
rerouting event by adding a 30ms delay from R1 to R2. The
algorithm detects the situation in 3(a) and reacts according
to the algorithm 1 line 31 and thus increases the ∆̃FOWD.
Notice that no backward estimation is plotted at that time,
which means the algorithm has not converged yet and that the
current estimation sets only a minimum. In the range 40 to
50, where the FFS is different from the BFS, rounds last as
much as max(RTTFSS , ∆̃FOWD+RTTFFS) which should
be close to the RTT1. Thus the algorithm converged to the
new ∆FOWD in ten RTTs. While our parameters adopted
a conservative approach (starting with an estimation equal to
zero, constant delay between probes), a dichotomic or cubic
approach may allow for a faster convergence.

In Figure 6 the estimations are closer to the real OWD
than halving the RTT - when they exist. For instance in
round 60, the forward delay estimation on path one is 10ms
more precise. Under low-jitter conditions, this should be true
for all situations where the FFS is the same as the BFS,
else it depends on the per-direction delay difference between
subflows. The more difference there is, the more gain the
algorithm should exhibit compared to halving the RTT.

B. Discussion
Our algorithm causes sporadic packet arrival disorder in

order to deduce the ∆FOWD. This information then allows
the sender to prevent constant packet arrival disorder. This
may look contradictory at first but the packet arrival disorder
provoked by the algorithm should occur less frequently then
it would without the algorithm, thus proving beneficial in
the long run. To mitigate the consequences of packet arrival
disorder, one can envision the use of an MPTCP SACK option.

Fig. 5. Real and estimated ∆OWDs (forward and backward).
.

Fig. 6. Real and estimated forward OWDs.

If we consider the adoption of such a scheme in MPTCP, the
standard as well as its Linux implementation, integrating the
described algorithm would require no compatibility breaking
change since the linux implementation already acknowledges
each packet. Pacing requires the sender to send packets ac-
cording to a precise timing, which may be impaired by the
numerous batching mechanisms in place at the different layers,
be it Nagle algorithm or TCP segmentation offload. This may
represent an additional concern.

V. CONCLUSION

More precision in the estimation of OWDs could improve
the performance of various protocols. While single path proto-
cols are limited in options to improve and use that estimation,
multipath protocols that require an even more correct esti-
mation hopefully provide additional possibilities. We devised
a novel mechanism which has few requirements and tested it
against asymmetric delays in the network simulator ns3. While
the algorithm was applied to two subflows, it could run with
more subflows, either running on appropriate pairs of subflows
or sending concurrent probes on several subflows.

As future work, we intend to formalize the possible gain,
design a scheduler accordingly to test it on a real network.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Mini-Conference 677



ACKNOWLEDGEMENT

This work was partially funded by the ANR LISP-Lab
project (lisp-lab.org - Grant No: ANR-13-INFR-0009), the FUI
15 project RAVIR (http://www.ravir.io) and the EIT ICT-Labs
Future Networking Services action line (eitictlabs.eu).

The authors would like to thank Tommaso Pecorella for the
ns3 support.

REFERENCES

[1] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” in Proceedings
of the conference on Communications architectures, protocols and
applications (SIGCOMM), 1994.

[2] M. Aylene and C. Weigle, “Investigating the Use of Synchronized Clocks
in TCP Congestion Control,” Ph.D. dissertation, University of North
Carolina at Chapel Hill, 2003.

[3] R. Stewart, Q. Xie, K. Morneault, and Al., “Stream Control Transmission
Protocol,” RFC2960, 2000.

[4] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
guidelines,” RFC6824, 2011.

[5] S. Ferlin and T. Dreibholz, “Multi-Path Transport over Heterogeneous
Wireless Networks: Does it really pay off?” in Proceedings of the IEEE
Global Communications Conference (GLOBECOM), 2014.

[6] D. Kaspar, “Multipath Aggregation of Heterogeneous Access Networks,”
Ph.D. dissertation, Faculty of Mathematics and Natural Sciences at the
University of Oslo, 2012.

[7] F. Yang and P. Amer, “Using One-way Communication Delay for In-
order Arrival MPTCP Scheduling,” in Proceedings of Chinacom, 2014.

[8] ——, “Non-renegable Selective Acknowledgments (NR-SACKs) for
MPTCP,” in 27th International Conference on Advanced Information
Networking and Applications Workshops. IEEE, 2013.

[9] V. Paxson, “On calibrating measurements of packet transit times,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 26, 1998, pp.
11–21.

[10] “Global positioning system standard positioning service performance
standard 4,” no. September, 2008. [Online]. Available: http://www.gps.
gov/technical/ps/2008-SPS-performance-standard.pdf

[11] “Precision Time Protocol (IEEE 1588).” [Online]. Available: http:
//www.nist.gov/el/isd/ieee/ieee1588.cfm

[12] D. Mills, U. Delaware, J. Martin, J. Burbank, and W. Kasch, “Net-
work Time Protocol Version 4: Protocol and Algorithms Specification,”
RFC5905, pp. 1–110, 2010.

[13] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, and Z. M. Mao, “A
measurement study of internet delay asymmetry,” in Lecture Notes in
Computer Science, vol. 4979 LNCS, 2008, pp. 182–191.

[14] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush, “A measurement
study on the impact of routing events on end-to-end internet path
performance,” Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications
(SIGCOMM), 2006.

[15] V. Paxson, “Measurements and analysis of end-to-end Internet dynam-
ics,” Ph.D. dissertation, University of California at Berkeley, 1998.

[16] V. Jacobson, R. Bradeb, and D. Borman, “TCP Extensions for High
Performance,” RFC1323, 1992.

[17] R. Scheffenegger, M. Kuehlewind, and B. Trammell, “Additional nego-
tiation in the TCP Timestamp Option field during the TCP handshake,”
draft-scheffenegger-tcpm-timestamp-negotiation-05, 2013.

[18] J.-H. C. J.-H. Choi and C. Y. C. Yoo, “Analytic end-to-end estimation
for the one-way delay and its variation,” in Second Consumer Commu-
nications and Networking Conference (CCNC). IEEE, 2005.

[19] O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-
path delay measurements,” in Conference on Computer Communications
(INFOCOM). IEEE, 2001.

[20] E. P. Ribeiro and V. C. M. Leung, “Asymmetric path delay optimization
in mobile multi-homed SCTP multimedia transport,” Proceedings of the
1st ACM workshop on Wireless multimedia networking and performance
modeling - WMuNeP, 2005.

[21] F. Song, H. Zhang, S. Zhang, F. Ramos, and J. Crowcroft, “An estimator
of forward and backward delay for multipath transport,” Technical
report, University of Cambridge, no. 747, 2009.

[22] D. Zhou, H. Li, and J. Li, “Analysis of re-sequencing buffer overflow
probability based on stochastic delay characteristics,” IEEE 24th An-
nual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Sep. 2013.

[23] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC896, 1984.
[24] R. Braden, “Requirements for Internet Hosts – Communication Layers,”

RFC1122, 1989.
[25] “Ns3 official website.” [Online]. Available: www.nsnam.org
[26] “Ns3 simulation source code.” [Online]. Available: https://github.com/

teto/pacing

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Mini-Conference678


