
Augmented Multipath TCP Communications
Matthieu Coudron, Stefano Secci, Guy Pujolle

LIP6, UPMC, 4 place Jussieu 75005, Paris, France. Email: firstname.lastname@lip6.fr

Abstract—Cloud networking imposes new requirements in
terms of connection resiliency and throughput among virtual
machines, hypervisors and users. A promising direction is to
resort to multipath communications, yet existing protocols still
struggle to take advantage of the path diversity offered by IP
networks. Multipath TCP (MPTCP) can create several TCP
subflows on different interfaces and concurrently forward data
on these subflows. Current MPTCP implementations create a
full mesh of subflows between IP endhosts, which may be
suboptimal according to the topology. We propose to rely on
topology information brought by an external protocol in order
to improve the MPTCP subflow management; we resort to
the Locator/Identifier Separation Protocol (LISP) to retrieve IP
path diversity information, to then accordingly create MPTCP
subflows. We report noticeable benefits obtained using a large-
scale Cloud access test bed, and we describe further work we
are conducting in this sense.

I. INTRODUCTION

From a physical network perspective, it is easy to observe
the existence of a large number of paths between two end-
points, by various measurement techniques. In most countries,
the competition between telecommunication companies lead
to the deployment of different wireline physical networks
till the home: xDSL, optical fiber links, etc.. Data center
networks also evolve adopting topologies with increased path
diversity such as Fat-Tree [1] or VL2 [2]. On the other hand,
mobile users can also rely on multiple wireless interfaces with
smartphones and tablets (3G, 4G, Wifi, etc). In this context,
we aim at increasing the throughput offered to applications by
a light and scalable extension to the Multipath TCP protocol.

By informing MPTCP subflow management system of the
available path diversity, and relying on a network infrastructure
“programmable” to some extent, MPTCP subflows can be
created and then routed via multiple disjoint paths. This does
not need to be done pervasively, i.e., these paths do not need
to be end-to-end completely disjoint, as long as sharing a link
does not imply sharing a bottleneck. Once these subflows are
created, the MPTCP congestion control system is in charge of
spreading the load over the different subflows.

MPTCP implementations (see [3]) estimate by default the
path diversity by counting the number of local and remote
interfaces. This might lead to situation with more subflows
than needed, or as in the example in Fig. 1 less subflows than
needed. In this example, MPTCP implementations create one
subflow where in fact they could use the WAN path diversity
(considering there is no LAN bottleneck). In this case, in a Lo-
cator/Identifier Separation Protocol (LISP) network, MPTCP
could create two subflows instead of one relying on the LISP
router to attribute one subflow to each WAN path.

After a brief overview, we synthetically present a solution
showing we can achieve a 100% increase in the throughput
by adding a single subflow for the real scenario depicted in
Fig. 1. Then we present further research on the topic.

II. MULTIPATH TCP (MPTCP)
Multipath TCP (MPTCP) is a TCP extension [4] thought

to make the best out of end-to-end path diversity. It basically
tries to establish several TCP subflows - under the supervision
of the main MPTCP connection - between remote and local
endpoints. MPTCP then concurrently forwards data over those
subflows, which is likely to increase the throughput, under
appropriate congestion control. These subflows can differ by
their local/remote IP addresses, or even by their port numbers,
thus allowing the creation of several subflows on a single
interface. MPTCP conception emphasizes backward compat-
ibility with current networks. For instance, if an endpoint
tries to establish an MPTCP connection with a non-MPTCP
compliant remote host, then the communication will fall back
to legacy TCP. Many mechanisms were also devised to cope
with middleboxes fiddling (such as IP replacement in the NAT
case, sequence number offsets in firewalls etc...).

III. THE LOC/ID SEPARATION PROTOCOL (LISP)
IP addresses usually assume localization and identification

functions, hence they need to be distributed according to
the topology to allow efficient routing, which hinders the
operational distribution of IP addresses. LISP solves this
“conflict” between the functional and operational needs, by
assigning one namespace to each function: an endhost owns
an IP, which differs from the IP used for routing in the Internet
transit segment. This is achieved by tunneling packets between
remote and local networks. When an endhost sends a packet
to a remote site, this packet passes through the border router,
which is a LISP router. This LISP router requests from a
mapping system (similar to DNS) the egress LISP router(s)
to tunnel the packets to, in order to reach the remote endhost.
It then encapsulates the original packet into a specific UDP
packet and forwards to the Egress Tunnel Router (ETR). This
ETR decapsulates the UDP packet and forwards the inner
IP packet to its original destination. As MPTCP, LISP can
balance the load over different paths, and provides backward
compatibility via the deployment of Proxy Ingress Tunnel
Routers and Proxy ETRs.

IV. PROPOSED SOLUTION

In order to achieve the MPTCP-LISP coupling, we modified
a linux kernel MPTCP implementation [3] so that it queries a
LISP router how to manage subflows on every new MPTCP978-1-4799-1270-4/13/$31.00 c©2013 IEEE

Fig. 1. Our Cloud access testbed scenario

connection via a Linux kernel module [7]; we also had to
slightly modify an open source LISP router (LISPmob [5])
in order to accept these requests and perform load-balancing.
Our code is open source [7].

In a nutshell, we propose that when a LISP router receives
an end-point-identifier mapping request from the MPTCP
endpoint, it responses with a mapping reply with the necessary
information to determine the number of WAN paths towards
the requested destination. Upon reception, MPTCP creates the
corresponding number of subflows and attributes consecutive
(modulo the number of WAN links) source port number to the
subflows, so that our LISP router can achieve optimal load-
balancing by looking at the TCP source port number. In fact,
the LISP router forwards the subflow on the WAN link number
(TCP source port number) % (number of LISP routing locators
towards the packet destination). In the current implementation,
the endpoint is supposed to be aware of the load-balancing
capabilities of the LISP router.

V. EVALUATION

We tested our solution using a server in a data center of
the nu@ge project (www.nuage-france.fr) multihomed via two
different Internet service providers, with a single-homed client,
as in Figure 1. Both hosts are MPTCP compliant and behind
a LISP router connected to the LISP Beta Network testbed
(www.lisp4.net).

We made the client download 40 files from the server, each
file being bigger than the previous one by an increment of
256 kb. We recorded five transfer completion times for each
file, and repeated the whole procedure using three different
configuration cases: (i) legacy TCP, i.e., no cooperation with
LISP, single TCP flow; (ii) MPTCP only, i.e., no cooperation
with LISP, and a single MPTCP subflow; (iii) LISP-MPTCP,
crosslayer cooperation with as many subflows as the product
of remote and local RLOCs, i.e., two subflows.

On Figure 2, we see that unassisted MPTCP (marked
‘MPTCP’) and TCP transfer times are quite close, MPTCP
being a little slower than TCP; the cause should be the
additional 20 bytes overhead per packet introduced by MPTCP.
More importantly, we can see that our solution (marked
‘LISP+MPTCP’) performs significantly better. For almost all
file sizes, we get a gain close to 100%, i.e., with the additional
LISP-enabled subflow we can halve the transfer time. This
very clearly shows the important benefit we can reach with
the MPTCP-LISP crosslayer cooperation module we propose.

Fig. 2. Completion times for different file sizes

VI. PERSPECTIVES AND FUTURE WORK

We obtain therefore promising results, yielding to an
augmented MPTCP communication experience thanks to a
lightweight informed IP path diversity distribution. These
results can be further improved with extensions we aim to
work on. Apart adding more subflows thanks to additional
network multihoming’s path diversity, we can further augment
the performance and reinforce the protocol architecture by
leveraging on the LISP Traffic Engineering (LISP-TE [6])
capabilities to (i) ensure that subflows follow different paths
in a different way instead of configuring the LISP router to
balance the load according to TCP source ports; (ii) stitch
additional subflows to explicite WAN overlay paths created
across LISP-TE tunnelling routers. Indeed, LISP-TE allows
explicit IP overlay routing on the top of LISP routers by build-
ing LISP encapsulation chains. Furthermore, subflow addition
can also be supported at the LAN/DC/L2 level; an adequate
integration with networks based on OpenFlow, TRILL or SPB
can further augment MPTCP, as long as they can provide
topology information to MPTCP. Finally, the resulting gain
in path diversity management can open the way to MPTCP-
based network coding techniques for challenging conditions
(i.e., wireless, faulty or lossy network environments).

REFERENCES

[1] M. Al-fares, A. Loukissas, A. Vadat , “A scalable Commodity Data
Center Network Architecture ”, May 2002.

[2] A. Greenberg, et al. “VL2: A Scalable and Flexible Data Center Network
Architecture ”, May 2002.

[3] C. Raiciu et al., “How Hard Can It Be ? Designing and Implementing
a Deployable Multipath TCP ”, in Proc. of USENIX NSDI’12.

[4] A. Ford et al., “TCP Extensions for Multipath Operation with Multiple
Addresses”, RFC 6824, Jan. 2013.

[5] “LISPmob open source LISP node ”(website): http://www.lispmob.org
[6] D. Farinacci, P. Lahiri, M. Kowal, “LISP Traffic Engineering Use-Cases

”, draft-farinacci-lisp-te-02, Jan. 2013.
[7] MPTCP & LISPMOB open source patches: https://github.com/teto

