
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 1

Striking a Balance Between Traffic Engineering and
Energy Efficiency in Virtual Machine Placement

Dallal Belabed, Graduate Student Member, IEEE, Stefano Secci, Member, IEEE, Guy Pujolle, Senior
Member, IEEE, Deep Medhi, Senior Member, IEEE

Abstract—The increasing adoption of server virtualization has
recently favored three key technology advances in data-center
networking: the emergence at the hypervisor software level of
virtual bridging functions, between virtual machines and the
physical network; the possibility to dynamically migrate virtual
machines across virtualization servers in the data-center network
(DCN); a more efficient exploitation of the large path diversity
by means of multipath forwarding protocols. In this paper, we
investigate the impact of these novel features in DCN optimization
by providing a comprehensive mathematical formulation and
a repeated matching heuristic for its resolution. We show,
in particular, how virtual bridging and multipath forwarding
impact common DCN optimization goals, traffic engineering (TE)
and energy efficiency (EE), and assess their utility in the various
cases of four different DCN topologies. We show that virtual
bridging brings a high performance gain when TE is the primary
goal and should be deactivated when EE becomes important.
Moreover, we show that multipath forwarding can bring relevant
gains only when EE is the primary goal and virtual bridging is
not enabled.

Index Terms—Virtual Bridging, Multipath Forwarding, Data
Center Networking, VM Placement, Traffic Engineering.

I. INTRODUCTION

THe advent of efficient software virtualization tech-
niques allows running server virtualization at competitive

performance-cost trade-offs with respect to legacy solutions.
The increasing adoption of server virtualization has recently
favored three key technology advances in data-center network-
ing: the emergence of virtual bridging functions at the hypervi-
sor software level (between virtual machines and the physical
network); a more efficient exploitation of path diversity by
means of multipath forwarding protocols; the possibility to
dynamically migrate virtual machines across virtualization
servers at different places in the data-center network (DCN).

In the context of DCN optimization, virtual bridging is
useful for the management of Virtual Machines (collocated in
the same virtualization server), by offloading inter-Virtual Ma-
chine (VM) traffic from access and aggregation switches at the
expense of an additional computing load on the virtualization
server. Moreover, with the emergence of flat DCN topologies,

D. Belabed, S. Secci, and G. Pujolle are with Sorbonne Universités,
UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France (e-mails:
dallal.belabed@upmc.fr, stefano.secci@upmc.fr, guy.pujolle@upmc.fr).

D. Medhi is with the University of Missouri-Kansas City, 5100 Rockhill
Road Kansas City, MO 64110-2499, USA (e-mail: dmedhi@umkc.edu).

A preliminary version of the paper appears in the proc. of ITC 2014 [1],
and some preliminary results also in the proc. of DCPERF’14 workshop [2].

This work was partially supported by the Systematic FUI 15 project
RAVIR, the ANR Reflexion project (contract nb: ANR-14-CE28-0019), and
the National Science Foundation grant CNS-0916505.

such as Fat-Tree [3], DCell [4], and BCube [5] multipath
forwarding can become useful to fully utilize the available
paths and capacity and therefore offer higher throughput and
resiliency to the servers. The ability to synchronize VM
copies and migrate across virtualization servers (referred in
the following also as ‘containers’ or ‘VM containers’) further
adds elasticity to the cloud fabric by allowing fault-restoration
and resource consolidation.

Virtual machine placement algorithms typically address traf-
fic engineering (TE) [6] [7] or energy efficiency (EE) [8] [9]
objectives, such as to minimize the maximum link utilization
when balancing the traffic load on DCN links or to maximize
server utilization to turn off or hibernate some servers to
save energy. Addressing TE and EE goals eventually leads to
savings in DCN maintenance and planning costs while increas-
ing the performance. The relationship between the presented
three recent trends, virtual bridging1, multipath forwarding2,
and VM placement, is a rather unexplored subject that we
investigate in this paper.

The contribution of the paper is two-fold:
• Given that, to the best of our knowledge, no work at the

state of the art offers a DCN optimization framework
supporting virtual bridging and multipath forwarding,
we formally formulate the virtual machine placement
optimization problem with these features in a novel,
compact, and versatile formulation. For its resolution with
dense, flat, and large DCN topologies, we propose a
repeated matching heuristic.

• We analyze the impact of virtual bridging and multipath
forwarding in DCN optimization with TE and EE objec-
tives, and with a detailed sensibility analysis including
four different DCN topologies (3-layer, FatTree, BCube,
DCell) that cover all possible cases. We draw observa-
tions on the case-by-case suitability of virtual bridging
and multipath forwarding features with respect to DCN
VM placement optimization.

Section II presents the background of our work. The DCN
optimization model is formulated in Section III, the proposed
heuristic in Section IV, and simulation results are in Section V.
Section VI concludes the paper.

1The term ‘virtual bridging’ is used in the following to refer to the traffic
switching operation at the software hypervisor level of the virtualization
servers (VM containers). With virtual bridging enabled, the virtual bridge
switches traffic between VMs in the same container, as well as traffic coming
from outside and going outside the container.

2The term ‘multipath forwarding’ is used in the following to apply to the
case when the traffic load at a given switching node can be balanced over
multiple network paths.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 2

II. BACKGROUND

In order to have a clear understanding of the DCN optimiza-
tion model and features, the following provides a detailed and
selected state of the art work on DCN topologies, Ethernet
routing, and consolidation formulations.

A. Data Center Network Topologies

The 3-layer architecture [10], depicted in Fig. 1a, is the
common legacy DC topology. Its three layers are at the access,
aggregation, and core points. At the access layer, servers or
server units (e.g., blades) are attached to the network, via
access switches; at the aggregation layer, access switches
connect to aggregation switches; at the core layer, each
aggregation switch is connected to multiple core switches.
Such an architecture typically relies on legacy Virtual Local
Area Network (VLAN) and spanning-tree switching [11],
which, while simple and fast, is known to underutilize the
network resources. Even if TE mechanisms, such as a multiple
spanning tree protocol (MSTP), root bridge priority and port
cost optimization methods exist, major problems still persist,
namely in terms of convergence time upon failures, routing,
and physical topology changes.

As briefly mentioned in the introduction, alternative topolo-
gies have been proposed in recent years to better meet rising
requirements of network virtualization and novel switching
protocols. At the origin of the various propositions, the authors
in [3] propose a special instance of a Clos topology called
“Fat-Tree” to interconnect commodity-of-the-shelf (COTS)
switches as a k-ary Fat-Tree. As in Fig. 1b, all switches are
identical and are organized on two layers: the core layer and
the pod layer. Generally, at the pod layer there are k pods,
each one containing two layers of k

2 switches: edge switches
and aggregation switches. Each k-port switch in the lower
layer (edge layer) is directly connected to k

2 hosts. Each of
the remaining k

2 ports is connected to k
2 of the k ports in the

aggregation layer. Concerning the core layer, there are (k
2)2 k-

port core switches. Each core switch has one port connected
to each of the k pods. The ith port of any core switch is
connected to the ith pod so that consecutive ports in the
aggregation layer of each pod switch are connected to the core
switches on (k

2) strides. Fig. 1b shows an example for k = 4.
Another proposed topology that captures major attention

is BCube [5], a recursive modular architecture. As depicted
in Fig. 1c, BCube has server devices with multiple ports
(typically no more than four). Multiple layers of cheap COTS
switches are used to connect those servers. A BCube0 is
composed of n servers connected to an n-port switch. A
BCube1 is constructed from n BCube0s and n n-port switches.
More generally, a BCubek (k ≥ 1) is constructed from n
BCubek−1s and nk n-port switches. For example, in a BCubek
with n n-port switches, there are k + 1 levels of switches.
Each server has k+ 1 ports numbered from level-0 to level-k.
Hence, BCubek has N = nk+1 servers. Each level has nk n-
port switches. The construction of a BCubek is as follows. One
numbers the n BCubek−1s from 0 to n− 1 and the servers in
each BCubek−1 from 0 to nk−1. Then one connects the level-
k port of the ith server (i ∈ [0, nk − 1]) in the jth BCubek−1

(a) 3-layer topology

(b) Fat-tree topology with 4 pods

(c) BCube1 with n=4

(d) DCell1 with n=4

Fig. 1: Data Center Network topologies.

(j ∈ [0, n − 1]) to the jth port of the ith level-k switch. It
is worth noting that BCube requires virtual bridging in the
containers to operate. Fig. 1c shows an example of a BCube1,
with n = 4.

Similarly to BCube, DCell [4] has servers equipped with
many interfaces and COTS switches. A DCell server is con-
nected to several other servers and a switch. A high-level
DCell is constructed from low-level DCells. The connection
between DCells can make use of virtual bridging. A DCellk
(k ≥ 0) is used to denote a level-k DCell. DCell0 is the
building block to construct larger DCells. It has n servers
and a switch (n = 4 for DCell0 in Fig. 1d). All servers in
DCell0 are connected to the switch. In DCell1, each DCell0 is
connected to all the other DCell0s with one link; the Fig. 1d
shows a DCell1 example. DCell1 has n+1 = 5 DCell0s. DCell
connects the 5 DCell0s as follows. It assigns each server a 2-
tuple [a1, a0], where a1 and a0 are the level-1 and level-0 IDs,
respectively. Thus a1 and a0 take values from [0, 5) and [0, 4),

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 3

respectively. Then two servers with 2-tuples [i, j−1] and [j, i]
are connected with a link for every i and every j > i. Each
server has two links in DCell1. One connects to its switch,
and the other to a server in another DCell0. In DCell1, each
DCell0 is fully connected with every other virtual node to
form a complete graph. Moreover, since each DCell0 has n
inter-DCell0 links, a DCell1 can only have n + 1 DCell0s as
illustrated in Fig. 1d. A DCellk is constructed in the same way
to the above DCell1 construction in a recursive procedure [4]
that is more complex than the BCube one.

B. Ethernet fabric evolution
In the last decade, several evolutions of the legacy Ethernet

switching architecture in terms of TE features have occurred.
Under the perspective of incremental upgrades of the Ethernet
switching architecture to meet TE requirements, one can
consider MSTP [12] as the first attempt to actively perform TE
in a legacy Ethernet switched network running STP, by default
suffering from unused links due to STP port blocking. The
multiplexing of multiple clients or VLANs into one among
several spanning trees can also be optimized as presented
in [12].

Other protocols trying to solve bottleneck issues along the
spanning tree(s) have been standardized, notably the Link
Aggregation Group and its evolutions [13] allows a switch to
use multiple links as a single one with respect to STP. Even-
tually, the real TE bottleneck in Ethernet switching being the
spanning tree fabric, the STP has been removed from recent
carrier Ethernet solutions implementable in DCNs, namely: the
Provider Backbone Bridges with Traffic Engineering (PBB-
TE) [14] where centralized control servers push MAC tables
to backbone switches (with a similar philosophy to Open-
Flow [15]), the Layer-2 label switching architecture [16] using
the VLAN fields as label-switching fields; the Shortest Path
Bridging (SPB [17]) and the Transparent Interconnection of a
Lot of Links (TRILL [18]) protocols where the control-plane
is distributed adapting a layer-3 link state routing protocol (the
Intermediate System to Intermediate System, ISIS, protocol).
While SPB needs the whole DCN backbone to be upgraded
with new switches, TRILL can be implemented only at key
points (e.g., at the hypervisor level only using software im-
plementations) and is therefore considered more scalable. As
nodes in this context are no longer simple bridges since they
perform a routing function in TRILL as well as in this paper,
the term Router-Bridges (RBs) is adopted. While differing in
terms of scalability and deployability, the latter three solutions
have proven to be viable ones and have been adopted by
many vendors. Notably, SPB and TRILL enabled multipath
routing of Ethernet frames and hence, opened the way to active
load-balancing over multiple paths across virtual and physical
switches. In this paper, we assume DCN multipath capabilities
are enabled by a protocol like these. It is worth mentioning that
among these protocols, PBB-TE and OpenFlow can readily
implement the result of an optimization framework such as
the one described in this paper. On the other hand, as of now,
SPB and TRILL are less versatile; apart from multipath load
balancing, they do not offer or provide an easy way to support
explicit TE routing.

C. Virtual Machine Placement in Data Center Networks
Relevant works propose VM placement algorithms that

take network-specific constraints into consideration. In [19],
the authors propose a VM placement algorithm considering
network resource consumption, modeling a VM container as
a set of CPU-memory slots where each slot can be allocated
to a VM. They considered the number of VMs equal to the
number of slots. The placement objective was to minimize the
average traffic forwarding latency by assuming static single-
path routing and focusing on two traffic models: a dense
one, where each VM sends traffic to every other VM, and a
sparse Infrastructure as a Service (IaaS)-like one with isolated
clusters where only the VMs in the same IaaS communicate.

In [20], the authors present a VM placement algorithm
based on a stochastic bin-packing modeling with non-
deterministic demands following normal distributions and an
ad-hoc resolution heuristic. In [21], the authors propose an
iterative 3-step virtual embedding heuristic. During the first
step, an arbitrary VM mapping is done and then the servers
are mapped to the physical bridges. Finally, the virtual links
are mapped accordingly. If one of these steps fail, the heuristic
comes back to the previous step until a solution is found. How-
ever, the quality of the solution appears strongly dependent
on the first step, and the back-tracking can lead to high time
complexity.

In [6], the authors formulate the problem as a job placement
problem, each job being associated with a number of VMs,
by minimizing a global network cost. However, link capacity
constraints as well as multipath forwarding capabilities are
not considered. In [22], the authors formulate the problem as
a routing problem, in order to address the network and server
optimization problem as a single one. The objective of the
optimization is the minimization of the energy consumption
of the servers, bridges, and links and therefore discarding
network-specific and server-specific cost components.

Some of these studies ignore link capacity constraints while
others exclude dynamic routing as in [19], or consider the
traffic volume to reduce the number of containers as in [20],
or just the network resources as in [19] and [23]; only [22]
considered multipath forwarding capabilities (in the sense
that multiple egress paths are simultaneously used for the
same destination). Commonly, because of the relatively recent
employment of virtual bridging for transiting traffic at the
server level, virtual bridging capabilities for external traffic
forwarding are ignored. To the best of our knowledge, our
study is the first one that precisely addresses the joint usage of
virtual bridging and multipath forwarding, proposing adequate
algorithms and assessing their impact on VM placement.

III. OPTIMIZATION PROBLEM

In the following, we present the mathematical formulation
of the target VM placement problem. The optimization prob-
lem is to determine how to place VMs at VM containers in a
DCN supporting virtual bridging and/or multipath forwarding
while satisfying TE and/or EE goals. We first present the
formulation with no multipath forwarding and virtual bridging
capabilities, and then we show how it can be easily extended
to enable these features. The notations are provided in Table I.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 4

TABLE I: Mathematical notations

N set of VM containers and RBs; n ∈ N .
C container set; C ⊂ N .
V VM set; V ⊂ N .
R RB set; R ⊂ N . Ra ⊂ R is the access RB set.
TV set of VM pairs; TV ⊂ V × V .
TC set of container pairs; TC ⊂ C × C.
TR set of RB pairs; TR ⊂ R×R.
Variables and Parameters
ev,c 1 when v is at c, 0 otherwise. v ∈ V, c ∈ C.
bc 1 if c is enabled, 0 otherwise. c ∈ C.
ac,r 1 when c traffic via r. Multipath: ∈ [0, 1]. c ∈ C, r ∈ R.
ρks,d 1 if traffic from rs to rd transits by the kth path if unipath.

Multipath: ∈ [0, 1]. (rs, rd) ∈ TR.
tci,cj traffic from ci to cj , (ci, cj) ∈ TC .
tri,rj traffic from ri to rj ; (ri, rj) ∈ TR.
tc,r traffic from c ∈ C to r ∈ R.
U maximum network link utilization.
KP
c power capacity of container c ∈ C.

KM
c memory capacity of container c ∈ C.

dPv computing power demand of VM v ∈ V .
dMv memory demand of VM v ∈ V .
tvi,vj traffic from vi to vj , (vi, vj) ∈ TV ; tvi,vi = 0.
Ki,j (i, j) link capacity, null if no link; (i, j) ∈ N ×N .
pk,s,di,j 1 when kth path from rs to rd uses link (ri, rj).
α trade-off coefficient between TE and EE objective, α ∈ [0, 1].

We use a bi-criteria objective function that consists of the
minimization of U , the maximum link utilization (TE goal),
and the number of enabled containers (EE goal), weighted by
the α trade-off factor instrumental to assess their impact on
VM placement and DCN performance.

The objective is to balance between TE and EE goals:

min α U + (1− α)
∑
c∈C

bc (1)

while ensuring that a VM is assigned to only one container:∑
c∈C

ev,c = 1 ∀v ∈ V. (2)

A container is enabled only if it hosts at least one VM:

bc ≥ ev,c ∀c ∈ C, ∀v ∈ V. (3)

Each container is assigned to one RB:∑
r∈R

ac,r = 1 ∀ c ∈ C. (4)

Traffic between two access RBs is sent over a single path:∑
k

qkrs,rd = 1 ∀(rs, rd) ∈ Ra ×Ra. (5)

A VM is assigned to a container only if there are available
residual computing resources:∑

v∈V

dPv ev,c ≤ KP
c

∑
v∈V

dMv ev,c ≤ KM
c ; ∀c ∈ C

∑
v∈V

dPv ev,c ≤ KP
c

∑
v∈V

dMv ev,c ≤ KM
c ; ∀c ∈ C. (6)

Container-RB traffic does not violate the access link capacity:

tc,r ≤ Kc,r ∀ c ∈ C ∀r ∈ R. (7)

Similarly for the aggregation-core link capacity:∑
rs,rd

∑
k

trs,rdρ
k
rs,rdp

k,rs,rd
ri,rj < U Kri,rj ∀(ri, rj) ∈ T

R (8)

tc,r =
∑

(vi,vj)∈TV

(tvi,vj + tvj ,vi) evi,c ac,r ∀r ∈ R, ∀c ∈ C

trs,rd =
i6=j∑

(ci,cj)∈TC

tci,cj aci,rs acj ,rd ∀(rs, rd) ∈ TR

tci,cj =
∑

(vx,vy)∈TV

(tvx,vy + tvy,vx) evx,ci evy,cj ∀ ci, cj ∈ C.

1) Enabling multipath capabilities: Multipath forwarding
between containers and RBs (in the place of link aggrega-
tion/bonding or similar approaches) can simply be enabled by
declaring αc,r as a non-negative real variable. Hence, we add
the following integrity constraint:∑

k

ac,r = 1 ∀ c ∈ C. (9)

Similarly, multiple paths between RBs can be enabled by
declaring ρks,d as a non-negative real variable and adding the
following integrity constraint:∑

k

ρkrs,rd = 1 ∀(rs, rd) ∈ Ra ×Ra, (10)

where the traffic between RBs in (8) becomes
trs,rd =

i 6=j∑
(ci,cj)∈TC

tci,cjaci,rs acj ,rd ; ∀(rs, rd) ∈ TR ∀ ci, cj ∈ C.

2) Enabling virtual bridging: Enabling virtual bridging
means that the container takes the function of a bridge
(typically at the hypervisor level). This feature can be easily
included by transforming the variable ac,r in a parameter and
extending the RB set including the container nodes. Given
that virtual bridging consumes additional power and memory,
(6) should be slightly changed so that such an additional
component (function of the traffic load) is included.

The use of virtual bridging consumes VM container power
and memory. The constraints (6) change to (11) and the traffic
between VMs in the same container no longer transits by
physical bridges.

τ(tc,c + tc,r + tr,c) +
∑
v∈V

dPv ev,c ≤ KP
c ; ∀ c ∈ C

γ(tc,c + tc,r + tr,c) +
∑
v∈V

dMv ev,c ≤ KM
c ; ∀ c ∈ C. (11)

This optimization model is an extension of the baseline
multi-commodity flow (MCF) problem for network routing
with link capacity constraints [24] by taking into account
peculiar data center networking constraints due to VM mo-
bility, VM container switching on and off, virtual bridging,
and multipath forwarding.

Given the elasticity related to VM migrations and multipath
forwarding that require double mapping, between VMs and
VM containers and between VM containers and usable paths,
our optimization problem, even if comprehensive and versatile
(considering both unipath and multipath modes with and
without virtual bridging) is a non-linear one.

To summarize the problem is

min (1) subject to : (2), (3), (4), (5), (6), (7) and (8)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 5

where (6) is replaced by (11) for the virtual bridging case.
Contraints (9) and (10) are added for the multipath case. The
problem has |V |+ 2|C|+ |Ra|2 variables, |V |+ |C|+ |Ra|2
with multipath forwarding and virtual bridging, and less than
|V |+ |C|(2 + |V ||R|) + 2|R|2 constraints.

IV. HEURISTIC APPROACH

Classically, mapping problems reduce to facility location
problems; when capacity constraints need to be verified as a
function of the type of mapping, there are similarities with the
capacitated facility location problem [25], in particular, to the
single source facility location problem (SSFLP) [26], [27].

It is easy to derive that our DCN optimization problem
can be reduced to the SSFLP, and hence, is NP-hard. In the
SSFLP, we have a set of customers that must be served by a
single facility, and there is a cost associated with opening a
facility in a particular location and a transportation cost from
the facility to the customer. Each customer has a particular
demand and each facility has a limited capacity. The problem
is to find where to locate the facilities to minimize the cost
of the network. Our optimization problem can be reduced to
an instance of a SSFLP as follows. Each VM pair can be
seen as a customer of the SSFLP, and the VM pair has a
global traffic demand that can be seen as the customer demand
from a facility of the SSFLP. To translate our problem to a
SSFLP instance, let (i) the traffic demand between two VMs of
our VM placement problem correspond to a customer demand
from a facility in the SSFLP; (ii) the cost of the link between
the potential containers (where the two VMs can be located)
and each access RBs correspond to half the cost between the
potential facility location and the customer of the SSFLP; (iii)
the first assignment of a VM to a container corresponds to
the cost of opening a facility of the SSFLP; (iv) the container
capacity constraint corresponds to the capacity of the facility
in the SSFLP. In this way, the solution of such an SSFLP
instance provides us with the solution of our VM placement
problem and hence, NP-hard.

A. Reformulation of the optimization problem

Recently, modeling an optical network design problem as
a facility location problem, the authors in [28] extended a
repeated matching heuristic described in [26], [27] to solve
the SSFLP and proved it can reach good optimality gaps for
many large instances of the problem.

Motivated by those results and basic similarities with the
problem in [28], we redesign our DCN optimization problem
as a repeated matching problem. With respect to the network
context of [28], we have more matching sets with peculiar
constraints due to fundamental differences between optical
networks and DCNs. The double mapping we have to handle
in our problem and the multiple capacity constraints we have
to care about (at both the link and VM container sides) makes
this problem more combinatorial than [28], so that comparison
to the optimum is not differently possible than in previous
applications [26]–[28]. In our DCN scope, communications
are between VMs that can be hosted behind the same VM
container or behind distant containers interconnected by a

Fig. 2: Representation of heuristic sets: L1, L2, L3, and L4.

DCN path. External communications can be modeled intro-
ducing fictitious VMs and VM containers acting as an egress
point, if needed. When multipath is enabled, multiple paths
can be used toward a same destination, and when virtual
bridging is enabled, a VM container can transit external traffic
if the topology supports it. When communicating VMs are not
collocated, inter-VM communication should involve a pair of
containers and at least a DCN path between them.

Let a VM container node pair be designated by cp, cp ∈
TC , so that cp = (ci, cj), i.e., a container pair is composed
of two containers ci and cj). When ci = cj the container pair
cp is said to be recursive. A subset of container node pairs is
designated by DC so, DC ⊆ TC . Let the kth path from RB
r1 to RB r2 be designated by rp = (r1, r2, k). A set of RB
paths is designated by DR so that DR ⊂ TR.

Definition IV.1. A Kit φ is composed of a subset of VMs
DV , a VM container pair cp ∈ TC and a subset of RB paths
DR. Each VM v ∈ DV is assigned to one of the containers
in a pair cp (c1, c2). A container pair cp (c1, c2) is connected
by each RB path rp (r1, r2, k) ∈ DR, so that c1 and c2 are
respectively mapped to r1 and r2. The Kit is recursive when its
cp is recursive, and in such a case DR must be empty. When
the multipath is not enabled, |DR| = 1. The Kit is denoted by
φ(cp,DV , DR).

Definition IV.2. A Kit is a Feasible Kit if:

• DV is not empty, i.e., DV 6= �.
• Memory and power demands of each VM are satisfied,

i.e.(6), restricted to DV and cp.
• In case of a non-recursive Kit, the link capacity con-

straints between VM containers are satisfied, i.e., (7) is
restricted to DV , DR and cp.

Definition IV.3. L1,L2,L3,and L4

• L1 is the set of VMs not matched with a container pair,
i.e., L1 = {v | v ∈ DV ∧ v /∈ φ}.

• L2 is the set of VM container pairs not matched with an
RB path, i.e., L2 = {cp | cp ∈ TC ∧ cp /∈ φ}.

• L3 is the set of RB paths not matched with a container
pair, i.e., L3 = {rp | rp ∈ TR ∧ rp /∈ φ}.

• L4 is the set of Kits. It is worth mentioning that L4

becomes Packing when all its kits are feasible.

Definition IV.4. A Packing Π is a union of Kits in L4. A
Packing is said to be feasible if it contains at least one feasible
Kit and L1 is empty.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 6

B. Matching Problem

Given the DCN optimization problem elements using the
above described sets, it can be reformulated as a matching
problem. The classical matching problem can be described
as follows. Let A be a set of q elements h1, h2, . . . , hq . A
matching over A is such that each hi ∈ A can be matched
with only one hj ∈ A. An element can be matched with itself,
which means that it remains unmatched. Let si,j be the cost
of matching hi with hj . We have si,j = sj,i. Let zi,j be
a binary variable equal to 1 if hi is matched with hj . The
matching problem consists in finding the matching over A
that minimizes the total cost of the matched pairs.

min

q∑
i=1

q∑
j=1

si,j zi,j (12)

s.t.

q∑
j=1

zi,j = 1, i = 1, . . . , q (13)

q∑
i=1

zi,j = 1, j = 1, . . . , q (14)

zi,j = zj,i, i, j = 1, . . . , q (15)
zi,j ∈ {0, 1}, i, j = 1, . . . , q. (16)

(13) and (14) ensure that each element is exactly matched
with another one. (15) ensures that if hi is matched with hj ,
then hj is matched with hi. (16) sets zi,j as binary.

In our heuristic, one matching problem is solved at each
iteration between the elements of L1, L2, L3, and L4. At each
iteration, the number of matchable elements is n1+n2+n3+n4
where n1, n2, n3, and n4 are the current cardinalities of the
four sets, respectively. For each matching iteration, the costs
si,j have to be evaluated. The cost si,j is the cost of the
resulting element after having matched element hi of L1, L2,
L3, or L4 with element hj . A basic example of matching is
shown in Fig. 3: L1 is empty (n1 = 0), L2 has two containers
(n2 = 2), L3 has two RB paths (n3 = 2), and L4 has one
feasible Kit (n4 = 1). The result of the matching creates
an unfeasible Kit, and modifies the existing feasible Kit with
an additional RB path (n1 = n2 = n3 = 0, n4 = 2). At
each iteration, the least-cost matching between the elements
has to be determined. The computed matching costs zi,j are
stored in a (n1 + n2 + n3 + n4)× (n1 + n2 + n3 + n4) cost
matrix Z. Z dimensions change at each iteration, and Z is a
symmetric matrix. Given the symmetry, only ten blocks have
to be considered. The notation [Li − Lj] is used hereafter
to indicate the matching between the elements of Li and the
elements of Lj as:

Z =

[L1 − L1] [−] [−] [−]
[L2 − L1] [L2 − L2] [−] [−]
[L3 − L1] [L3 − L2] [L3 − L3] [−]
[L4 − L1] [L4 − L2] [L4 − L3] [L4 − L4]

=

[1] [−] [−] [−]
[2] [3] [−] [−]
[4] [5] [6] [−]
[7] [8] [9] [10]

 .

Fig. 3: A simple example of matching.

Selecting the least cost matching vector enables solution
improvements via set transformations in the next iterations.
Obviously, L1 − L1, L2 − L2 and L3 − L3 matchings are
ineffective. To avoid a matching, e.g., because it is infeasible,
its cost is set to infinity (a large number in practice). Matchings
corresponding to other blocks without L4 lead to the formation
of Kits. Other matchings involving elements of L4 shall lead
to the improvement of the current Kits that also generate local
improvements due to the selection of better VM containers
or RB routes. Note that for such blocks, local exchange
problems are to be solved for determining an exchange of
VMs, VM containers and Kits, between the heuristic sets,
while satisfying computing capacity constraints. The details
on how to precisely compute each block matching costs are
given in the Appendix.

The Kit cost computation has to maintain the same ratio-
nale as in the reference optimization problem when setting
individual matching costs. The cost needs to be computed to
de-motivate under-loading VM containers in terms of CPU
and RAM utilization, while avoiding over-loading RB paths
in terms of link utilization and respecting computing capacity
constraints. The Kit cost function has to appropriately model
two opposite forces due to the dual aspects stressing DCNs:
computing and network resources. On the one hand, the Kit
feasibility in terms of the link capacity constraints as described
above, does not need to be enforced during the repeated
matching iterations but rather to be motivated via the classical
TE costs inducing the minimization of the maximum link
utilization, and hence maximizing the minimum residual link
capacity. On the other hand, residual computing capacities at
the VM container level should be considered as costs. It is
not suitable to have idle memory and CPU capacities when
reducing the VM container is fixed energy consumption is
one of the goals of the DCN provider. The overall Kit cost
is not meant to represent a direct monetary cost, but it does.
This is so that the repeated matching promotes more efficient
Kits. Therefore, to align with the objective function (1), and
by remembering that the cost of a Packing corresponds to the
cost of its Kits, we set the cost of a Kit φ(cp,DV , DR) as:

µ(φ) = (1− α)µE(φ) + αµTE(φ). (17)

Where α is the trade-off scaling factor between the EE and
the TE components, that are, respectively:

µE(φ) =
∑
ci∈cp

 KP
ci∑

v∈DV
i

dPv
+

KM
ci∑

v∈DV
i

dMv
+ ΓTv

 (18)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 7

Fig. 4: Chart of the repeated matching heuristic steps.

µTE(φ) = max
(ni,nj)∈rp,rp∈φ

Uni,nj (Π). (19)

Where Tv represents the global traffic v sends and receives,
i.e., Tv =

∑v 6=v′

v′∈V tv,v′ . Γ is the additional power and memory,
to take into account the impact of traffic to the VM con-
tainer CPU and memory consumption when virtual bridging
is enabled (zero otherwise). Note that the computing capac-
ity constraints are indirectly enforced within the [L4 − L4]
matching cost computation. Uni,nj

(Π) is the link utilization
of each link used by the current Packing Π solution, so
that the maximum link utilization experienced by the Kit RB
paths can be minimized. In our heuristic, in order to linearly
compute the RB paths link utilization, the aggregation and
core links of the RB paths are considered as congestion free,
while the access container-RB links are considered as prone to
congestion, which adheres to the reality of DCNs today. This
is a realistic approximation we believe to be acceptable in a
heuristic approach, especially because it allows a significant
decrease of the time complexity.

C. Steps of the repeated matching heuristic

Due to the advantage of repeated matching between the
different sets as described above, we can get rid of the
non-linearities of the reference optimization problem with a
heuristic approach that, based on the state of the art, is geared
to achieve low optimality gaps. A global chart resuming the
steps of our repeated matching heuristic is given in Fig. 4.

Its steps are as follows.
• Step 0: The algorithm starts with a degenerate Packing

with no Kits and all other sets full.
• Step 1: A series of Packings is formed.
• Step 1.1: The cost matrix Z is calculated for every block.
• Step 1.2: The least cost matching vector is selected.
• Step 1.3: Go back to 1.1 for a new iteration unless the

Packing cost has not changed in the last three iterations.
• Step 2: The heuristic stops, and in the case that L1 is not

empty, a local incremental solution is created assigning

TABLE II: Evaluated DCN setting cases.

VB Multipath mode Objective Topologies
yes MRB EE BCube, DCell

TE BCube, DCell
EE+TE BCube, DCell

no MRB EE+TE 3-layer, Fat-Tree, BCube*,DCell*
MCRB EE+TE BCube**

MRB-MCRB EE+TE BCube**

VMs in L1 to enabled and available VM containers or,
if none, to new containers.

The least cost matching computation (Step 1.2) can be hard
to optimally solve because of the symmetry constraint (15).
In our heuristic, we decided to solve it in a suboptimal way
to lower the time complexity. We have implemented the algo-
rithm in [29], based on the method of Engquist [30]. Its starting
point is the solution vector of the matching problem without
the symmetry constraint (15) obtained with the algorithm
described in [31] that was chosen for its speed performance.
Its output is a symmetric solution matching vector.

For instance, if the resulting Packing in Fig. 3 does not
change for three times, the result composed of the feasible
kits (one Kit in the example) is kept as final result. Designing
the matching costs in an efficient and rational way, the Packing
cost across iterations should be decreasing - the decrease is
expected to be monotonic starting by the moment when L1

gets empty, so that the heuristic converges.

D. Time complexity

The complexity of the whole heuristic depends on its
different sub-algorithms and phases. The calculation of the
cost matrix is straightforward except for two blocks of the
matrix (see blocks 10 and 8 in the Appendix) where a
polynomial swapping problem depends on the number of
connections in the network. The resolution of the matching
problem operates on the cost matrix through the Forbes’s
and the Volgenant’s algorithms. In the worst case, the first
has a 	(n3) complexity while the second one has a 	(n2)
complexity, where n = n1 + n2 + n3 + n4.

V. SIMULATION RESULTS

We implemented our heuristic using Matlab, and CPLEX
for the computation of matching costs of some blocks. The
adopted VM containers correspond to an Intel Xeon 5100
server with 2 cores of 2.33GHz and 20GB RAM and able
to host 16 VMs. We use various weights for the TE and
EE components in the optimization objective, and we analyze
what happens when multipath forwarding and virtual bridging
are enabled. We use the different forms of multipathing,
encompassing the following cases.

1) Multipathing between RBs (MRB).
2) Multipathing between containers and RBs (MCRB).
3) Both multipathing modes (MRB-MCRB).
We executed our heuristic with the 3-laye Fig. 1a, Fat-

Tree Fig. 1b, BCube Fig. 1c and DCell Fig. 1d DCN topolo-
gies. We note that BCube and DCell work properly only by
employing virtual bridging at the server level. We allowed for

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 8

0

5

10

15

20

25

30

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier

Topologies

E
n

a
b

le
d

 V
M

 c
o

n
ta

in
e
rs

(a) Unipath

0

5

10

15

20

25

30

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier

Topologies

E
n

a
b

le
d

 V
M

 c
o

n
ta

in
e
rs

(b) Multipath

Fig. 5: Number of enabled VM containers Energy Efficiency (EE) results, with EE as single objective (VB=Virtual Bridging).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Trade−off (alpha)

 V
M

 c
o

n
ta

in
e
rs

DCell*

BCube*

Fat−tree

3−layer

(a) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Trade−off (alpha)

V
M

 c
o

n
ta

in
e
rs

DCell*

BCube*

Fat−tree

3−layer

(b) Multipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Trade−off (alpha)

V
M

 c
o

n
ta

in
e
rs

BCube*

BCube**

(c) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Trade−off (alpha)

V
M

 c
o

n
ta

in
e
rs

BCube* MRB

BCube** MCRB

BCube** MRB−MCRB

(d) Multipath

Fig. 6: Number of enabled VM containers EE results, without virtual bridging.

TABLE III: Evaluated DCN size cases.

Topologies Container Container VM
number capacity number

Fat-tree, BCube 16 16 150
DCell 20 16 240

a small modification of the topology to allow a reference com-
parison between them and the other topologies for the cases
without virtual bridiging, calling these variations BCube* and
DCell*, respectively. We allow the access switches in DCell*
to be directly connected to each-other, and we allow each
access switch in BCube* to be directly connected to all core
switches. Moreover, the 3-layer, Fat-Tree and DCell topologies
have no multipath forwarding capabilities between containers
and RBs, because there are no multiple links between con-
tainers and RBs (only BCube has that specificity). To also
evaluate the case with multipath between RBs and containers,
we use another variation to BCube, referred to as BCube**,
where each server is multi-homed with two switches, its pod
switch and one core switch. Table II summarizes the topologies
that do or do not support the virtual bridging mode for each

multipath forwarding case.
In the simulations, all DCNs are loaded at 70% in terms

of computing capacity. Table III summarizes each topology’s
container capacity, the number of VMs that a container can
host, and the total number of VMs used for our simulations.
Note that with all topologies, we allowed for a certain level
of overbooking in the resource allocation area for the sake
of algorithm fluidity, especially at starting and intermediate
iterations. The capacity of the access link was set to 10 Gbps.

We ran 30 different instances with different traffic matrices
for each case. The reported results have a confidence interval
of 95%. Our heuristic reached convergence roughly within a
dozen minutes of each execution and successfully reaching
steady states.

In the following, we detail the adopted traffic model and
related state of the art. Then, we report experiment results
we obtained considering the impact of virtual bridging and
multipath forwarding on EE-oriented and TE-oriented VM
placement. We look at the impact of virtual bridging and mul-
tipath forwarding without mixing the TE and EE objectives,
and we perform sensibility analysis by varying the EE-TE α

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.81.8

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier

Topologies

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

(a) Unipath

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.81.8

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier

Topologies

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

(b) Multipath

Fig. 7: Maximum link utilization Traffic Engineering (TE) results, with TE as single objective (VB=Virtual Bridging).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

DCell*

BCube*

Fat−tree

3−layer

(a) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

DCell*

BCube*

Fat−tree

3−layer

(b) Multipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

BCube*

BCube**

(c) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

BCube* MRB

BCube** MCRB

BCube** MRB−MCRB

(d) Multipath

Fig. 8: Maximum link utilization TE results, without virtual bridging.

trade-off coefficient.

A. Traffic model

Choosing an appropriate traffic model is important when
running DCN simulations. In the state of the art there are a
few relevant works. We built our traffic drawing conclusions
from the following studies [19], [32]–[34]. Authors in [32],
[33], collected data from 3-layer-like DCNs and found that the
traffic originating from a rack showed an ON/OFF behavior
following heavy-tailed distributions. 80% of the DC server-
originated traffic stayed within the rack, while between 40%
and 90% left the rack. In [34], more than 90% of transfers
had a volume from 100 MB to 1 GB. Moreover for 50% of
its running time, a VM handled approximately 10 concurrent
flows, and at least for 5% of its running time, a VM had
more than 80 concurrent flows. In [19], the authors analyzed
the incoming and outgoing traffic rates of an IaaS DCN with
17,000 VMs, reporting that 80% of the VMs had an average
rate less than 800 KB/min. However, 4% of them had a ten
times higher rate. Moreover, the traffic rate standard deviation
was 82%, lower than or equal to twice the mean traffic.

Since not all VMs communicate with each other in todays
DCNs adopting network virtualization, but instead traffic is
segmented by IaaS networks, we built an IaaS-like traffic
matrix as in [19], which somehow also takes into account the
IaaS traffic rack vicinity trend reported in [32], [33]. We apply
the experimental incoming and outgoing traffic distribution
of [19], with IaaS clusters of up to 30 VMs communicating
with each-other and not communicating with other IaaS VMs.
Within each IaaS, the traffic matrix was built according to the
traffic distribution of [34].

B. Energy efficiency considerations

Fig. 5 illustrates the results in terms of enabled VM con-
tainers for different topologies when EE is the unique goal
(i.e., α = 0 in the problem formulations). We report results
for both the cases when multipath forwarding is not enabled
(i.e., |DR| = 1 for all Kits) and the case where it is enabled.
By observing the results we can assess the following:
• Impact of virtual bridging: When the EE is the goal,

virtual bridging leads to negligible differences in EE
performance;

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Trade−off (alpha)

V
M

 c
o

n
ta

in
e
rs

BCube*

BCube

(a) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Trade−off (alpha)

V
M

 c
o

n
ta

in
e
rs

BCube*

BCube

(b) Multipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Trade−off (alpha)

V
M

 c
o

n
ta

in
e
rs

DCell*

DCell

(c) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Trade−off (alpha)

 V
M

 c
o

n
ta

in
e
rs

DCell*

DCell

(d) Multipath

Fig. 9: Number of enabled VM containers EE results, with virtual-bridging.

• Impact of multipath forwarding: It has a positive impact
on EE when virtual bridging is disabled, and seems to be
counterproductive when virtual bridging is enabled;

• Sensibility to topologies: The DCell topology shows a
better EE performance than the BCube, especially when
multipath forwarding is enabled. This can be explained
by the higher path diversity at the DCell container.
Hierarchical topologies, Fat-Tree, and 3-layer, show an
overall worst EE performance for single-path forwarding
and a better EE performance for multipath forwarding,
with a negligible difference.

This analysis suggests that enabling virtual bridging does
not bring any useful EE gain and can even worsen the EE
performance when the consolidation EE objective is minimiz-
ing the number of enabled VM containers. In the following,
we discuss the results with an EE perspective when we vary
the impact of the EE goal in the VM placement.

1) Optimization goal sensibility with respect to multi-path
forwarding features: With respect to multipath forwarding
features, Figs. 6 illustrates the results in terms of enabled VM
containers for different values of the trade-off parameter α
between the EE and TE goal, ranging from a null value giving
full importance to the EE goal, to a maximum value giving
importance to the TE goal, with a step of 0.25.

We report the results including the case when multipath is
not enabled (i.e., |DR| = 1 for all Kits) and the case where it
is enabled. Observing the results we can assess that:

• When EE is discarded (α = 1), the number of VM con-
tainers reaches its maximum, which could be expected.

• The results for all topologies are similar for MRB - the
DCell slope is slightly higher then the other ones, which
can be explained by the number of containers within
DCell topology, equal to 20.

• For MRB, the enabling of multipath forwarding decreases
roughly up to 30% the number of enabled VM containers,
and only by 20% for MCRB when EE is considered as
an important objective.

• The impact of multipath forwarding becomes negligible
when EE is not considered important;

• MRB-MCRB gives the same effect as enabling MRB.

These results are counter-intuitive. On the one hand, de-
creasing the access link bottleneck by enabling multipath
L2 forwarding seems to free VMs and allow a better VM
consolidation switching off unused containers that lead to
energy gains. On the other hand, multipath communications
appear not to be useful for that goal when switching off VM
containers is either not interesting or not possible.

2) Optimization goal sensibility with respect to virtual-
bridging features: Furthermore, we analyze the results with
an EE perspective when both virtual bridging and multipath
forwarding features are enabled. Fig. 9 illustrates the results
in terms of enabled VM containers for different values of the
trade-off parameter α, ranging from a null value giving full
importance to EE goal, to a maximum value giving importance
to the TE goal. The figure reports the results for BCube and
DCell topologies that support virtual bridging when multipath
is enabled or not. Observing the results we can assess that:

• Enabling only virtual bridging (Fig. 9(a,c)) does not
have a relevant impact on the number of enabled VM
containers. We note a negligible gain when EE is the
goal (α = 0), for BCube, and the opposite for DCell
topologies (both have the same confidence interval).

• Enabling multipath forwarding (Fig. 9(b,d)) has a positive
EE impact when virtual bridging is disabled (the two
curves have the same confidence interval when virtual
bridging is enabled) - this impact becomes negligible

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

BCube*

BCube

(a) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

BCube*

BCube

(b) Multipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

DCell*

DCell

(c) Unipath

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Trade−off (alpha)

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

DCell*

DCell

(d) Multipath

Fig. 10: Maximum link utilization TE results, with virtual bridging.

when EE is not considered as an important.
• We note that DCell topology shows better EE results than

the BCube topology. In fact, the DCell topology used
∼ 55% of the containers while BCube used ∼ 69% of
the containers.

These results confirm that, on the one hand, enabling virtual
bridging has no impact on the EE goal regardless of the EE-TE
trade-off level. On the other hand, multipath forwarding has a
positive impact only when the virtual bridging is disabled.

C. Traffic engineering considerations
As already discussed, EE goals can be considered as oppo-

site to the TE goals. Chasing EE tends to minimize the number
of enabled VM containers, yet no care is given to network link
utilization.

Fig. 7 reports the results when TE is the single goal of
the virtual machine placement optimization, i.e., α = 1, con-
sidering singlepath and multipath forwarding for the different
topologies. We make the following observations:
• Impact of virtual bridging: Virtual bridging lead to sen-

sible TE performance gains.
• Impact of multipath forwarding: With singlepath forward-

ing, the DCell case gets the largest TE gain, from a
median of roughly 65% of the maximum link utilization
to roughly 45% - this is due to the fact that virtual
bridging in the DCell allows for indirectly minimizing
the number of links used to interconnect servers (with
multipath forwarding, the BCube case gets the largest
TE gain, with the maximum link utilization being halved
from about 80% to 40%);

• Sensibility to topologies: BCube and DCell do have
similar TE performances, with a slighter better perfor-

mance with the BCube probably because the gain in path
diversity brought by virtual bridging is higher with the
BCube (which keeps a core layer unlike the DCell) -
the TE gain with respect to hierarchical topologies (Fat-
tree, 3-layer) is always positive and slightly higher with
enabled multipath forwarding.

These TE performance results are not intuitive and appear
to be quite relevant. It is interesting to adopt virtual bridging
when the primary goal of the virtual machine placement is
traffic engineering. Flat topologies show a sensible gain with
respect to more hierarchical topologies, which once more
motivate the migration to such new topologies for IaaS-based
DCNs.

1) Optimization goal sensibility with respect to multipath
forwarding features: Under a TE perspective, the lower the
maximum utilization is, the better it is, in order to ensure
highly efficient communications. Under this perspective, we
perform a sensibility analysis varying the TE-EE trade-off.
Fig. 8 reports the maximum link utilization for both the
unipath and the multipath cases, under different trade-off
coefficients.

As expected, the curve decreases with α (oppositely to the
previous curve, observing EE performance, in Fig. 6). We
make the following observations:
• MRB can be counterproductive: the unipath case guaran-

tees a better TE performance when TE is not considered
as an important goal in DCN optimization (i.e., when
α → 0) - the MRB mode induces unacceptable TE
performance when TE is not the primary goal.

• The curves of all topologies are similar for the unipath
case - DCell has the worst curve when EE is the goal,
and all curves converge when the maximum importance

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 12

is given to TE.
• MRB-MCRB gives the same effect as enabling MRB.
2) Optimization goal sensibility with respect to virtual-

bridging features: Furthermore, we analyse the impact of
virtual bridging under a TE perspective. Fig. 10 illustrates
the results in terms of maximum link utilization for different
values of the trade-off parameter, considering the case when
multipath is enabled and when it is not enabled, for the DCell
and BCube topologies. We make the following observations:
• With respect to the BCube case (Fig. 10a-b), enabling

virtual bridging when EE is the goal has a negative impact
on the maximum link utilization and a positive one when
TE is the goal.

• Accordingly to Fig. 10c, the DCell topology is less
impacted by virtual bridging than BCube, which can be
explained by the totally flat nature of DCell (with its
single access layer).

• Enabling multipath forwarding appears to have a negative
impact on TE when TE is not the goal, regardless of the
topologies.

We note that virtual bridging has a positive impact when
TE is the goal, but it can have a negative TE impact when
EE is the goal, and the topology that benefites the most from
virtual bridging is BCube.

VI. SUMMARY

Data center networking is a challenging field of applications
of old and new technologies and concepts. In this paper, we
investigate how traffic engineering (TE) and energy efficiency
(EE) goals in virtual machine placement can coexist with the
emergence of virtual bridging (i.e., the capability to switch
traffic at the hypervisor level in virtualization servers) and
of multipath forwarding (i.e., the capability to balance the
load toward a same destination on multiple egress paths).
We provide a versatile formulation of the virtual machine
placement problem supporting virtual bridging capabilities
and multipath forwarding and propose a repeated matching
heuristic for its resolution.

Through extensive simulation of realistic instances with
legacy and novel flat DC topologies (i.e., 3-layer, Fat-Tree,
BCube, and DCell), we found that:
• Impact of multipath forwarding: Multipath forwarding

has a positive impact on EE when virtual bridging is
disabled, and this positive impact becomes negligible
when virtual bridging is enabled or EE is not considered
as important.
Enabling multipath forwarding between virtualization
servers (containers) and router-bridges (RBs) does not
bring relevant additional performance gains with respect
to both EE and TE goals. This suggests that legacy
link aggregation/bonding protocols between servers and
bridges are sufficient and multipath routing protocols do
not need to be brought down to the hypervisor level.

• Impact of virtual bridging: When TE is the primary goal,
virtual bridging shows notable positive gains, and the TE
performance gain can be important and can be improved
up to two times, with a maximum link utilization that can

be halved for the BCube DCN topology, while remaining
important also for the DCell topology. Flat topologies
show a notable gain with respect to more hierarchical
topologies (3-layer, Fat-Tree) that once more motivate the
migration to such new topologies for IaaS-based DCNs.

• Sensibility to DCN optimization goals: When EE is
the primary goal of the DCN optimization, both mul-
tipath forwarding and virtual bridging can be counter-
productive, leading to saturation at some access links. In-
stead, when TE is the primary goal, multipath forwarding
grants only a moderate gain.

We believe these results provide important insights on the
possible joint or individual adoption of multipath forwarding
protocols and virtual bridging in data-center networks, to help
data center network designers take the right choices when
energy efficiency and traffic engineering performance goals
need to be taken into account.

APPENDIX A
MATCHING COST MATRIX COMPUTATION

Block 1: Matching two VMs. Given that the matching does
not make real sense, its cost is set to infinity.

Block 2: Matching a container pair with a VM. This
matching forms a Kit φ(cp,D

V
, D

R
) with D

R
= � and

D
V

= {v}. Let cp be the ith element of L2 and v be the
jth element of L1. With a recursive cp, the matching cost is

zn1+i,j =
∑
s∈S

Ks
c1/d

s
v. (20)

Otherwise, the VM is assigned to the container with the least
cost, i.e.:

zn1+i,j = min{
∑

s∈S
Ks

c1

ds
v
,
∑

s∈S
Ks

c2

ds
v
}+ Θ. (21)

For this latter case, Θ is a big constant so that Θ >>
Ks

ci

ds
vj

,∀i,∀j; it is meant to discourage the matching over lower
cost matchings, given that the created Kit is unfeasible (no
route between containers), and it has an unused container.

Block 3: Matching two container pairs. Given that the
matching does not make real sense, its cost is set to infinity.

Block 4: Matching an RBridge path with a VM. Given that
the matching does not make real sense, its cost is set to infinity.

Block 5: Matching an RBridge path with container pair. Let
rp be the ith element of L3 and cp be the jth element of L2.

zn1+n2+i,n1+j =

{
2Θ if c1 6= c2

∞ otherwise. (22)

In the first case, an unfeasible Kit is formed with both
containers unused, while the second case is impossible as it
is pointless.

Block 6: Matching two RBridge paths. Given that the
matching does not make real sense, its cost is set to infinity.

Block 10: Matching two Kits. Let φi(cpa, DV
a , D

R
a) be the

ith Kit of L4 and φj(cpb, D
V
b , D

R
b) be the jth Kit of L4.

For i = j, since an element cannot be matched with itself,
the matching cost is equal to the cost of the Kit; otherwise,
several cases are possible:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 13

Case 1) All VMs are assigned to cpa. The matching cost
is therefore equal to the cost of the new Kit φ′(cpa, DV =
DV

a ∪DV
b , D

R
a), i.e., v1 = µ(φ′). Assignment of VMs to Kit

container is the result of an optimization so that the cost of
the Kit is minimized as follows.

v1 = min (1− λ)

cp∑
c

DV∑
v

(∑
s∈S

Ks
c

dsv
+ ΓT c

v

)
xciv + λU (23)

subject to ∑
ci∈cpa

xciv = 1, ∀v ∈ DV (24)

∑
vi∈DV

i6=j∑
vj∈DV

tvjvix
c
vi + le ≤ KeU, ∀e ∈ Ea (25)

∑
vi∈DV

i6=j∑
vj∈DV

(tvjvix
c
vi + tvjvix

c
vj) = T c

v , ∀c ∈ cpa. (26)

where xciv is a binary variable equal to 1 if
v ∈ DV is assigned to ci ∈ cpa (0 otherwise);
E = {(c, r), (r, c)|c ∈ cp, r ∈ DR}, is the set containing
the two links from container c along the route r, and from
r to c, and Ea = {(c, r), (r, c)|c ∈ cpa, r ∈ DR} ⊂ E;
le is the load of the access link e ∈ E as of last Packing
configuration without φi and φj ; Ke are the link capacities.
Constraint (24) guarantees each VM is assigned to only one
container; (25) computes U . The objective function also
includes cost components inversely proportional to system
resources utilization.

Case 2) All VMs are assigned to cpb. Similarly to the
previous case, the new kit φ′′(cpb, DV

a ∪DV
b , D

R
b) is formed

with v2 = µ(φ′′).

Case 3) The container pairs (cpa, cpb) and the set of
RB paths (DR

a , D
R
b) do not change, and VMs can be

exchanged between Kits. That is, every v ∈ DV
a ∪ DV

b can
swap its container.

We then need to find the optimal pair assignment. The cost
of the new situation should be less then the previous one. This
can be formulated as an integer linear problem. Let us define
wv as a binary variable so that wv = 1 if the v ∈ DV

a swaps its
current Kit φ′ for φ′′, and wv = 0 otherwise; in order to avoid
non linearities, we admit that v swaps its current ci

th ∈ cpa
for the ci

th ∈ cpb, i.e., the destination container is in the
same indexed position in the container pair than in the source
container pair, so xciv is considered as a parameter and no
longer as a variable in the following. Also, let zv be a binary
variable equal to 1 if v ∈ DV

b swaps its current Kit φ′′ for
φ′, and 0 otherwise. Finally, gv and hv are the marginal costs
formed by the pair exchanges (i.e., the difference between the
new and the old cost for each v ∈ DV

a ∪DV
b), defined as

gv = µ(φ′′ ∪ {v})− µ(φ′) (27)

hv = µ(φ′ ∪ {v})− µ(φ′′). (28)

The swapping problem can be formulated so as to minimize
the cost of the Packing:

v3 = min
∑

v∈DV
a

gv wv +
∑

v∈DV
b

hv zv. (29)

The required constraints are omitted because of space
limitation - they are needed to check the surplus power and
memory capacity constraints for the containers, the surplus
capacity constraints for the paths between the container nodes
and each Rbridge node, as well as to set that the variables’
domain.

Among the cases, we choose the least cost one:

zn1+n2+n3+i,n1+n2+n3+j = min{v1, v2, v3}. (30)

Block 8: Matching a Kit with container pair. Let
φ1(cpa, D

V
a , D

R
a) be the ith Kit of L4 and cpb be the jth

pair of L2. The cpb can be seen as a Kit with no assigned
DV

a = DR
a = �: φ2 = (cpb,�,�) ∈ L4. The matching cost

is then the cost of the new kit φ(cpb, D
V
a , D

R
a):

zn1+n2+n3+i,n1+j = µ(φ). (31)

Block 7: Matching a Kit with a virtual machine. Let
φ1(cpa, D

V
a , D

R
a) be the ith Kit of L4 and q(v1, v2) be the

jth pair of L1. Three cases can be considered.
Case 1) The Kit is as DV

a = �: φ(cpa,�, DR
a). Then DV

a

becomes DV
a = {q}. The matching cost for this case is

zn1+n2+n3+i,j = µ(φ). (32)

Case 2) The Kit has DR
a = �, i.e., φ(cpa, D

V
a ,�). The

virtual machine can be assigned to the container cpa. Then
DV

a becomes DV
a ∪ {q}. The matching cost for this case is

(now q ∈ DV
a):

zn1+n2+n3+i,j =

{
µ(φ) if c1 = c2

∞ otherwise. (33)

Case 3) The Kit is as φ(cpa, D
V
a , D

R
a). Then DV

a becomes
DV

a ∪ {q}. Noting that now now q ∈ DV
a , the matching cost

for this case is

zn1+n2+n3+i,j = µ(φ). (34)

Block 9: Matching a Kit with RBridge path. Let
φ(cpa, D

V
a , D

R
a) be the ith Kit of L4 and q(r1, r2) be the

jth pair of L3. Three case can be considered:
Case 1): The Kit is as DV

a = �: φ(cpa,�, DR
a). The

matching for this case is impossible, i.e.:

zn1+n2+n3+i,n1+n2+j =∞. (35)

Case 2): The Kit is as DR
a = �: φ(cpa, D

V
a ,�)

The RBridge path can be assigned to the container cpa. Then
DR

a becomes DR
a = {q}. This is possible if cpa is not

recursive.

zn1+n2+n3+i,n1+n2+j =

{
µ(φ) if c1 6= c2

∞ otherwise. (36)

Case 3): The Kit is as φ(cpa, D
V
a , D

R
a). Then DR

a becomes
DR

a ∪ {q}. The matching cost for this case is (now q ∈ DR
a):

zn1+n2+n3+i,n1+n2+j = µ(φ). (37)

The least cost case is then selected for this block.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2015.2413755, IEEE Transactions on Network and Science Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, TO APPEAR 14

REFERENCES

[1] D. Belabed, S. Secci, G. Pujolle, and D. Medhi, “Impact of virtual
bridging on virtual machine placement in data center networking,” in
Proc. of 26th Int. Teletraffic Congress (ITC 2014), Sep. 2014.

[2] ——, “Impact of ethernet multipath routing on data center network
consolidations,” in Data Center Performance Workshop, Proc. of ICDCS,
2014.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4, 2008, pp. 63–74.

[4] C. Guo and et al., “Dcell: a scalable and fault-tolerant network structure
for data centers,” in ACM SIGCOMM Computer Communication Review,
vol. 38, no. 4. ACM, 2008, pp. 75–86.

[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[6] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm
placement and routing for data center traffic engineering,” in Proc. of
IEEE INFOCOM, 2012.

[7] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers,” Computer Networks, vol. 57,
no. 1, pp. 179–196, 2013.

[8] H. N. Van, F. D. Tran, and J.-M. Menaud, “Performance and power
management for cloud infrastructures,” in Proc. of IEEE CLOUD, 2010.

[9] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” in ACM Int. conference
on Virtual execution environments, 2009.

[10] “Data center architecture overview,” in Cisco Data Center Infrastructure
2.5 Design Guide. OL-11565-01. Cisco, 2011, pp. 7–16.

[11] R. Perlman, “An algorithm for distributed computation of a spanningtree
in an extended lan,” in ACM SIGCOMM Computer Communication
Review, vol. 15, no. 4. ACM, 1985, pp. 44–53.

[12] D. Santos, A. de Sousa, F. Alvelos, M. Dzida, and M. Pióro, “Optimiza-
tion of link load balancing in multiple spanning tree routing networks,”
Telecommunication Systems, vol. 48, no. 1-2, pp. 109–124, 2011.

[13] “Multi-chassis etherchannel (mec),” Cisco, pp. 7–16, 2011.
[14] “IEEE standard for local and metropolitan area networks - virtual

bridged local area networks amendment 10: Provider backbone bridge
traffic engineering,” Aug 2009.

[15] N. McKeown and et al., “Openflow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[16] D. Papadimitriou, E. Dotaro, and M. Vigoureux, “Ethernet layer 2 label
switched paths,” in Proc. of Next Generation Internet (NGI), 2005, 2005.

[17] M. Seaman, “EEE 802.1aq shortest path bridging,” IEEE std, 2006.
[18] J. Touch and R. Perlman, “Transparent interconnection of lots of links

(TRILL): Problem and applicability statement,” RFC 5556, 2009.
[19] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data

center networks with traffic-aware virtual machine placement,” in Proc.
of IEEE INFOCOM, 2010.

[20] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in Proc. of IEEE
INFOCOM, 2011.

[21] M. G. Rabbani, R. P. Esteves, M. Podlesny, G. Simon, L. Z. Granville,
and R. Boutaba, “On tackling virtual data center embedding problem,”
in IFIP/IEEE IM, 2013.

[22] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and
N. Pissinou, “Joint host-network optimization for energy-efficient data
center networking,” IEEE IPDPS, Boston, MA, 2013.

[23] O. Biran and et al., “A Stable Network-Aware VM Placement for Cloud
Systems,” in Proc. of IEEE/ACM CCGrid 2012, 2012.

[24] M. Pióro and D. Medhi, Routing, flow, and capacity design in commu-
nication and computer networks. Elsevier/Morgan Kaufmann, 2004.

[25] M. Balinski, “On finding integer solutions to linear programs,” in
Mathematica, May 1964.

[26] M. Rönnqvist, S. Tragantalerngsak, and J. Holt, “A repeated matching
heuristic for the single-source capacitated facility location problem,”
European Journal of Operational Research, vol. 116, pp. 51–68, 1999.

[27] M. Rönnqvist, K. Holmberg, and D. Yuan, “An exact algorithm for the
capacitated facility location problems with single sourcing,” European
Journal of Operational Research, vol. 113, pp. 544–559, 1999.

[28] A. Reinert, B. Sansò, and S. Secci, “Design optimization of the petaweb
architecture,” Networking, IEEE/ACM Transactions on, vol. 17, no. 1,
pp. 332–345, 2009.

[29] M. Forbes, J. Holt, P. Kilby, and A. Watts, “A matching algorithm with
application to bus operations,” Australian Journal of Combinatorics,
vol. 4, pp. 71–85, 1991.

[30] M. Engquist, “A successive shortest path algorithm for the assignment
problem,” in INFOR, 1982, vol. 20, pp. 370–384.

[31] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, vol. 38, pp.
325–340, 1986.

[32] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” ACM SIGCOMM Computer Comm.
Review, vol. 40, no. 1, pp. 92–99, 2010.

[33] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in ACM IMC, 2010.

[34] A. Greenberg and et al., “Vl2: a scalable and flexible data center
network,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 4, pp. 51–62, 2009.

Dallal Belabed is a Ph.D. student at the University
Pierre and Marie Curie (UPMC - Paris VI, Sorbonne
Universites), France and obtained her M.Sc. from the
same university in 2011. In 2011, she worked as a re-
search intern at Alcatel-Lucent France. She also was
a visiting researcher at the University of Missouri
- Kansas City (USA), in 2012, and at Politecnico
di Milano, in 2014. Her interests are about data
center network optimization and network function
virtualization. http://www-phare.lip6.fr/∼belabed.

Stefano Secci is an Associate Professor at the
University Pierre and Marie Curie (UPMC - Paris
VI, Sorbonne Universites). He received a “Laurea”
degree in Telecommunications Engineering from
Politecnico di Milano, in 2005, and a dual Ph.D.
degree in computer networks from the same school
and Telecom ParisTech, in 2009. He also worked
as a Research Fellow at NTNU, George Mason
University, Ecole Polytechnique de Montreal, and
Politecnico di Milano, and as a Network Engineer
with Fastweb Italia. His works mostly cover network

optimization, protocol design, Internet routing and traffic engineering. His
current research interests are about Internet resiliency and Cloud networking.
http://lip6.fr/Stefano.Secci.

Guy Pujolle received his the Ph.D. and ‘Thèse
d’Etat ’degrees in Computer Science from the Uni-
versity of Paris IX and Paris XI, on 1975 and
1978, respectively. He is currently a Professor at the
UPMC, and a member of the Institut Universitaire de
France. He spent the period 1994-2000 as Professor
and Head of the computer science department of
Versailles University. He was also Professor and
Head of the MASI Laboratory (Pierre et Marie
Curie University), 1981-1993, Professor at ENST
(Ecole Nationale Superieure des Telecommunica-

tions), 1979-1981, and member of the scientific staff of INRIA, 1974-1979.
Deep Medhi is Curators’ Professor in the Depart-
ment of Computer Science and Electrical Engi-
neering at the University of Missouri-Kansas City,
USA. He received a B.Sc. (Hons) in Mathematics
from Cotton College, Gauhati University, India, his
M.Sc. in Mathematics from the University of Delhi,
India, and his Ph.D. in Computer Sciences from
the University of Wisconsin-Madison, USA. Prior
to joining UMKC in 1989, he was a member of the
technical staff at AT&T Bell Laboratories. He was an
invited Visiting Professor at the Technical University

of Denmark, at the University Pierre and Marie Curie, France, and a visiting
research fellow at Lund Institute of Technology, Sweden. He was a Fulbright
senior specialist during 2003-2008. He served as the chair of the Internet
Technical Committee during 2007-2011. He is the editor-in-chief of Springer
Journal of Network and Systems Management. His research interests are
resilient multi-layer network design, network routing, design and management,
next generation networking. He has published extensively, and is co-author
of the books, Routing, Flow, and Capacity Design in Communication and
Computer Networks (2004) and Network Routing: Algorithms, Protocols, and
Architectures (2007), both published by Morgan Kaufmann Publishers (an
imprint of Elsevier Science).

