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1. Description of mixed data 

The basic technicue for describino relationshins between 

in a low dimensional euclidian space. 
We wiil present Â£iv qeneralizations of PCA to handle 

nominal and numerical data. 

1 . .  Eigenanalysis of a matrix of correlation coefficients 

Since ordinary PCA consista in findinq the eiqecvalues and 
tha eiaenvectors of the correlation matrix between D numerical - -  > ~~ 

variables, one solution when we have both categorical variables 
and numerical variables may coneist in defininq a matrix of 
correlation coefficients between variables of different kinds. 

To do this we need meaaures of relationshios between two ~~ -~ 

-. . . . , i . e - ~ ~ r ~ z a :  variables aixi iâ€¢e'-wee a Â¥:.n-eqorica ana a numei~cal 
vc i i . a s l e  wi~cn would r.dve the sam intecpretdtion us rhe u w i i i l  
produot-moment correlation, end lead to semi-definite positive 
matrxx of coefficients. 

Since negative correlation is meaninqless when a cateqoricei 
variable xs involved, the coefficients which we may use are 
aenerailv homoaeneous to sauared correlation and not to 
&xreiation. 

For a couole of categorical variables, the coefficient will 
ba a function of the chi-square, and for a couple between a 





1.3. An extension of principal component and of multiple 
correspondence analysas 

It ie well known: 

a) that in PC of stendardizad variables the principal 
components maximize r'l~,&-') where the 2 are the numerical 

data variables. 
b) that in MCA the components maximize y fim') where the - 

are categorical variables, 

A natural extension of both PCA and MCA to a mixture of 
qualitative and quantitative variables consists in maximizinq 

to derive qeneralized principal components (see Saporta (1988) or 
Tenenhaus (1977)). 

This metbod provides a simple representation of individuals 
(the solutions are nested) and cornes d o m  to a PCA of the 
following matrix: 

numerical indicator matrices of 
arables cateqorical variables 

with the metric: 

which is the concatenation of the D l ,  metric and the chi-square 

metric. 
Unfortunately this method does not qive a satisfactory 

representation for the variables: 

The mappinq of the variables with the and the r2 doea not lsad 
to clear graphies since al1 the variables are in the first 
quadrant. 

1.4. PCA with optimal scalinq cf the cateqorical variables 

Followinq the works by Young (1981), Young, De Leeuw, ~akine 
1 9 7 8 )  Tenenhaus ( 1977 ) this technique consists in transforminy 
each categorical variable into a numerical variable by allotting 
numerical scores to the cateqories. 

These scores are cptimally calculated in crder to get an 
l optimal PCA aocordinq to some criterium; the mcst popular 

criterium being the amount cf variance accounted for, by the 
1 first k eiqenvalues of the correlation matrix. 

The aiwcritbm i~ usually of the alternating least square 
famiiy (M.s). 

starting frcm an initiai quantification of the categorical 
variables, a PCA is performed which gives k components ct. 

Knowinq these components, a set of projections onto the indicator 

i variables of the categorical variables (first canonical variable 
between the components and the indicator variables matrix X , )  

l 
leads to a different quantification and so on. 

The criteriam 2 Ak - f r2cc,;x1~ + f f r2(~L:~,~j! 
1 - 1  , =*s= ,  ! = , s = i  

is thus optimized over the cl and the a because it increases at - ' 
sach step. 

The Froc PRINQUAL of the release 6.03 of SAS-System is an 
implementation of this technique. In addition to the usual 
criterium of the sum of the first k eigenvalues, there are two 
other criteria (one ia based on the minimization of det R) and 
various options to traneform the numerical variables: 
functional, spiines, M-splines). 

Since after the optimal transformations, this method is a 
standard PCA, the usual outputs may ne pruduced: in particular 
one lias correlation coefficients between transformed variables 
and numerical variables {principal components and variables of 
the data set). However a local and not global optimum may cccurr, 
dependinq on the startup point. 

An other drawback is that the solution depends on k, the 
number of components retained for the representation: solutions 
are not nested. 

The robustness of zhis method may aiso be questionable and 
bas nct yet qiven raise to publications. 

1.5. A variant of ZNDSCAL: INDOBIX 

Recentiy Kiers (1989; propcsed a method biised cn an 
application of the IKDSCAL mode1 of Carrcl and Chang (19701 to a 
e t  of similarity matrices between the n observations. 



Eech shilarity matrix corresponds to one of the variables. 
So it ia necessary to define similarities between units according 
to the nature of the variables, categorical or numerical. 
Although one mey think of the Gower's coefficients (19711, 
Indomix uses similarity matrices based on orthogonal projectors. 

For soma numerical variable x we get 

1 S = z 2' where z is the vector of standardized values. 
For a categorical variable we get 
0 if i,ir do not belong to the same category 

S. - -,*' n/n, if i and i' belong to category of frequency n . 
s 

S = x ( x ' x ) '  where X  is the indicator matrix of the categoriee. 

A nomlization factor may be used here, iI~'Il~1 for any variables 
j. in order to compare variables with different number OÂ 
categories. 

An INDSCAL analyeis is then performed which gives a mapping 
of the individuals in a common space and a mapping of the 
variables according to the weights given to the underlying 
dimensions. 

Of course some other variants are possible: such as blocking 
for instance the numerical variables in a single array X, or 
analyzing with a classical scaling technique the average matrix 
of the S or applying STATIS techniques, or any kind of three-way 
methoda since the data may be considered as e set OÂ matrices 
each one aasociated to a single variable, see for instance see 
Coppi, Bolaaco (1989) and Lavit (1988). 

One problem with methods such as Indomix is that they cannot 
handle a large mount of data, since like every multidimensional 
technique, scaling the critical dimension is the number of 
observations, mot the number of variables. 

1.6. Cluster analysis 

Two approaches are feaaible when want to cluster 
observations with both qualitative and quantitative descriptore. 

The direct epproach Consista in defining a global similarity 
meesure incorporating ail the variables such as the eum of the 
Gower's similarity coefficients or the sum of similarity matrices 
used in Indomix. Once this global siad-larity matrix w is defined, 
any method of hierarchical clustering may be applied; furthermore 

with the former ohoices (Gower or Indoaixi the matrix W is 
positive definite and may be considered as a matrix of 
scalar-product. It implies that method for euclidean data sucb as 
Dynamio Clustering or Ward's hierarchical method are applicable. 

As in section 1.5 the difficulty here consista in defining 
meaisures of similarity for qualitative and quantitative data 
which may be compared and a correct way of agqregating these 
similarities. 

We may also use an non-direct approach based on one of the 
generalizations of principal components analysis presented in the 
previous sections. We just have to perfora" a cluster analysis of 
the individuale described by their coordinates along the 
principal axes. 

The use of cluster analysis with principal coordinates in a 
rd1 established methodoloav irefer to SPAD-K software) but it is ~ - --  ~ - --- 

highly recomended to retaii ail the coordinates to have a 
complete recovery of the interindividuals distances: retaining 
only the 5 or 6 first principal axes, for instance, may lead to 
wrong conclusions; some particuiar groupa of individuals may be 
revealed only in a high-dimension representation. 

In this respect thsre is no problem to use the extension of 
PCA in section 1.3 because it is possible to have a full 
reconstitution of the data matrix with al1 the components. 
However the use of an optimal scaling method such as Prinqual inay 
be subject to some questions; the solution of this kind of PCA 
relies heavily on the rider of components choosed by the user: 
this number should be small to prevent indeterminacy or 
instability of the solution and there is no garantee to recover 
the data. 

2. Explanatory methods with gualitat-~ve and quantitative 
predictors -. 

This situation is better known and since there is an 
objective criterium, linked to the predictability of the 
dependent variable, the problems are rather different than in the 
case of oomponent analysis. 

2.1. Linear effects, interactions, reversai 

â€ we restrict our topic to linear models (regression or 
discrimination accordinq ta the nature of the dependent 
variables) the main question concerns the type of influence of 
the categorical variables upon the structure of dependency. 

a) The simplest case is of course the additive effect on the 
mean: the decision function is a linear combination of the 
numerical variables and of the indicator variables of the 



categories of the nominal variables. 

b) When there are interaction between the cateqorical 
variables, one han only to insert in the previous model the 
indicator variables of the siqnificant crossinqs of the 
cateqorical variables. 

c)But the most problematic case occure when the 
correlational structure of the numerical predictors is a function 
of the categories of the nominal variables. An sxtreme situation 
is when the signs of some correlation is chanqed accordinq to the 
fact that an observation belongs to some cateqory or to another: 
it 1s the reversal case. In this case, differents models have to 
be fitted. 

In multiple regression there is no particular T :^lem to 
handle case a) and b) which corresponds to models of (ariance 
analyais. 

Less attention has been qiven to the case c); L forma1 
molution is given by separate reqression for each :coup of 
individuals def ined by combinations of cateqorical var;,. .;les but 
the nuinber of groupa makee it qeneraliy unfeasible. A m-,>odoloqy 
derived from reqression tree Breiman et ai (1984), seerc one of 
the way to salve this problem. 

2.2. Discriminant analysis 

When there is no risk of reversal, a linear discriminant 
analysis with optimal scalinq of ths categorical predictors may 
be performed: since it is equivalent to a diecriminaut analysis 
with numerical variables and indicator variables it does not 
present any difficulty. Like in the general linear model some 
constraints on the coefficient of the indicator variables are 
neceseary, since they add-up to nnity; the most usual constraint 
being to put a zero coefficient to the first (or the last) 
indicator of each nominal variable. 

Loqistic regraseion is an alternative method which is in 
favour bv the econometricians: its suoerioritv over discriminant 
analyais seems to be doubtiul excePt whei there is strong 
nonnormality of the numerical variables or strong difference 
between covariance matrices. (Efron 1975). 

when the discriminant behaviour of the numerical variables 
differs according to the subgroups defined by the cateqorical 
variables ("reversai"). the iocation model developped by 
Olkin-Tate (19611 and Krzanowski (1975, 1980) may be very useful: 
this model assumes that the conditional distribution of the 
numerical variables X for each qroup G and for a fixed value of 

the categorical variable x is normal with a mean E(X/G,x} = riLtx 

and a constant matrix of covariance 2. m is fitted with MANOVA 
1.X 

model. The model may be completed by a log linear model for 

P ( ; K / G , ) .  The parmeters are estimated by maximum likelihood. An 

implementation of this method is the proqrm ADM by Daudin-Scukal 
(19891. 

Due to the ccmplexity of the method, this model i s  limited 
to a small number of variables. 

Other proposais have been made such aa using as predictors 
the nroducts of the numerical variables bv the indicatcr 
variables of the nominal predictors but it lead; very quickly to 
a too large number of parameters. 

3 Discussion 

From this short overview of the problem, we may draw some 
conclusions. 

For component analysis there are many solutions and the 
practiticner has to chcose between them. If his purpose is only 
the study of the relationships between variables. 
multidimensional scaling of P-values seems to be the best choice. 
If the purpose is a mapping cf units we would reconunend a PCA 
with indicator variables. If we want both simultaneouslv, a 
compromise is necessary: such as an optimal 
technique like Proc Prinquai or a scaling technique like Indomix. 
But wa have to be cautious with the number of components 
retained; further compariscn atudies and sensitivity analysis are 
necessary. 

In cluster analysis the main problem relies upcn the 
definition of an adequate measure of similarity but this a common 
feature to ail clustering techniques. 

For explanatory probleias, there is no difficulty when there 
are only linear effects and classical software is available. For 
more complex interaction effects, modellinq is more difficult, 
but cross-validation techniques may provide gcodness of fit 
criteria aince there is usually a simple criterium to cptimize 

2 R in regression, or error rate in discrimination for instance). 
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