Aboot Fazzy Discrimination
 J.-M. Gaatier, C.O.R.E.F., Boulogne-Billaneourt, France
 G. Saporta, Rene Descartes University, Parls, France

Il arrive souvent en analyse discriminante que 1 'appartenance des individus aux classes d'une partition de la population ne solt pas connue avec certitude, ou
qu'il soit dalicat d'attribuer strictement un individu in une categorie lorsque qu'il soit délicat d'attribuer strictement un individu à une categorie lorsque
la partition est définie a partir d'une variable numerique découpée en classes. la partition est définie a partir d'une variable numerique decoupee en elasse sur les classes qu'une fonction booléenne d'appartenance surtout si un individu est proche de la frontière entre deux classes.
On établit alors les modifications à apporter aux techniques usuellea de discrimination (factorielle et décisionnelle) aingi que les conséquences de ces modifications sur les indices usuels de qualité d'une discrimination.

Keywords :Fuzzy Discrimination

$$
\begin{aligned}
& \text { Discriminant Analyan } \\
& \text { Diser }
\end{aligned}
$$

Discriminant anslysis is the replicative or predictive atudy of a qualitative arlable over a set of predictors that are generally numerical

In certain situations, one cannot attribute with certainty a category or the In certain situations, one cannot attribute with certainty a category of the
variable to be explained to certain (even to all) individuals in the sample. Thia
is particularly the case if :

- The classes are poorly defined, o.g. 1 mprecise nomenclature or else (
- The class to which an individual belongs cannot be determined with cer tainty, e.g., appearance of a symptomafter absorption of a medicine. There is nothing to prove that the symptom could not have appeared naturally.
But it may also be that the determination of the class is too costly, and that one is content with an estimate.

Fom the formal viewpoint, we will therefore suppose that with each individual there is associated a probability distribution $P_{j}(1)$ for the classes $J=1$,. the variable to be explained, rather than a set of mutually exclusive indicative variables.
(1) In this case, the quantitative variable being divided up into classes, an ndividual in the neighborhood of the border between 2 classes probably cannot
a attributed to a aingle one of the classes, if only because of possible measuring errors.

Ve will denote by x the matrix (n, p) of the p numorical predictors, n being the omple size
Hence we are going to describe how to extend to this aituation the various rosearch results of discriminant analysis, i.e., seek the best separation betueen
 attempt directly to estimate the P_{j} (i) for every individual for which one sume up the p predictors (Bayesian research).
For geometrical research, this extensian is made by introducing wetghtinga into the calculations and by counting each observation 1 as an alement of all of the classes j for which : $P_{j}(i) \neq 0$. The weighting of observation 1 in class j is then $p_{j}(1)$. We note $\alpha_{j}=\sum_{=1}^{n} p_{j}(1)$ the weight of the class j.
It will be shown that in reality, it is not necessary to work on matrices of dimension k.n, but only n (on condition of having written the programs on an ad hoc basis).
The various quality measures of the discrimination are affected by the fuzzines of the classes of the variable to be explained, and for certain ones of these criteria, we will propose a 11 mit calculation that will make it possible to judge the real discr
to this 11 mit .

As to the bayesian methods, if one excepts the case in which one considered the $P_{j}(1)$ as a sample of a random variable, the generalization is carried out in the same fashion as for the geometrical methods, since the only things effected by the fuzziness of the classification are the estimators of the parametors of the conditional distributions.

Howevar, another approach 1s possible : a direct search for e formula for adjust-
ment of the P_{y} by means of explanatory variables : logistic regreasion or linear ment of the pl_{1} by means of e

I. geomethical methods

I. 1 Evaluation of the center of gravity of the classes

We will denote by P_{j} the diagonal matrix $(n \times n)$ of the P_{j} (1) associsted with
the group j, and $\underline{1}$ the vector of which the n components ara equal to 1 . Since the classes are fuzzy, the centers of gravity g_{j} of each one of them are
obtained by taking the averago, weighted by the $P_{j}(1)$, of the coordinates of the observations, hence
$g_{j}=\frac{2}{\alpha}\left[\begin{array}{lll}x^{\prime} & P_{j} & 1\end{array}\right]$

1. 2 Expression of the matrices of variance

The total matrix of varience would then be :
$v=\frac{1}{n} \sum_{j=1}^{k} X_{j} \quad P_{j}=\frac{1}{n} x \cdot x$.
If the data are centerech

The matrik or vartance of the classe J la vritten :

$$
\left.v_{j}-x_{j}^{\frac{1}{j}} \Leftrightarrow x^{\prime} p_{j} x-y_{j}^{\frac{1}{2}} x^{\prime} p_{j}-1 \underline{1}^{\prime} p_{j} x\right)
$$

The intra-class matrix of variance 1 is then:

$$
n-\frac{1}{n} \sum_{j-1}^{\frac{k}{1}-\alpha_{1}} v_{1} \text { ancoco } \xi_{j-1}^{k} \alpha_{1}-n
$$

It current term is worth:

$$
u_{1_{1} 1_{2}} \frac{1}{n} \sum_{1_{1}} x_{i_{2}} x_{1} x_{i_{2}} 1_{2}\left(d_{1_{1}}-\sum_{2} \frac{1}{\alpha_{j}} P_{j}\left(i_{1}\right) p_{f}\left(i_{2}\right)\right)
$$

The inter-clase matrix of variance is is therefore equivalent to :

$$
B=\frac{1}{n} x \cdot\left(\sum_{j} \frac{1}{a_{j}} p_{j} \underline{1} \underline{1} p_{j}\right) x
$$

And its current term is:

$$
{ }^{b_{1} 1_{2}}=\frac{1}{n} \sum_{T_{1} 1_{2}} x_{1_{1} 1_{1}}\left(\sum_{j} \frac{1}{d} p_{j}\left(1_{1}\right) p_{j}\left(i_{2}\right) x_{1_{2} 1_{2}}\right.
$$

I. 3 Calculation of the distance from a point to the center of gravity of the classes

$$
\begin{aligned}
& =e^{1} w^{-1} \underline{e}^{\prime}+\underline{1}^{\prime} P_{j}^{*} \times w^{-1} x^{\prime} F_{j} \underline{1} \\
& -2 e^{\prime} w^{-1} x^{\prime} p_{j}^{t} I
\end{aligned}
$$

where $P_{j}^{*}-\frac{1}{d y} P_{j}$

We percoive that these formulas hardly from those of the classic case. We percoive that these formulas hardiy from those of the classic case.
Their main interest is that they supply a method of direct celculation not brin-
1.4 Criteria or the quality or the discrimination

The rirst criterion that comes to mind is the one or the parcentage of correct classification by the method of reassignment (about which it is know, inciden tally, that it yields biased results). In the classic case, this percentage can

$$
\sum_{i} \max _{j} P_{j}(1) \times \frac{100}{n}
$$

In the case of 2 groups, the Mahalanobie distance D^{2} between the two centers often serves as a criterion for separability, in particular for the selection of the variables, other oriteria such as the F, can be deduced fromit for a

$$
D^{2}=\left(g_{1}-\underline{g}_{2}\right), w^{-1}\left(g_{2}-g_{2}\right)
$$

In the usual case, this distance is not bounded above and may theoretically be ine $g_{1} g_{2}$. Here this distance is is reduced to a point projected onto straight lated by the following procedure :
o^{2} is a maximum if, in projection on straight line $\mathrm{g}_{1} \mathrm{~g}_{2}$, all the points such tha p_{1} (1) $>P_{j}$ (i) are confused in a point x_{1}, and all g_{2}, all the points such
one is led back to a uni-dimension in x_{2}. Hence one 1 l led back to a uni-dimensional problem on straight line g_{1} g2. Let us place the variables, one may suppose that on titraight line gi gadus and of scale on is equal to 1 , and that the variable is centered. From this, one deduces at the values of X_{1} and X_{2} and the value or σ^{2}, which is not zero, since the varianees of each group cannot be zero if there is at leant one in in which P_{j} (i) is
ifferent from 0 or from 1 ,
whence $\quad D^{2}, \frac{\left(g_{1}-g_{2}\right)^{2}}{\sigma^{2}}$
If we denote by P_{1} the proportion of individual i atfected in group 1 ,
such that $P_{1}(1)>P_{2}$ (i) :

$$
x_{1}=\sqrt{\frac{1}{P_{1}}-p_{1}} \quad x_{p}=-\sqrt{\frac{P_{1}}{1-P_{1}}}
$$

The calculation of σ_{1}^{2}, a_{1} and ε_{2} dependa on the 3 paraneters : $p_{1}, a_{1}=\sum p_{1}(1)$,
$\mathrm{a}_{2}=\sum \mathrm{p}_{2}(\mathrm{i})$.
In the case of k groups. a uabis criterion is the sum of the Nahalenobls distancese of the groups taken two by tro : as previlousiy, the sum of the $\mathrm{D}^{2}\left(\mathrm{~g}_{\mathrm{j}} ; \mathrm{g}_{1}\right)$ is maximum if in the apace created by the k contera of gravity
 that the matrix of over-all variance is I_{k-1}, which leada to a single configuration of the $\underline{L}_{\mathrm{j}}$ neglecting an isometry. One can then calculate the criterion that supplies the desirod increase, which depende only on the diatribution of the welghtings.
one concrete calculation met thod consiste in takinge any get of k points
$\underline{Z}_{1} \cdots \underline{z}_{k}$ end in carrying out the 1inear transformation that 1edda to the \underline{I}_{j}.
II. probabllistic methods
II.1. $\frac{\text { Bayesian methods with hypothesie of norma1ity }}{\text { Seef }}$

If one makes the hypothesis of a normal distribution N ($\mu ; \sum_{\text {) }}$) in each chaser ane aying Bayes ' fornula (ct. Anderson).
before app
The estimators of the
previously defined.
II.2. Direct estimation of the P_{d}

Since one has a sample of P and explanatory varisbles X, one may use the
regression techniques in the broad sense, or :
a) Logistic regression

This method reduces to supposing that $\log \frac{P_{j}}{P_{k}}$ is a 11 near function of the axplanatory variables. The coefficienta of these functiona being estimated then by the method of maximum 11 kel 1 lhood ((Cox's model).
b) Linear regression under constraint

One regresses each p_{j} on the explanatory variable while imposing the constraint
$\sum_{P_{j}>0} P_{j}=1$ (which is easy), and the conatrainte $P_{j} \geqslant 0 \quad V_{j}$, which leads to
optimization programs on cones. In other worde, it is a question of carryin
out the cenonical analysis between a convex cone and a vectorial sub-space.

AITCHISON J. BEGG C.B (1976) Statistical Dlagnasis when basio cases are not classified with certainty Blometrika, 63, 1-12.

ANDERSON T.W. (1956) "Introduction to miltivariate statistical analyele" -
Wiley, New-York. Wiley, New-York.

ANDERSON J.A. (1972) Separate sample logistic discrimination,
cox D.R. (1970) "The analysis of binary data" - Methuen, Lanabin

AhIIN J.F. (1980) le cadage flou et ses applications on statistique. Thase 3e cycle Univeralte de Pau

SEBESTYEN (1962) "Decision making procebsis in pattern recognition" Mc Millan, New York

Acknowleagement:

The aathors would 11 ke to thank P . Besse for his cormente and corrections.

