Computer Class 1

To install Processing, it is enough to download a Zip archive from the official website (search "Processing" in a search engine) and run processing.exe or processing-java.exe. If you have problems to install it on your platform, you can also download the virtual machine below and run it with virtualbox :
cedric.cnam.fr/~porumbed/vbox/antixLinux.zip

1 Nice drawings without loops

Start Processing and you will find a nice window as below. Type the code below and execute it using of the "start" button.

```
size(700,700);
line (0,0,700,700);
line (0,700,700,0);
```

Eichier Modifier Sketch Dépanner Qutils Aide

Exercice 1 Modify the previous program and add the instruction noFill(), followed by rect $(100,100,500,500)$. What does the new program print?

Exercice 2 Use the instructions ellipse(...) et rect (...) to draw a circle inside a rectangle like in the bottom-left image.

Exercice 3 Modify the previous program to get a drawing that looks like the upper-left image. You can either increase the size of the circle or decrease the size of the rectangle (but be careful not to to move its center).

Exercice 4 Modify the previous program to get a drawing that looks like the image below.

Exercice 5 Suppose that the above rectangle has size 400×100. Thus, its area is $400 \cdot 100=40000$. A circle has an area of πr^{2}. Compute and print the area of the surface inside the rectangle but outside all four circles. Note: In Processing, write PI to refer to π.

Exercice 6 Consider figure below and notice the coordinates (x, y) of the three points A, B, C.

Declare three variables $a b$, $a c$ and $b c$. Use the Pythagorean theorem to assign to these three the lengths of the segments AB, AC and BC ; for BC , there is no actually need of Pythagoras. Note : To get the square root of x, we can call sqrt(x). Display the three variables (lengths).

Exercice 7 Heron's formula can calculate the area of a triangle knowing only the lengths of the edges. Declare and initialize a perimeter variable $p=A B+A C+B C$ and a half-perimeter variable $s=\frac{p}{2}$. Calculate the area of the triangle using the formula ${ }^{1}$

$$
\text { area }=\sqrt{s \cdot(s-A B) \cdot(s-A C) \cdot(s-B C)}
$$

[^0]Exercice 8 Write a program that draws a triangle using 3 calls to line (...). The coordinates of the vertices $((x 0, y 0),(x 1, y 1),(x 2, y 2))$ are stored in 6 variables whose values are hard coded at the beginning of the code.

Exercice 9 Modify the previous program to make it use two arrays x and y. For instance, instead of $x 0$ we will write $x[0]$. These is how these arrays can be rapidly initialized (hard coded at the beginning of the program)

```
size(500,500);
int [] ax = {10, 400, 50};
int [] ay = {10, 200, 80};
```

Exercice 10 Compute the area of the triangle using the above Heron's formula. You can compute first the length of each edge using the Pythagorean theorem, for instance :

$$
\text { float len01 }=\operatorname{sqrt}\left((x[1]-x[0])^{2}+(y[1]-y[0])^{2}\right)
$$

Exercice 11 Modify the above exercise to draw a pentagon instead of a triangle and to calculate its area using a similar (generalized) method based on Heron's formula. The coordinates of the five points can be hard coded in two arrays x and y as follows :

```
size(500,500);
int [] ax = {10, 400, 50, ..., ...};
int [] ay = {10, 200, 80, ..., ...};
```

Exercice 12 Write a for loop to print 15 times the text Hi everybody!!! using println(...).
Exercice 13 Write a for loop to draw 35 rectangles of size 200×100 placés à at random places on the canvas.
Indication : rect (random(100), random (100), 50,20) draw a rectangle of size 50×20 at a random positions whose coordinates are between 0 and 100. Launch several times the code line below.

```
rect(random(100),random(100),50,20)
```


[^0]: 1. The area of a triangle can also be calculated as the product between the height and the base (BC) of the triangle. We get $400 \cdot 100 / 2=20000$. You will observe a rounding error in the calculation based on the formula of Heron.
