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We propose to represent uncertainty on customer demands in the Capacitated Vehicle 
Routing Problem (CVRP) using the theory of evidence. To tackle this problem, we 
extend classical stochastic programming modelling approaches. Specifically, we propose 
two models for this problem. The first model is an extension of the chance-constrained 
programming approach, which imposes certain minimum bounds on the belief and 
plausibility that the sum of the demands on each route respects the vehicle capacity. The 
second model extends the stochastic programming with recourse approach: for each route, 
it represents by a belief function the uncertainty on its recourses, i.e., corrective actions 
performed when the vehicle capacity is exceeded, and defines the cost of a route as its 
classical cost (without recourse) plus the worst expected cost of its recourses. We solve 
the proposed models using a metaheuristic algorithm and present experimental results on 
instances adapted from a well-known CVRP data set.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the Capacitated Vehicle Routing Problem (CVRP), we are given a fleet of vehicles with identical capacity located at a 
depot and a set of customers with known demands located on the vertices of a graph. The goal of this problem is to deter-
mine a route for each vehicle, such that the set of routes for all the vehicles has the least total cost, all customer demands 
are fully serviced, the capacity of each vehicle is always respected and each customer is visited by exactly one route. The 
CVRP is NP-hard since it contains the traveling salesman problem as a particular case (one route and unbounded capacity). 
It can be written as an integer linear program. The CVRP has generated a large body of research, since it belongs to the 
class of local transportation or delivery problems affecting the most expensive component in the distribution network [8].

Yet, many industrial applications are confronted with uncertainty on customer demands in their distribution problems in-
volving the CVRP, and the exact customer demands are mostly revealed when the servicing vehicles arrive at the customers. 
Accordingly, several authors (see, e.g., [28,29] and the references therein) tackled this issue by assuming that customer 
demands are random variables and the associated problem is the well-known Capacitated Vehicle Routing Problem with 
Stochastic Demands (CVRPSD). Two of the most widely-used frameworks for modelling stochastic problems, such as the 
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CVRPSD, are the Chance-Constrained Programming (CCP) approach and the Stochastic Programming with Recourse (SPR) ap-
proach [7]. Modelling the CVRPSD via CCP amounts to using a probabilistic capacity constraint that requires the probability 
of respecting the capacity constraint to be above a certain threshold. The CCP modelling technique does not consider the 
additional cost of recourse (or corrective) actions necessary if capacity constraints fail to be satisfied. The SPR approach does 
consider situations needing recourses and it aims at minimizing the initially-planned travel cost plus the expected cost of 
the recourses executed along routes, e.g., returning to the depot and unloading in order to bring to feasibility a violated 
capacity constraint.

The probabilistic approach to modelling uncertainty is not necessarily well-suited to all real-life situations. In particular, 
its ability to handle epistemic uncertainty (uncertainty arising from lack of knowledge) has been criticised [4,1]. The typical 
approach to representing basic epistemic uncertainty is the set-valued approach [26]. It is sensible when, e.g., all that 
is known about the customer demands is that they belong to some intervals. This kind of uncertainty in the CVRP is 
generally addressed using robust optimisation, where one optimises against the worst-case scenario, that is, one wants to 
obtain solutions that are robust to all realisations of customer demands that are deemed possible (see, e.g., [49]). However, 
the set-valued approach to uncertainty representation may be too coarse and may thus lead to solutions that are too 
conservative, hence not useful.

In the last forty years, the necessity to account for all facets of uncertainty has been recognized and alternative un-
certainty frameworks extending both the probabilistic and set-valued ones have appeared [4]. In particular, the theory of 
evidence introduced by Shafer [47], based on some previous work from Dempster [15], has emerged as a theory offering a 
compromise between expressivity and complexity, which seems interesting in practice as its successful application in several 
domains testifies (see [18] for a recent survey of evidence theory applications). This theory, also known as belief function 
theory, may be used to model various forms of information, such as expert judgements and statistical evidence, and it also 
offers tools to combine and propagate uncertainty [1].

In the context of the CVRP, the theory of evidence may be used to represent uncertainty on customer demands leading 
to an optimisation problem, which will be referred to as the CVRP with Evidential Demands (CVRPED). Using the theory of 
evidence in this problem seems particularly interesting as it allows one to account for imperfect knowledge about customer 
demands, such as knowing that each customer demand belongs to one or more sets with a given probability allocated to 
each set – an intermediary situation between probabilistic and set-valued knowledge. In this paper, we propose to address 
the CVRPED by extending the CCP and SPR modelling approaches into the formalism of evidence theory. Although the focus 
will be to extend stochastic programming approaches, we will also connect our formulations with robust optimisation.

To our knowledge, evidence theory has not yet been considered to model uncertainty in large-scale instances of an NP-
hard optimisation problem like the CVRP. Indeed, it seems that so far, only other non-classical uncertainty theories, and in 
particular fuzzy set theory [50,9,42,11], have been used in such problems. Besides, modelling uncertainty in optimisation 
problems using evidence theory has concerned only continuous design optimisation problems1 [41,48] and continuous lin-
ear programs [40]. Specifically in [41], the reliability of the system is optimized, while uncertainty is handled by limiting 
the plausibility of constraints violation into a small degree; while in [48] the problem was handled differently, and the 
plausibility of a constraint failure was converted into a second objective to the problem that should be minimized. Of par-
ticular interest is the work of Masri and Ben Abdelaziz [40], who extended the CCP and SPR modelling approaches, in order 
to model continuous linear programs embedding belief functions, which they called the Belief Constrained Programming 
(BCP) and the recourse approaches, respectively. In comparison, in this work, we generalise CCP and SPR to an integer linear 
program involving uncertainty modelled by evidence theory. Borrowing from [40], we propose to model the CVRPED by 
methods that may be called the BCP modelling of the CVRPED and the recourse modelling of the CVRPED. For both models, 
the resolution algorithm is a simulated annealing algorithm; we use a metaheuristic, as the CVRPED derives from the CVRP, 
which is NP-hard.

The paper is structured as follows. Section 2 summarises the basic preliminaries on the CVRP and on the CVRPSD 
modelling via CCP and SPR, along with the necessary background on evidence theory. In Section 3, the BCP model and 
the recourse model for the CVRPED are presented and some of their properties are studied. In Section 4 we solve the BCP 
model and the recourse model of the CVRPED using a simulated annealing algorithm and perform experiments on instances 
generated from CVRP benchmarks. In Section 5, we conclude and state the perspectives of the present work.

2. Background

This section recalls necessary background on the CVRP, the CVRPSD and its stochastic programming formulations, as well 
as some concepts of belief function theory needed in this paper.

1 Designing physical systems in the engineering field using optimisation techniques, so design costs are minimized, while the system performance is 
fulfilled [2].
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2.1. The CVRP

In the CVRP, a fleet of m identical vehicles with a given capacity limit Q , initially located at a depot, must collect2 goods 
from n customers, with di such that 0 < di ≤ Q the deterministic collect demand of client i, i = 1, . . . , n. The objective in 
the CVRP is to find a set of m routes with minimum cost to serve all the customers such that total customer demands on 
any route must not exceed Q , each route starts and ends at the depot, and each customer is serviced only once.

Formally, it is convenient to represent the depot by an artificial client i = 0, whose demand always equals 0, i.e., d0 = 0. 
The CVRP may be defined on a graph G = (V , E) such that V = {0, . . . ,n} is the vertex set and E = {(i, j) |i �= j; i, j ∈ V } is 
the arc set. V represents the customers and the depot that corresponds to vertex 0. A travel cost (or travel time or distance 
– these terms are interchangeable) ci, j is associated with every edge in E . Travel costs are such that ci, j = c j,i, ∀ (i, j) ∈ E
and they satisfy the triangle inequality: ci, j ≤ ci,l + cl, j , ∀i, l, j ∈ V . Besides, ci,i = +∞, ∀i ∈ V [51]. Let Rk be the route 
associated to vehicle k and wk

i, j a binary variable that equals 1 if vehicle k travels from i to j and serves j (except if j is 
the depot), and 0 if it does not. A proper formulation for the CVRP [8,38] is:

min
m∑

k=1

C(Rk), (1)

where

C(Rk) =
n∑

i=0

n∑
j=0

ci, j wk
i, j, (2)

subject to

n∑
i=0

m∑
k=1

wk
i, j = 1, j = 1, . . . ,n, (3)

n∑
i=0

wk
i,� =

n∑
j=0

wk
�, j, k = 1, . . . ,m , � = 0, . . . ,n, (4)

n∑
j=1

wk
0, j ≤ 1, k = 1, . . . ,m, (5)

∑
i, j∈L
i �= j

m∑
k=1

wk
i, j ≤ |L] − 1, L ⊆ V \ {0}, (6)

n∑
i=1

di

n∑
j=0

wk
i, j ≤ Q , k = 1, . . . ,m. (7)

Constraints (3) make sure that exactly one vehicle arrives at client j, j = 1, . . . , n. Constraints (4) ensure the continuity of 
the routes (flow): if vehicle k leaves vertex �, vehicle k must also enter vertex �, ensuring that the route is a proper unbroken 
cycle in the graph. Constraints (5) oblige vehicle k, k = 1, . . . , m, to leave at most one time the depot. The choices of the arcs 
that are represented by wk

i, j is also restricted by constraints (6), that forbids subtours solutions [8]. Without these latter 
constraints, we can have a vehicle performing the path (i1, i2, . . . , it) with 0 /∈ {i1, i2, . . . , it}. Constraints (7) state that every 

vehicle cannot carry more than its capacity limit. We note that constraints (3) and (4) imply 
n∑

i=0

m∑
k=1

wk
j,i = 1, j = 1, . . . , n, 

i.e., exactly one vehicle leaves client j. Constraints (5) and (4) imply 
n∑

i=1
wk

i,0 ≤ 1, k = 1, . . . , m, i.e., vehicle k is obliged to 

return at most one time to the depot. Finally, we remark that this model requires using at most m vehicles, since for some k, 
we might have wk

i, j = 0, i, j = 1, . . . , n.

Example 1. Suppose m = 2 vehicles with capacity limit Q = 10, which must collect the demands of n = 4 customers with 
demands d1 = 3, d2 = 4, d3 = 5, d4 = 6. These customers are illustrated in Fig. 1a (the depot is denoted by “0”), along with 
their associated travel cost matrix in Fig. 1b. A candidate solution, i.e., a set of routes satisfying constraints (3)–(7), to this 
problem is shown in Fig. 1c; the total travel cost (the value of the objective function in Equation (1)) of this solution is 

2 The problem can also be presented in terms of delivery, rather than collection, of goods.
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Fig. 1. A simple CVRP.

24.1. An optimal solution, i.e., a set of routes satisfying constraints (3)–(7) and with minimum cost among the candidate 
solutions, is provided in Fig. 1d; its total travel cost is 17.8.

2.2. The CVRPSD

The CVRPSD is a variation of the CVRP, which introduces stochastic demands in the CVRP, i.e., di , i = 1, . . . , n, are now 
random variables, such that P (di ≤ Q ) = 1 (these random variables are usually assumed to be independent). The CVRPSD 
is typically handled using the framework of stochastic programming, which models stochastic programs in two stages: an 
“a priori” solution is established in the first stage, and then in the second stage the realisations of the random variables – 
the actual demands in the case of the CVRPSD – are revealed and corrective actions are carried out if necessary on the first 
stage solution [28]. More precisely, the CVRPSD is either modelled as a so-called chance-constrained program [10] or as a 
stochastic program with recourse [7]; these two models are detailed in the next two sections.

2.2.1. The CVRPSD modelled by CCP
Chance constrained programming consists in finding a first stage solution for which the probability that the total demand 

on any route exceeds the capacity is constrained to be below a given threshold. Formally, a CCP formulation for the CVRPSD 
corresponds to the same optimisation problem described for the CVRP in Section 2.1 except that deterministic constraints 
represented by (7) are replaced by the following so called chance-constraints:

P

⎛
⎝ n∑

i=0

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ ≥ 1 − β, k = 1, . . . ,m, (8)

where 1 − β is the minimum allowable probability that any route respects vehicle capacity and thus succeeds. Note that 
this model represents a so-called individual chance-constrained model, since the inequality must be satisfied for every k
separately; see [45,7] for more details.

This model does not consider the cost of corrective actions that may be necessary when the first stage solution is 
implemented. Indeed, when implementing this solution, it is unlikely yet possible that the vehicle capacity is exceeded, i.e., 
route failures occur, when the actual demands are revealed and thus corrective actions may have to be carried out in the 
second stage.

2.2.2. The CVRPSD modelled by SPR
Stochastic programming with recourse deals explicitly with the possibility of a first stage solution failure, by incorporat-

ing into the objective of the problem the penalty cost of corrective, or recourse, actions such as allowing vehicles to return to 
the depot to unload. More specifically, in the SPR modelling of the CVRPSD, the expected penalty cost of the recourse actions 
happening in the second stage is considered and the problem is to find a set of routes which has the minimal expected cost 
defined as the cost of the first stage solution if no failures occur, plus the expected penalty cost of the recourse actions of 
the second stage. Formally, let CE(Rk) denote the expected cost of a route Rk defined by

CE(Rk) = C(Rk) + CP(Rk), (9)

with C(Rk) the cost defined by (2) representing the cost of traveling along Rk if no recourse action is performed, and CP(Rk)

the expected penalty cost on Rk – CP(Rk) may be defined in many different ways depending on the recourse policy used 
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(see, e.g., [12,27,39,23]). Then, a SPR model for the CVRPSD consists in modifying the CVRP model presented in Section 2.1
as follows. The objective is to find a set of routes minimizing the sum of the expected costs of routes Rk , i.e.,

min
m∑

k=1

CE(Rk), (10)

subject to constraints (3)–(6) excluding constraints (5), which is replaced by

n∑
j=1

wk
0, j = 1, k = 1, . . . ,m, (11)

that is exactly m vehicles must be used. Constraints (5) may be considered instead of (11), but then the problem becomes 
even more difficult to solve. In addition, note that the binary variables wk

i, j do not encode recourse actions: they represent 
only the initially planned solution routes, i.e., the first stage solution.

2.3. Evidence theory

In this section, basic concepts as well as some more advanced notions of evidence theory [47], which are necessary in 
our study on the CVRPED, are recalled.

2.3.1. Basics of evidence theory
Let x be a variable taking its values in a finite domain X = {x1, . . . , xK }. In this theory, uncertain knowledge about x may 

be represented by a Mass Function (MF) defined as a mapping mX : 2X → [0,1] such that mX (∅) = 0 and 
∑

A⊆X mX (A) = 1. 
The superscript X can be omitted when there is no risk of confusion. Each mass mX (A) represents the probability of knowing 
only that x ∈ A. Subsets A ⊆ X such that mX (A) > 0 are called the focal sets of mX . To be consistent with the stochastic case 
terminology, a variable x whose true value is known in the form of a MF will be called an evidential variable.

Mass functions generalise both probabilistic and set valued representations of uncertainty since:

• a MF whose focal sets are singletons, i.e., mX (A) > 0 iff |A| = 1, corresponds to a probability mass function and is called 
a Bayesian MF;

• a MF having only one focal set, i.e., mX (A) = 1 for some A ⊆ X , corresponds to a set and is called a categorical MF.

Another special case of mass functions are those whose focal sets are nested, in which case they are called consonant.
Equivalent representations of a MF mX are the belief and plausibility functions defined, respectively, as

BelX (x ∈ A) =
∑
C⊆A

mX (C), ∀A ⊆ X,

PlX (x ∈ A) =
∑

C∩A �=∅
mX (C), ∀A ⊆ X .

The degree of belief BelX (x ∈ A) can be interpreted as the probability that the evidence about x and represented by mX , 
supports (implies) x ∈ A, whereas the degree of plausibility PlX (x ∈ A) is the probability that the evidence is consistent with 
x ∈ A. For all A ⊆ X , we have BelX (x ∈ A) ≤ PlX (x ∈ A) and

PlX (x ∈ A) = 1 − BelX (x ∈ A�), (12)

where A� denotes the complement of A. Besides, if mX is Bayesian, then BelX (x ∈ A) = PlX (x ∈ A), for all A ⊆ X , and this 
function is a probability measure. If mX is categorical, then BelX (x ∈ A) ∈ {0, 1} and PlX (x ∈ A) ∈ {0, 1}, for all A ⊆ X , and 
the plausibility function restricted to the singletons corresponds to the indicator function of the set associated to mX . If mX

is consonant, then its associated plausibility function is a possibility measure [54]: it verifies PlX (x ∈ A ∪ B) = max(PlX (x ∈
A), PlX (x ∈ B)), for all A, B ⊆ X .

Given a MF mX and a function h : X → R+ , it is possible to compute the lower expected value E∗(h, mX ) and upper 
expected value E∗(h, mX ) of h relative to mX defined, respectively, as [16]

E∗(h,mX ) =
∑
A⊆X

mX (A)min
x∈A

h(x), (13)

E∗(h,mX ) =
∑
A⊆X

mX (A)max
x∈A

h(x). (14)

If mX is Bayesian, then E∗(h, mX ) and E∗(h, mX ) reduce to the classical (probabilistic) expected value of h relative to the 
probability mass function mX .
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2.3.2. Comparisons of belief functions
The informative content of two set-valued pieces of information x ∈ A and x ∈ B , A, B ⊆ X , about x is naturally compared 

by saying that x ∈ A is more informative than x ∈ B if A ⊂ B . An extension of this to compare the informative content of 
mass functions in terms of specificity is the notion of specialisation [24]: a MF mX

1 defined on X is said to be at least 
as informative (or specific) as another MF mX

2 defined on X , which is denoted by mX
1 � mX

2 , if and only if there exists a 
non-negative square matrix S = [S(A, B)], A, B ∈ 2X , verifying

∑
A⊆X

S(A, B) = 1, ∀B ⊆ X, (15)

S(A, B) > 0 ⇒ A ⊆ B, A, B ⊆ X, (16)

mX
1 (A) =

∑
B⊆X

S(A, B)mX
2 (B), ∀A ⊆ X . (17)

The term S(A, B) may be seen as the proportion of the mass mX
2 (B) which “flows down” to A. Let us also recall that we 

have [24]

mX
1 � mX

2 ⇒ [BelX
1 (x ∈ A), PlX

1 (x ∈ A)] ⊆ [BelX
2 (x ∈ A), PlX

2 (x ∈ A)],∀A ⊆ X . (18)

Assume now that an ordering has been defined among the elements of X . By convention, assume that x1 < . . . < xK . Let 
Aa,a denote the subset {xa, . . . , xa}, for 1 ≤ a ≤ a ≤ K and let I denote the set of intervals of X : I = {Aa,a, 1 ≤ a ≤ a ≤ K }. 
Deciding whether an interval Aa,a , i.e. an interval-valued piece of information x ∈ Aa,a about x, is smaller or equal to another 
interval Bb,b can be done in several ways, and in particular the so-called lattice ordering denoted ≤lo is defined as [20]: 
Aa,a ≤lo Bb,b if a ≤ b and a ≤ b. This ordering can be extended to arbitrary subsets A and B of X as follows: A ≤lo B if a ≤ b

and a ≤ b, where a and b (resp. a and b) denote the indices of the lowest (resp. highest) values in A and B . More generally, 
following the extension above of inclusion between sets to mass functions, the ordering ≤lo of subsets can be extended to 
compare mass functions in terms of ranking as follows: a MF mX

1 is said to be at least as small as another MF mX
2 , which is 

denoted by mX
1 � mX

2 , if and only if there exists a non-negative square matrix R = [R(A, B)], A, B ∈ 2X , verifying

∑
A⊆X

R(A, B) = 1, ∀B ⊆ X, (19)

R(A, B) > 0 ⇒ A ≤lo B, A, B ⊆ X, (20)

mX
1 (A) =

∑
B⊆X

R(A, B)mX
2 (B), ∀A ⊆ X . (21)

In other words, the mass mX
2 (B) can be shared among smaller (according to ≤lo) subsets than B . We note that extensions of 

interval rankings to belief functions were already proposed in [17], but in the context of belief functions on the real line and 
the ranking ≤lo was not considered. To our knowledge, the definition of � appears thus to be new; it will be particularly 
useful in conjunction with Proposition 1, which is somewhat of a counterpart to Eq. (18) for �, to exhibit a property of the 
BCP model for the CVPRED:

Proposition 1. For any Q , 1 ≤ Q ≤ K , we have

mX
1 � mX

2 ⇒
{

BelX
1 (x ∈ A1,Q ) ≥ BelX

2 (x ∈ A1,Q ),

PlX
1 (x ∈ A1,Q ) ≥ PlX

2 (x ∈ A1,Q ).
(22)

The converse does not hold, i.e., the implication in (22) is strict.

Proof. See Appendix A. �
Proposition 1 basically says that if a MF mX

1 is at least as small as a MF mX
2 , then the belief, according to the piece of 

evidence mX
1 , that the value of x is smaller or equal than a value xQ is at least as great as the belief of the same event 

according to the piece of evidence mX
2 (and the same goes for the plausibility), as may be expected from the meaning of �.

To sum up this section, mX
1 � mX

2 basically means that mX
2 represents a less precise piece of uncertain knowledge about 

x than mX
1 , whereas mX

1 � mX
2 means that mX

2 represents a piece of uncertain knowledge telling that x takes a higher value 
than what mX tells.
1
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2.3.3. Uncertainty propagation
Let x1, . . . , xN be N variables defined on the finite domains X1, . . . , XN , respectively. A MF mX1×···×XN defined on the 

Cartesian product X1 × · · · × XN represent joint knowledge about the values of these variables.
Similarly as in probability theory, one can obtain joint knowledge about a subset of the evidential variables x1, . . . , xN by 

marginalising MF mX1×···×XN on the domains of these variables. For instance, and without lack of generality, the marginali-
sation of mX1×···×XN on X1 × X2 is the MF mX1×···×XN ↓X1×X2 on X1 × X2 defined as, ∀A ⊆ X1 × X2,

mX1×···×XN ↓X1×X2(A) =
∑

{
B⊆X1×···×XN ,B↓X1×X2 =A

}mX1×···×XN (B), (23)

where B↓X1×X2 denotes the projection of B onto X1 × X2.
If MF mX1×···×XN satisfies, for all A ⊆ X1 × · · · × XN ,

mX1×···×XN (A) =
{∏N

i=1 mX1×···×XN ↓Xi (A↓Xi ) if A = ×N
i=1 A↓Xi ,

0 otherwise,
(24)

then variables x1, . . . , xN are said to be evidentially independent (or independent for short) [47]. In practice, this happens 
when joint knowledge about variables x1, . . . , xN , is built from marginal knowledge mXi , i = 1, . . . , N , on each of these 
variables, supplied by sources assumed to be independent [43], as illustrated by Example 2 (other reasons for this to happen 
can also be found in [14,13]).

Example 2. Let X1 = {x1
1, x

1
2, x

1
3} and X2 = {x2

1, x
2
2}. Furthermore, assume two sources providing the pieces of evidence mX1

and mX2 , respectively, about x1 and x2, defined as mX1 ({x1
1, x

1
2}) = 0.8, mX1({x1

2, x
1
3}) = 0.2 and mX2 ({x2

1}) = 0.7, mX2(X2) =
0.3. Assuming that the sources are independent, we obtain

mX1×X2({x1
1, x1

2} × {x2
1}) := mX1({x1

1, x1
2}) · mX2({x2

1}) = 0.56,

mX1×X2({x1
1, x1

2} × X2) := mX1({x1
1, x1

2}) · mX2(X2) = 0.24,

mX1×X2({x1
2, x1

3} × {x2
1}) := mX1({x1

2, x1
3}) · mX2({x2

1}) = 0.14,

mX1×X2({x1
2, x1

3} × X2) := mX1({x1
2, x1

3}) · mX2(X2) = 0.06.

mX1×X2 clearly satisfies (24).

Furthermore, let y be a variable with finite domain Y , such that y = f (x1, . . . , xN ) for some mapping f : X1 × · · · ×
XN → Y . As shown in [25], uncertain knowledge mX1×···×XN about variables x1, . . . , xN , induces MF mY about the value of 
y defined as

mY (B) =
∑

f (A)=B

mX1×···×XN (A), ∀B ⊆ Y , (25)

with f (A) = { f (x1
k1 , . . . , xN

kN )|(x1
k1 , . . . , xN

kN ) ∈ A} for all A ⊆ X1 × · · · × XN .

3. Modelling the CVRPED

This section formalises and studies the CVRPED, which is an integer linear program involving uncertainty represented 
by belief functions. We obtain this problem when customer demands in the CVRP are no longer deterministic or random, 
but evidential, i.e., the variables di , i = 1, ..., n, are evidential. Following what has been done for the case of linear programs 
involving evidential uncertainty [40], we may extend stochastic programming approaches to this integer linear program em-
bedding belief functions: the CCP modelling of the CVRPSD is generalised into a BCP modelling of the CVRPED in Section 3.1, 
and the recourse modelling of the CVRPSD is generalised into a recourse modelling of the CVRPED in Section 3.2.

Note that, to simplify the exposition, we assume actual customer demands to be positive integers, hence the value of the 
demand of any customer belongs to the set � = {1,2, . . . , Q }. In addition, since the CVPRED involves n evidential variables 
di , i = 1, ..., n, with respective domains �i := �, i = 1, ..., n, then formally this means that knowledge about customer 
demands in this problem is represented by a MF m�n

on �n := ×n
i=1�i . In practical situations, it may be the case that 

only marginal knowledge in the form of a MF m�i may be available about the individual demand of each customer i, 
i = 1, . . . , n. In such case, as explained in Section 2.3.3, m�n

can be derived by assuming that these pieces of knowledge 
about individual customer demands have been provided by independent sources. In other words, if necessary and justified, 
evidential variables di , i = 1, ..., n, may be assumed to be independent, similarly as it may be done in the stochastic case. 
However, let us underline that the BCP and recourse modellings of the CVRPED proposed in the next two sections, are 
general in that they do not rely on such independence assumption, i.e., they do not need m�n

to satisfy a property of the 
form (24).
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3.1. The CVRPED modelled by BCP

A generalisation of the CCP modelling of the CVRPSD to the case of evidential demands is proposed in this section. The 
model is provided in Section 3.1.1. Important particular cases of this model are discussed in Section 3.1.2. Influences of 
model parameters and of customer demand ranking on the optimal solution cost, are studied in Sections 3.1.3 and 3.1.4, 
respectively.

3.1.1. Formalisation
A BCP modelling of the CVRPED amounts to keeping the same optimisation problem described for the CVRP in Section 2.1

except that capacity constraints (7) are replaced by the following belief -constraints:

Bel

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ ≥ 1 − β, k = 1, . . . ,m, (26)

Pl

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ ≥ 1 − β, k = 1, . . . ,m, (27)

with β ≥ β and where 1 − β (resp. 1 − β) is the minimum allowable degree of belief (resp. plausibility) that a vehicle 
capacity is respected on any route.

Remark 1. From (12), constraints (27) are equivalent to

Bel

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j > Q

⎞
⎠ ≤ β, k = 1, . . . ,m. (28)

Hence, constraints (26) and (27) amount to requiring that for any route there is a lot (at least 1 − β) of support (belief) of 
respecting vehicle capacity and not a lot (at most β) of support of violating vehicle capacity.

Note that in order to evaluate the belief-constraints (26) and (27), the total demand on every route must be determined 
by summing all customer demands on that route. Suppose a route R having N clients, then the sum of customer demands 
on R is obtained using (25), where f is the addition of integers and where mX1×···×XN is the marginalisation of m�n

on 
the domains of the evidential variables dr1, . . . , drN associated with the N clients on the route, with Xi the domain of the 
evidential variable dri associated with the i-th client on R . The computation of the total demand on a route as well as the 
evaluation of constraints (26) and (27) for that route are illustrated by Example 3.

Example 3. Suppose that β = 0.1 and β = 0.05 and that we have n = 5 customers and m = 2 vehicles with capacity 
limit Q = 15. Moreover, suppose knowledge about customer demands is represented by MF m�n

defined on �n = �5 =
�1 × �2 × �3 × �4 × �5 by:

m�5
({(2,3,8,4,5), (3,5,6,7,4), (3,4,7,6,2)}) = 0.5,

m�5
({(5,5,6,4,7), (7,6,5,3,4)}) = 0.3,

m�5
({(4,6,7,4,6), (5,5,6,5,7)}) = 0.2. (29)

Consider the two routes represented in Fig. 2. Let us compute the sum of the customer demands on the route 
(0,4,1,2,0), i.e., the route that collects the demand of customer 4, then the demand of customer 1 and finally the de-
mand of customer 2. Call this route R . On this route, there are N = 3 clients. The first client is client 4, hence according to 
the above notation, we have dr1 = d4 and X1 = �4. Similarly, we have

dr2 = d1, X2 = �1,

dr3 = d2, X3 = �2.

The marginalisation of m�5
on X1 × X2 × X3 is the MF m�5↓X1×X2×X3 defined as:

m�5↓X1×X2×X3({(4,2,3), (7,3,5), (6,3,4)}) = 0.5,

m�5↓X1×X2×X3({(4,5,5), (3,7,6)}) = 0.3,

m�5↓X1×X2×X3({(4,4,6), (5,5,5)}) = 0.2. (30)
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Fig. 2. Evaluation of constraints (26) and (27) on the route (0,4,1,2,0) (route circled in red).

Now given m�5↓X1×X2×X3 and using Equation (25) such that f is the addition of integers, uncertainty on the sum of client 
demands on route R is represented by a MF denoted m�R∑ and defined on the domain �R := {1, 2, . . . , N · Q } = {1, . . . , 45}
by:

m�R∑ ({9,15,13}) = 0.5,

m�R∑ ({14,16}) = 0.3,

m�R∑ ({14,15}) = 0.2. (31)

The belief and plausibility that the sum of customer demands on R is smaller or equal than the vehicle capacity Q are then 
respectively:

Bel(d4 + d1 + d2 ≤ 15) = m�R∑ ({9,15,13}) + m�R∑ ({14,15})
= 0.7,

Pl(d4 + d1 + d2 ≤ 15) = 1.

Hence, we have

Bel(dr1 + dr2 + dr3 ≤ Q ) < 1 − β = 0.9,

Pl(dr1 + dr2 + dr3 ≤ Q ) > 1 − β = 0.95.

In other words, constraint (27) is satisfied on R but constraint (26) is not, and thus any set of routes containing this route, 
such as the one shown in Fig. 2, is not a candidate solution.

Suppose further that the number of focal sets of MF mX1×···×XN is at most c, then the worst case complexity of evaluating 
each of the belief constraints (26) and (27) on this route is O(N · Q N · c). This latter complexity emerges from the following: 
the Q N factor is the maximal number of elements of a focal set of MF mX1×···×XN . As we have N clients on a route, then 
for each element of a focal set of MF mX1×···×XN , the addition of N integers must be performed, this explains N · Q N . The 
last factor in the complexity which is c, is related to performing the product N · Q N for the c focal sets of MF mX1×···×XN . 
Nonetheless, in a particular case, the worst case complexity drops down significantly:

Remark 2. When the focal sets of mX1×···×XN are all Cartesian products of N intervals, i.e., for all A ⊆ X1 × · · · × XN such 
that mX1×···×XN (A) > 0, we have A = A↓X1 × · · · × A↓XN with, for i = 1, . . . , N , A↓Xi = � Ai; Ai � for some integers Ai, Ai ∈ Xi

such that Ai ≤ Ai , the worst case complexity is O(N · c). This complexity to evaluate constraint (26) for route R comes from 
the fact that (with dri the evidential variable associated with the i-th client on R):

Bel(
N∑

i=1

dri ≤ Q ) =
∑

{mX1×···×XN (A)|A : max
a∈A

f (a) ≤ Q }

=
∑

{mX1×···×XN (A)|A : max
(a1,··· ,aN )∈A

N∑
i=1

ai ≤ Q } (32)

=
∑

{mX1×···×XN (A)|A :
N∑

Ai ≤ Q },

i=1
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that is, at worst for each of the c focal sets of mX1×···×XN , the addition of N integers needs to be performed. The complexity 
to evaluate constraint (27) is the same since we have

Pl(
N∑

i=1

dri ≤ Q ) =
∑

{mX1×···×XN (A)|A : min
(a1,··· ,aN )∈A

N∑
i=1

ai ≤ Q } (33)

=
∑

{mX1×···×XN (A)|A :
N∑

i=1

Ai ≤ Q }.

Remark 3. From (32), it is clear that the complexity to evaluate constraint (26) for a given route R , depends on the complex-
ity of finding for each focal set A of mX1×···×XN , the element (a1, · · · , aN) ∈ A that maximises 

∑N
i=1 ai . Suppose this latter 

complexity is at worst O(M), 1 ≤ M ≤ Q N , for each focal set. Then, the worst case complexity to evaluate constraint (26)
for a route is O(N · M · c). Remark 2 provides a case, i.e., a particular shape for the focal sets of mX1×···×XN , such that M = 1. 
We note that other, more refined yet still leading to tractable values for M , shapes for these focal sets may be considered. 
For instance, borrowing from robust optimisation [6], suppose that each focal set A of mX1×···×XN can be written as

A = {(a1, · · · ,aN)|ai ≥ Ai,ai ≥ Ai,

N∑
i=1

ai − Ai

Ai
≤ �}, (34)

for some lower bounds Ai and upper bounds Ai i = 1, . . . , N , and some uncertainty budget � [6]; budget � in (34) limits 
the sum of the deviations from the minimum demands Ai , i = 1, . . . , N . Then, maximizing 

∑N
i=1 ai for each focal set A is 

done over a more difficult, yet still manageable, shape than in Remark 2. Obviously, similar comments can be made about 
the complexity of constraint (27).

3.1.2. Particular cases of the BCP modelling of the CVRPED
It is interesting to remark that depending on the values chosen for β and β as well as the nature of the evidential de-

mands di , i = 1, ..., n, the BCP modelling of the CVRPED may degenerate into simpler or well-known optimisation problems.
In particular, if m�n

is Bayesian, i.e., we are dealing really with a CVRPSD, then we have, for k = 1, . . . , m,

Bel

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ = Pl

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ , (35)

and the BCP modelling of the CVRPED can be converted into an equivalent optimisation problem, which is the CCP modelling 
of this CVRPSD, with β in (8) set to β .

In contrast, if m�n
is categorical and its only focal set is the Cartesian product of n intervals, i.e., we are dealing with a 

CVRP where each customer demand di is only known in the form of an interval �di; di �, then the total demand on any given 
route is also an interval (its endpoints are obtained by summing the endpoints of the interval demands of the customers on 
the route) and thus for any k = 1, . . . , m, Bel�(

∑n
i=0 di

∑n
j=0 wk

i, j ≤ Q ) either equals 1 or equals 0, with the former occur-

ring iff 
∑n

i=0 di
∑n

j=0 wk
i, j ≤ Q , and Pl�(

∑n
i=0 di

∑n
j=0 wk

i, j ≤ Q ) either equals 1 or equals 0, with the former occurring iff ∑n
i=0 di

∑n
j=0 wk

i, j ≤ Q . Then, since 
∑n

i=0 di
∑n

j=0 wk
i, j ≤ Q ⇒ ∑n

i=0 di
∑n

j=0 wk
i, j ≤ Q , the belief-constraints (26) and (27)

reduce when β < 1 to the following constraints

n∑
i=0

di

n∑
j=0

wk
i, j ≤ Q , k = 1, . . . ,m. (36)

In other words, in the case of interval demands, the BCP modelling amounts to searching the solution which minimises the 
overall cost of servicing the customers (1) under constraints (36), i.e., assuming the maximum (worst) possible customer 
demands, and thus it corresponds to the minimax optimisation procedures encountered in robust optimisation [49].

If m�n
is consonant, then we are dealing with a CVRP where uncertainty on customer demand is really of a possibilistic 

nature, and the BCP modelling may then be connected to fuzzy-based approaches, that is approaches where uncertainty on 
customer demands is represented by fuzzy sets such as in [50]. In addition, let us remark that if only marginal knowledge 
in the form of a consonant MF m�i having interval focal sets is available about the individual demand of each customer i, 
i = 1, . . . , n, then, as explained in Section 2.3.3, m�n

can be obtained by assuming (if justified) independence of the de-
mands, in which case it will yield a tractable situation thanks to Remark 2, whose conditions are then satisfied (the focal 
sets of m�n

being in this case Cartesian products of intervals). However, m�n
may also be derived from these pieces of 

marginal knowledge by making other assumptions about the demand dependence and in particular by assuming that they 
are non-interactive [25,5] – a more classical independence assumption in the fuzzy setting – in which case the focal sets of 
m�n

will also be Cartesian products of intervals but they will also be nested (m�n
will then be consonant).
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If β = β , then constraints (27) can be dropped, that is, only constraints (26) need to be evaluated (if constraints (26) are 
satisfied then constraints (27) are necessarily satisfied due to the relation between the belief and plausibility functions). As a 
matter of fact, the BCP approach originally introduced in [40] is of this form (no constraint based on Pl is considered). Most 
importantly, when β = β and the evidential variables di , i = 1 . . . , n are independent, the BCP modelling of the CVRPED can 
be converted into an equivalent optimisation problem, which is the CCP modelling (with β in (8) set to β) of a CVRPSD 
where customer demands are represented by independent stochastic variables denoted di , i = 1, . . . , n, with associated 
probability mass function pi obtained from m�i := m�n↓�i as follows: for each focal set A ⊆ �i of m�i , the mass m�i (A) is 
transferred to the element θ = max(A). Indeed, with such a definition of pi , it is easy to show that we have, for k = 1, . . . , m,

Bel

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ = P

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ . (37)

Let us eventually remark that the case β = 1 > β is the converse of the case β = β in the sense that constraints (26)
can be dropped (as they are necessarily satisfied) and only constraints (27) need then to be evaluated. Moreover, in this 
case, if the evidential variables di , i = 1 . . . , n are independent, the BCP modelling of the CVRPED can be converted into an 
equivalent optimisation problem, which is the CCP modelling (with β in (8) set to β) of a CVRPSD where customer demands 
are represented by independent stochastic variables denoted di , i = 1, . . . , n, with associated probability mass function pi

obtained from m�i as follows: for each focal set A ⊆ �i of m�i , the mass m�i (A) is transferred to the element θ = min(A). 
Indeed, with such a definition of pi , it is easy to show that we have, for k = 1, . . . , m,

Pl

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ = P

⎛
⎝ n∑

i=1

di

n∑
j=0

wk
i, j ≤ Q

⎞
⎠ . (38)

3.1.3. Influence of β , β and Q on the CVRPED-BCP optimal solution cost

In this section, we study the influence of the parameters β , β and Q , on the optimal solution cost of the CVRPED 
modelled via BCP (in the remainder of this article, we will simply say CVRPED-BCP instead of CVRPED modelled via BCP).

The following propositions hold:

Proposition 2. The optimal solution cost is non-increasing in Q .

Proof. See Appendix B. �
Proposition 3. The optimal solution cost is non-increasing in β .

Proof. See Appendix C. �
Proposition 4. The optimal solution cost is non-increasing in β .

Proof. The proof is similar to that of Proposition 3. �
Informally, Propositions 2–4 state that if the decision maker is willing to buy vehicles with a higher capacity or to have 

vehicle capacity exceeded on any route more often, then he will obtain at least as good (at most as costly) solutions.

3.1.4. Influence of customer demand ranking on the CVRPED-BCP optimal solution cost
In this section, we study the influence on the CVRPED-BCP optimal solution cost, of considering uncertain knowledge 

representing a more pessimistic estimation of the demand of each customer than currently assumed, that is uncertain 
knowledge telling that the demand of each customer is higher than currently believed.

Specifically, let m�n
and m�n

+ be two MF representing uncertain knowledge about customer demands, such that evidential 
variables di , i = 1, . . . , n, are independent according to both these mass functions. Furthermore, let m�i := m�n↓�i and 
m�i+ := m�n↓�i+ , i = 1, . . . , n. Denote by Ĉ Q ,β,β and Ĉ+

Q ,β,β
the costs of optimal solutions to the CVRPED-BCP when customer 

demands are known in the form of m�n
and m�n

+ , respectively, for some β , β and Q .
The following proposition holds:

Proposition 5. m�i � m�i+ , i = 1, . . . , n ⇒ Ĉ Q ,β,β ≤ Ĉ+
Q ,β,β

.
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Proof. See Appendix D. �
Informally, Proposition 5 shows that the more pessimistic knowledge is about customer demands, the greater the cost of 

the optimal solution.
An immediate consequence of this result is:

Corollary 1. Assume that the focal sets of MF m�i and m�i+ , i = 1, . . . , n, are all intervals and that m�i+ can be obtained from m�i , 
i = 1, . . . , n, as follows: for each interval A = � A; A� such that m�i (A) > 0, the mass m�i (A) is transferred to the interval A+ =

� A; A + a+�, with a+ ∈ �0; Q − A�. Then, Ĉ Q ,β,β ≤ Ĉ+
Q ,β,β

.

Another immediate consequence is:

Corollary 2. Assume that the focal sets of MF m�i and m�i+ , i = 1, . . . , n, are all intervals and that m�i can be obtained from m�i+ , 
i = 1, . . . , n, as follows: for each interval A+ = � A+; A+� such that m�i+ (A+) > 0, the mass m�i+ (A+) is transferred to the interval 
A = � A+ − a; A+�, with a ∈ �0; A+ − 1�. Then, Ĉ Q ,β,β ≤ Ĉ+

Q ,β,β
.

Remark 4. In both Corollaries 1 and 2, it is easy to show that m�i � m�i+ , i = 1, . . . , n, which is the reason why these 
corollaries hold. Note that for Corollary 1, we can also easily show that m�i � m�i+ , i = 1, . . . , n, whereas for Corollary 2, 
we have m�i+ � m�i , i = 1, . . . , n. This shows that the CVRPED-BCP optimal solution cost will not necessarily be higher if 
knowledge about customer demand is less specific. As will be seen in the next section, a different conclusion is reached for 
the recourse model, and specifically a counterpart to Proposition 5, based on � rather than �, holds.

3.2. The CVRPED modelled by a recourse approach

A recourse approach for the CVRPED is proposed in this section. The general model, extending the one recalled for the 
CVRPSD in Section 2.2.2, is presented in Section 3.2.1. Then, in Section 3.2.2, we detail how uncertainty on recourse actions 
is obtained in this model and in Section 3.2.3 we provide a method to compute efficiently this latter uncertainty in an 
important particular case. Similarly to what has been done for the BCP model, we discuss particular cases of our general 
model in Section 3.2.4 and study the influence of customer demands specificity on the optimal solution cost in Section 3.2.5.

3.2.1. Formalisation
The CVRPED may be addressed using an extension of the other main approach to modelling stochastic programs, that 

is the recourse approach. We propose to extend the recourse approach to the CVRPED, for the following policy and as-
sumptions studied for the stochastic case in [12,27,39,23]. Each actual customer demand cannot exceed the vehicle capacity. 
In addition, when a vehicle arrives at a customer on its planned route, it is loaded with the actual customer demand up 
to its remaining capacity. If this remaining capacity is sufficient to pick-up the entire customer demand, then the vehicle 
continues its planned route. However, if it is not sufficient, i.e., there is a failure, then the vehicle returns to the depot, is 
emptied, goes back to the client to pick-up the remaining customer demand and continues its originally planned route.

Consider a given route R containing N customers and, without lack of generality, that the i-th customer on R is cus-
tomer i. According to the above setting, a failure cannot occur at the first customer on R . However, it can occur at any other 
customer on R , and there may even be failure at multiple customers on R (at worst, if the actual demand of each customer 
is equal to the capacity of the vehicle, failure occurs at each customer except the first one).

Formally, let us introduce a binary variable ri that equals 1 if failure occurs at the i-th customer on R and 0 otherwise (by 
problem definition r1 = 0). Then, the possible failure situations that may occur along R may be represented by the vectors 
(r2, r3, . . . , rN) ∈ {0, 1}N−1. To simplify the exposition, we define the set � as the space of binary vectors representing the 
possible failure situations along R: each failure situation (r2, r3, . . . , rN ) is then a binary vector belonging to � = {0, 1}N−1. 
For instance, when R contains only N = 3 customers, we have � = {(0,0) , (1,0) , (0,1) , (1,1)}, where the binary vectors 
mean that the vehicle needs to perform a round trip to the depot, respectively, “never”, “when it reaches the second 
customer”, “when it reaches the third customer”, and “when it reaches both the second and third customers”.

Furthermore, let g : � →R+ be a function representing the cost of each failure situation ω ∈ �, with ω being the binary 
vector (r2, r3, . . . , rN ) representing a failure situation. Since the penalty cost upon failure on customer i is 2c0,i (a failure 
implies a return trip to the depot), the cost associated to failure situation ω is

g(ω) =
N∑

i=2

ri2c0,i . (39)

Let m� be a MF representing uncertainty towards the actual failure situation occurring on R – as will be shown in the 
next section, evidential demands may induce such a MF.
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Then, adopting a similar pessimistic attitude as in the recourse approach to belief linear programming [40], the upper 
expected penalty cost C∗

P(R) of route R may be obtained using (14) as follows:

C∗
P(R) = E∗(g,m�). (40)

Accordingly, the upper expected cost C∗
E(R) of route R may be defined as

C∗
E(R) = C(R) + C∗

P(R), (41)

with C(R) the cost (2) of travelling along route R when no failure occurs.
The CVRPED under the above recourse policy, may then be modelled using a modified version of the CVRP model of 

Section 2.1. Specifically, our recourse modelling of the CVRPED aims at

min
m∑

k=1

C∗
E(Rk), (42)

subject to constraints (3)–(6), with constraints (5) replaced by constraints (11).
Evaluating the objective function (42) requires the computation for each route, of the MF m� representing uncertainty 

on the actual failure situation occurring on the route. This is detailed in the next section.

3.2.2. Uncertainty on recourses
Consider again a route R containing N customers. In addition, let us first assume that client demands on N are known 

without any uncertainty, that is we know that the demand of client i, i = 1, . . . , N , is some value θi ∈ �. Then, it is clear 
that the above recourse policy amounts to the following definition for the binary failure variables ri :

ri =
{

1, if qi−1 + θi > Q ,

0, otherwise,
∀i ∈ {2, . . . , N} (43)

where q j , j = 1, . . . , N , denotes the load in the vehicle after serving the j-th customer such that q j = θ1 for j = 1 and, for 
j = 2, . . . , N ,

q j =
{

q j−1 + θ j − Q , if q j−1 + θ j > Q ,

q j−1 + θ j, otherwise.
(44)

In other words, when it is known that the demand of the i-th customer is θi , i = 1, . . . , N , then we have a precise demand 
vector on R that induces a precise binary failure situation vector (r2, r3, . . . , rN ), with ri defined by (43). This can be encoded 
by a function f : �N → �, s.t. f (θ1, . . . , θN ) = (r2, r3, . . . , rN ). For example, suppose we have N = 3 customers on route R , 
with respective demands θ1 = 3, θ2 = 3 and θ3 = 5, and the vehicle capacity limit is Q = 5. In such case, f (θ1, θ2, θ3)

implies the failure situation vector (r2 = 1, r3 = 1).
In the general case, client demands on R are known in the form of a MF mX1×···×XN , which is the marginalisation of 

m�n
on the domains of the evidential variables dr1, . . . , drN associated with the N clients on the route, with Xi the domain 

of the evidential variable dri associated with the i-th client on R . In such case, using (25) with f defined in the preceding 
paragraph, uncertainty on the actual failure situation on R is represented by a MF m� defined as

m�(B) =
∑

f (A)=B

mX1×···×XN (A), ∀B ⊆ �. (45)

Computing m� defined by (45) involves evaluating f (A) for any focal set A of mX1×···×XN . Evaluating f (A) for some 
A ⊆ X1 × · · · × XN , implies |A| (and thus at worst Q N ) times the evaluation of function f at some point (θ1, . . . , θN ) ∈ �N . 
Hence, computing Equation (45) is generally intractable. Nonetheless, in a particular case, it is possible to compute f (A), 
and thus Equation (45), with a much more manageable complexity:

Remark 5. When the focal sets of mX1×···×XN are all Cartesian products of N intervals, i.e., for all A ⊆ X1 ×· · ·× XN such that 
mX1×···×XN (A) > 0, we have A = A↓X1 × · · · × A↓XN with, for i = 1, . . . , N , A↓Xi = � Ai; Ai �, it becomes possible to compute 
f (A) with a complexity of the order 2N , as detailed in the next section, and thus in this case if mX1×···×XN has at most c
focal sets, the worst-case complexity to evaluate Equation (45) is O(2N · c).

3.2.3. Interval demands
Let us consider a route R with N customers, such that the demand of customer i, i = 1, . . . , N , is known in the form 

of an interval of positive integers, which we denote by � Ai; Ai �, where Ai ≥ 1 and Ai ≤ Q . In this case, the failure sit-

uation on R belongs surely to f
(

� A1; A1 � × · · · × � AN ; AN �
) ⊆ �. Hereafter, we provide a method to efficiently compute 

f
(

� A1; A1 � × · · · × � AN ; AN �
)
.
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In a nutshell, this method consists in generating a rooted binary tree, which represents synthetically yet exhaustively 
what can possibly happen on R in terms of failure situations.

More precisely, this tree is based on the following remark. Suppose a vehicle travelling along R and all that is known 
about its load when it arrives at the i-th customer on R is that its load belongs to an interval �q; q�. Let us denote by qi its 
load after visiting the i-th customer. Then, there are three exclusive cases:

1. either q + Ai ≤ Q , hence there will surely be no failure at that customer and all that is known is that qi ∈ �q; q� +
� Ai; Ai �;

2. or q + Ai > Q , hence there will surely be a failure at that customer and all that is known is that qi ∈ �q; q� + � Ai; Ai � −
Q ;

3. or q + Ai ≤ Q < q + Ai , hence it is not sure whether there will be or not a failure at that customer. However, we can 
be sure that if there is no failure at that customer, i.e., the sum of the actual vehicle load and of the actual customer 
demand is lower or equal to Q , then it means that qi ∈ �q + Ai; Q �; and if there is a failure at that customer, then it 
means that qi ∈ �1; q + Ai − Q �.

By applying the above reasoning repeatedly, starting from the first customer and ending at the last customer, whilst 
accounting for and keeping track of all possibilities and their associated failures (or absence thereof) along the way, one 
obtains a binary tree. The tree levels are associated to the customers according to their order on R . The nodes at a level 
i represent the different possibilities in terms of imprecise knowledge about the vehicle load after the i-th customer, and 
they also store whether these imprecise pieces of knowledge about the load were obtained following a failure or an absence 
of failure at the i-th customer. The pseudo code of the complete tree induction procedure is provided in Algorithm 1 and 
illustrated afterwards by Example 4.

Algorithm 1 Induction of Recourse Tree (RT).
Input: interval load �q; q�, Boolean failure variable r, next customer number i
Output: final tree T ree

1: create a root node containing interval load �q; q� and Boolean failure r
2: if i = N + 1 then
3: return T ree = {root node}
4: else if q + Ai ≤ Q then
5: �qL; qL � = �q; q� + � Ai; Ai �
6: rL = 0
7: T reeL = RT (�qL; qL �, rL , i + 1)

8: attach T reeL as left branch of T ree
9: else if q + Ai > Q then

10: �qR ; qR � = �q; q� + � Ai; Ai � − Q
11: rR = 1
12: T reeR = RT (�qR ; qR �, rR , i + 1)

13: attach T reeR as right branch of T ree
14: else
15: �qL; qL � = �q + Ai; Q �
16: rL = 0
17: T reeL = RT (�qL; qL �, rL , i + 1)

18: attach T reeL as left branch of T ree
19: �qR ; qR � = �1; q + Ai − Q �
20: rR = 1
21: T reeR = RT (�qR ; qR �, rR , i + 1)

22: attach T reeR as right branch of T ree
23: end if

Example 4. Let us illustrate Algorithm 1 on a route R where Q = 10 and containing 3 customers, with �4; 8�, �5; 7� and 
�7; 9� the imprecise demands of the first, second and third customers, respectively. Since the demand of the first customer 
is �4; 8�, and there is no failure by definition at the first customer, and the customer following the first customer is the 
second customer, the tree is obtained with RT (�4; 8�, 0, 2) and is shown in Fig. 3.

For each leaf of the tree, by concatenating in a vector the Boolean failure variable ri at level i = 2, . . . , N , written on the 
path from the root to the leaf, we obtain the binary failure situation vector (r2, r3, . . . , rN ). Hence, all the leaves of the tree, 
yield the subset B ⊆ �. For instance, the rightmost leaf of the tree in Fig. 3 yields the failure situation vector (r2 = 1, r3 = 1), 
the leftmost leaf yields (r2 = 0, r3 = 1) and the remaining leaf yields (r2 = 1, r3 = 0). The tree in this example yields thus 
the set B = {(1,0) , (0,1) (1,1)}.

Proposition 6. The set B built using the tree generated by Algorithm 1 verifies B = f
(

� A1; A1 � × · · · × � AN ; AN �
)
.
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Fig. 3. Recourse tree constructed for Example 4.

Table 1
Travel cost matrix C .

0 1 2 3
0 +∞ 1 1.1 3
1 1 +∞ 1 2.1
2 1.1 1 +∞ 2.1
3 3 2.1 2.1 +∞

Proof. See Appendix E. �
The maximum number of leaf nodes in the tree is 2N−1. Thus, the algorithmic complexity to obtain set B ⊆ � is of the 

order 2N .

3.2.4. Particular cases of the recourse modelling of the CVRPED
In this section, some comments are provided on the behaviour of our recourse modelling, especially with respect to 

some particular evidential demands.
If m�n

is Bayesian, i.e., we are dealing really with a CVRPSD, then m� is Bayesian on any given route R . Hence, the 
upper expected penalty cost C∗

P(R) reduces to the classical (probabilistic) expected value of cost function g with respect 
to the probability mass function m� , and thus our recourse modelling of the CVRPED clearly degenerates into the recourse 
modelling of the aforementioned CVRPSD.

We showed in Section 3.1.2 that the CVRPED-BCP can be converted, when β = β and the evidential variables di , i =
1 . . . , n, are independent, into an equivalent CVRPSD modelled via chance constrained programming, by transforming each 
evidential demand represented by MF m�i into a stochastic demand represented by probability mass function pi obtained 
from m�i by transferring the mass m�i (A) to the element θ = max(A). Example 5 shows that under the recourse approach, 
this latter transformation cannot be used in general to convert a CVRPED into an equivalent CVRPSD.

Example 5. Suppose we have one available vehicle with capacity limit Q = 14, n = 3 clients with �2; 8�, �3; 8� and �3; 8�
the imprecise demands of clients 1, 2 and 3, respectively. The depot is denoted by 0 and the travel cost matrix C = (

ci, j
)

where i, j ∈ {0,1,2,3} is shown in Table 1. Under the recourse approach, the optimal solution to this CVRPED instance is 
the route defined by the path (0,3,2,1,0) (its upper expected cost is 9.3). Using the above-mentioned transformation to 
transform the evidential demands into stochastic demands, we obtain p1(8) = 1, p2(8) = 1, and p3(8) = 1, and under the 
recourse approach the optimal solution to this CVRPSD instance is either the route defined by the path (0,2,1,3,0) or 
(0,3,1,2,0) (the expected cost of each one of these routes being 9.2), which are different from the optimum found for the 
CVRPED.

Furthermore, let us remark that for a given route R containing N clients whose demands are known in the form of a MF 
mX1×···×XN , its upper expected cost C∗

e
(R) is necessarily reached for some probability measure P X1×···×XN belonging to the 

set P(mX1×···×XN ) of probability measures compatible with mX1×···×XN and defined by

P(mX1×···×XN ) = {P |∀A ⊆ X1 × · · · × XN , BelX1×···×XN (A) < P (A)}. (46)

However, this measure cannot be determined easily in advance; it can be exhibited once possible recourses on the route and 
their associated costs are known. Moreover, we note that it is impossible to find a sensible transformation of evidential de-
mands into stochastic demands such that each solution has the same costs in both the evidential and stochastic approaches, 
as shown by Example 6.

Example 6. Suppose a problem where we have m = 2 available vehicles and n = 5 clients with demands represented by MF 
m�n

defined as

m�n
(�7� × �6� × �1;2� × �1� × �1�) = 1. (47)

Consider the two following possible solutions, containing each two routes:

S1 = {R1
1, R1},
2
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S2 = {R2
1, R2

2},
with R1

1 = (0, 1, 2, 3, 0), R1
2 = (0, 4, 5, 0) and R2

1 = (0, 1, 2, 3, 5, 0), R2
2 = (0, 4, 0). The upper expected cost of Si , i = 1, 2, 

is C∗
E (Si) := C∗

E (Ri
1) + C∗

E (Ri
2). Consider now the possible transformations of the evidential demands m�n

into stochastic 
demands p�n

: it seems sensible that p�n
be chosen in the set of probability distributions compatible with m�n

, that is in

P(m�n
) = {(p�n

(7,6,1,1,1) = α, p�n
(7,6,2,1,1) = 1 − α)|α ∈ [0,1]}. (48)

Let Cα
E (Si) denote the expected cost of solution Si , i = 1, 2, under stochastic demands represented by probability distribution 

p�n

α defined by p�n

α (7, 6, 1, 1, 1) = 1 − α, p�n

α (7, 6, 2, 1, 1) = α, for some α ∈ [0, 1]. Assume that customer 5 is further away 
from the depot than customer 3, that is c0,5 > c0,3. Then, we obtain

C∗
E(S1) − Cα

E (S1) = 2c0,3 · (1 − α) (49)

and

C∗
E(S2) − Cα

E (S2) = 2c0,5 · α + 2c0,3 · α. (50)

The upper expected cost C∗
E (S1) of S1 is thus reached for probability distribution p�n

1 , whereas the upper expected cost 
C∗

E (S2) of S2 is reached for probability distribution p�n

0 . Hence, for S1 to have the same costs in both the evidential and 
stochastic approaches and for S2 to also have the same costs in both the evidential and stochastic approaches, different 
transformations of evidential demands into stochastic demands must be used.

The objective function (42) of our recourse model relies on optimising against C∗
E (R) which is the upper, i.e., worst, 

expected cost of a route. In particular, if m�n
is categorical, then C∗

e
(R) is the worst possible cost of R . Hence, optimising (42)

has some similarities with the protection against the worst case popular in robust optimisation [49].
Though, another approach could be followed [52], where one optimises against the lower, i.e., best, expected cost 

C*e
(R) = C(R) + C*p

(R), where C*p
(R) is evaluated using (13) such that C*p

(R) = E∗(g, m�). This approach is appropri-
ate when we are interested in the most optimistic solution. More complex decision schemes could also be considered, such 
as interval dominance [52], which would rely on C∗

E(R) and C*e
(R) and yield in general a set of optimal (non-dominated) 

solutions. Borrowing from what is done in label ranking [22], an interesting study would then be to identify from the set 
of non-dominated solutions, some parts of routes that would be more relevant (or preferred) to be included in a solution, 
over some irrelevant ones. This is left for future work.

Finally, another interesting particular case is when m�n
is obtained from marginal knowledge about individual customer 

demands in the form of consonant MF m�i , i = 1, . . . , n, having interval focal sets and the assumption that the demands are 
independent or non-interactive. As recalled in Section 3.1.2, the focal sets of m�n

are then Cartesian products of intervals 
under both assumptions, in which case the recourse modelling of the CVRPED becomes tractable according to Remark 5.

3.2.5. Influence of customer demand specificity on the CVRPED-recourse optimal solution cost
In this section, we study the behaviour of the optimal solution cost of the CVPRED modelled via the recourse approach 

(in the remainder of this article, we will simply say CVRPED-recourse rather than the CVRPED modelled via the recourse 
approach), when knowledge specificity about customer demands decreases.

Specifically, let m�n
and m�n


 be two MF representing uncertain knowledge about customer demands, such that evidential 
variables di , i = 1, . . . , n, are independent according to both these mass functions. Furthermore, let m�i := m�n↓�i and 
m�i


 := m�n↓�i

 , i = 1, . . . , n. Denote by Ĉ Rec and Ĉ


Rec the costs of optimal solutions to the CVRPED-recourse when customer 
demands are known in the form of m�n

and m�n


 , respectively.
The following proposition holds:

Proposition 7. m�i � m�i

 , i = 1, . . . , n ⇒ Ĉ Rec ≤ Ĉ


Rec .

Proof. See Appendix F. �
Informally, Proposition 7 shows that the less specific knowledge is about customer demands, the greater the cost of the 

optimal solution.
An immediate consequence of this result is:

Corollary 3. Assume that for i = 1, . . . , n, m�i

 is built from m�i as follows: for each A ⊆ �i such that m�i (A) > 0, the mass m�i (A)

is transferred to a subset A
 such that A ⊆ A
 ⊆ �i . Then, we have Ĉ Rec ≤ Ĉ
 .
Rec
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Proposition 7 and Propositions 2–5 provide theoretical properties of the CVRPED solutions obtained under the recourse 
and the BCP approaches, respectively, when using exact optimisation methods. For now, such methods can not solve large 
instances of the CVRP, from which the CVRPED derives. As a matter of fact, Section 4 reports solution strategies to these 
two CVRPED models using a metaheuristic algorithm.

4. Solving the CVRPED

This section presents a metaheuristic algorithm to solve the two proposed CVRPED models and reports some experimen-
tal tests of this algorithm. More precisely, a simulated annealing algorithm for both the BCP and the recourse models is first 
described in Section 4.1. Next, benchmarks for the CVRPED are presented in Section 4.2. Finally, experimental tests using 
these benchmarks are provided in Sections 4.3 and 4.4 for the BCP and the recourse models, respectively.

4.1. A simulated annealing algorithm for the CVRPED

As for many NP-hard problems like the CVRP, exact solution methods might need a prohibitively large time to solve large 
instances. When uncertainty is introduced into the CVRP, the problem can easily become even more difficult. Metaheuristics 
are algorithms built on general (meta) concepts that search the solution space in a reasonable time and thus may be 
employed as a successful alternative to solve such a combinatorial optimisation problem. Various metaheuristic algorithms 
exist like: simulated annealing [37], genetic algorithms [36], tabu search [30,31], etc. In this study, we will use simulated 
annealing, which is a well-known local search optimisation method. Generally speaking, a local search algorithm moves 
iteratively from solution to solution in the space of candidate solutions (the search space) by applying local changes, until a 
satisfying near-optimal solution is found.

Indeed, to try to find the global minimum of the cost function, the simulated annealing moves from solution to solution 
using either descent (improving) moves or deterioration moves, hoping that these non-improving moves will eventually help 
the process escape local optima [37]. One can say that it starts from a known initial configuration of a system (candidate 
solution) with a high temperature and then uses general neighbourhood search strategies to explore other candidate so-
lutions by following neighbourhood transitions (moves). For every temperature, the configuration of the system (candidate 
solution) is rearranged (transformed) by a series of neighbourhood moves. A rearranged configuration becomes the new 
candidate solution with a probability depending on the current temperature, i.e., the lower the temperature, the lower the 
probability to accept non-improving moves. The temperature of the system is gradually lowered, and the process continues 
until reaching the freezing temperature of the system.

Our instantiation of simulated annealing for the CVRPED is provided by Appendix G (see in particular its pseudo-code 
given by Algorithm 2). The same pseudo-code is used for both the BCP and the recourse approaches. One can find in 
Algorithm 2 a modelling technique parameter M D that takes the value M D = “BCP” when the CVRPED-BCP is solved. 
In this case, the initial configuration is generated either randomly or using a first-fit greedy approach3 while respecting 
the constraints of the BCP model from Section 3.1.1. The neighbourhood_configuration(...) routine generates a 
neighbourhood configuration that respects the CVRPED-BCP constraints, and is based on the following two operators that 
are applied consecutively on the current configuration C at each iteration. These operators are called fix_minimum and
replace_highest_average. They are described below and illustrated using examples in Appendix H.

– Fix_minimum: This operator is applied on 80% of the iterations. It is based on selecting and freezing the positions 
in routes of the five customers, with the shortest distances to their right side customer.4 This is done by comput-
ing distances between each pair of consecutive customers on all routes, including distances to the depot. Accordingly,
fix_minimum selects the five smallest distances values and fixes their corresponding left side customers. Next,
fix_minimum selects five random customers that exclude the depot and the customers fixed before, and removes 
them from their route. Subsequently, every customer removed will be inserted in a random route, while satisfying the 
problem constraints. The insert position of each customer on the selected route is determined based on the shortest 
distance separating it from its new left side customer.

– Replace_highest_average: This neighbourhood operator calculates the average distance separating every cus-
tomer from its neighbours in a current route configuration. Computing the average distance for a client i reduces to 
calculating ci−1,i+ci,i+1

2 , assuming clients i − 1, i and i + 1 are consecutive in the route.5 Afterwards, replace_high-
est_average selects five customers having the five highest average distances and removes them from their routes. 
The removed clients are then randomly inserted in the available routes, as long as the problem constraints are respected. 
Furthermore, every removed customer i is inserted into the route position leading to the smallest average distance that 
will separate this customer from its new (i − 1) th and (i + 1) th neighbours.

3 A blind algorithm that inserts clients in routes in turn: each client is inserted in the first route that can serve it.
4 Given the pair of customer < i − 1, i >, the right side customer is the i-th customer.
5 The notation ci−1,i indicates the travel cost between i − 1 and i, as defined in Section 2.1, which in our algorithm is assumed to be the euclidean 

distance separating customers.
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If the above operators do not lead to a new neighbourhood configuration that satisfies the CVRPED-BCP constraints, 
we apply the operators a second time. If the second attempt fails as well, then the configuration C is not modified, i.e., 
C∗ = C .

The complexity of an iteration for the BCP model emerges from evaluating the CVRPED-BCP constraints for the 
neighboring configuration, in particular the belief constraints (26) and (27), the complexity of which is provided in Sec-
tion 3.1.1.

We solve the CVRPED-recourse with the same simulated annealing, by setting the modelling technique parameter to 
M D = “recourse” in Algorithm 2. The initial_config(...) method proceeds by generating initial configurations that 
are subject to the CVRPED-recourse constraints mentioned in Section 3.2.1, using either a first fit greedy approach or ran-
domly. The routine neighbourhood_configuration(...) applies three consecutive neighbourhood operators to each 
iteration: fix_minimum, replace_highest_average and flip_ route.

– Fix_minimum and replace_highest_average operate similarly as in the BCP case, except that the problem 
constraints are now the CVRPED-recourse constraints. Recall that the recourse model lifts the capacity constraints, in 
the sense that any capacity excess (overflow) is addressed by the objective function using recourse decisions. This 
means that as fix_minimum and replace_highest_average are iteratively applied by the simulated annealing, 
we may end up with routes holding excessive total demands. Consequently, these routes will systematically fail, while 
other routes will hold limited total customer demands. Therefore, we incorporate to each of the fix_minimum and
replace_highest_average operators, a method that maintains relatively balanced total demands on routes, during 
the process of moving customers from a route to another. More specifically, before a customer is inserted into a new 
route, total customer demands on each route yields a probability, indicating if a route is favourable for servicing an 
additional customer. The probability associated to each route is inversely proportional to the total customer demands 
on a route, i.e., the smaller the total customer demands is on a route, the more it is probable to choose this route to 
include an additional customer.

– The operator flip_route is applied on 25% of the iterations. It reverses the order of a route if this improves its upper 
expected cost. Indeed, a route R having the path (0, 1, . . . , N, 0) and its reverse R−1 with the path (0, N, . . . , 1, 0) do 
not have necessarily the same upper expected penalty cost.

The complexity of an iteration for the recourse model corresponds to evaluating the uncertainty on the recourses of each 
one of the m routes of a configuration C , the complexity of which is given in Section 3.2.2.

Let us finally emphasize that the evidential approaches proposed in this paper are not limited to using simulated an-
nealing or metaheuristics. Some of the exact methods used for the CVRPSD could be extended to these approaches. This is 
the case, for instance, of the Column Generation (CG) algorithm proposed in [12] for the recourse modelling of the CVRPSD. 
A CG algorithm relies on a linear program with prohibitively many variables (columns) associated to feasible routes. One 
could use our evidential approach to evaluate the total cost (base cost plus recourse cost) of each generated column (route), 
especially when the columns are constructed by Dynamic Programming (DP).

More exactly, each column (route) can be constructed by generating a cycle in a graph of DP states associated to sub-
problems satisfying the Bellman principle of optimality. Assuming joint focal sets about customer demands are Cartesian 
products of intervals, one could define a DP state 

(
v,

[
qv ,qv

])
for each vertex v ∈ V and for each interval of residual supply 

[qv , qv ] at v (quantity remaining in a vehicle after servicing clients up to v and performing recourses). The total cost of a 
route in a given state can be determined, for instance, as the sum of the traversed edges plus the upper expected cost of 
the recourse actions. In a loose sense, this is similar to the DP approach from [12] that constructs a state for each vertex v
and for each possible value of the cumulative expected demand (of all the clients in the route up to v) and of the variation 
of this cumulative demand.

4.2. The CVRPED benchmarks

We generated two instance sets CVRPED and CVRPED+ , based on the set A of the Augerat test bed for the CVRP [46]. 
Each instance in these two sets corresponds to an instance in Augerat set A and has the same customer coordinates and 
capacity limit as this instance.

For each instance of the first CVRPED set, the knowledge on customer demands m�n
is obtained by assuming that the 

evidential client demands di, i = 1, . . . , n of this instance are independent. Moreover, each di is associated to the mass 
function m�i defined by

m�i ({ddet
i }) = 0.8, (51)

m�i ([zi, zi]) = 0.2, (52)

with ddet
i the original deterministic demand of client i in the corresponding instance of Augerat set A, and with zi and zi

drawn at random in (ddet , Q ] and [zi, Q ], respectively.
i
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Table 2
Results of the simulated annealing algorithm for the CVRPED-BCP using the CVRPED instances.

Instance l-A-nn-mm: β = 0.4, β = 0.25 β = 0.2, β = 0.15

l instance id, 
n clients, m vehicles

Best cost Std. dev. Avg. runtime Best cost Std. dev. Avg. runtime

1-A-n32-m12 1418,3 3,7 3881s. 1850,9 5,3 3733s.
2-A-n33-m13 1055,3 0 4199s. 1491,6 17,5 4496s.
3-A-n33-m13 1073,1 6 4495s. 1480,2 0,6 4549s.
4-A-n34-m14 1320,6 0,1 3818s. 1749,1 0 3852s.
5-A-n36-m12 1318,9 2,7 5316s. 1718,6 0,2 4914s.
6-A-n37-m13 1110,6 5 4918s. 1358,8 34,5 6158s.
7-A-n37-m14 1597,9 0,5 4135s. 2113,9 2,8 3756s.
8-A-n38-m13 1154,5 0,9 5041s. 1571,1 5,1 5002s.
9-A-n39-m15 1485 8,1 4654s. 1944,8 0,9 4622s.
10-A-n39-m14 1403,9 8,6 4894s. 1906,9 0,2 5108s.
11-A-n44-m17 1693,4 10,1 4956s. 2158,2 1,2 4951s.
12-A-n45-m17 1660,3 0,1 5093s. 2184,8 5,1 5169s.
13-A-n45-m18 1890,1 5,7 4991s. 2573,2 0,7 5211s.
14-A-n46-m17 1552,2 5,4 5323s. 1980,3 38 5707s.
15-A-n48-m17 1872,4 10,8 5996s. 2397,5 3,6 6395s.
16-A-n53-m19 1806,1 11,9 7405s. 2358,2 10 6928s.
17-A-n54-m19 2052,6 13,8 7578s. 2636,8 60,8 6747s.
18-A-n55-m22 1755,3 9,5 6310s. 2352,6 9,8 6172s.
19-A-n60-m22 2263,9 17 8169s. 2969,1 34,8 7449s.
20-A-n61-m24 1793,8 9,9 6965s. 2345 42,3 7319s.
21-A-n62-m22 2532,3 19,1 8212s. 3207,2 32,2 7752s.
22-A-n63-m24 2946,9 14,6 7164s. 3918,9 22 7216s.
23-A-n63-m25 2179 8,9 6969s. 2881,1 6,9 7238s.
24-A-n64-m23 2629,1 16,8 7979s. 3261,5 13,6 7848s.
25-A-n65-m25 2214,7 16,4 7537s. 3070,9 6 7601s.
26-A-n69-m25 2056,5 11,1 8876s. 2668,1 52,9 8377s.
27-A-n80-m27 3507,2 21,5 11110s. 4524,9 21,5 9751s.

For each instance of the second set CVRPED+ , the evidential client demands di are also assumed to be independent, and 
their associated mass function is denoted by m�i+ and defined from m�i as follows:

m�i+ ([ddet
i ,ddet

i + a+
i ]) = 0.8, (53)

m�i+ ([zi, zi]) = 0.2, (54)

with a+
i drawn randomly in [0, zi − ddet

i − 1]. Note that m�i � m�i+ and m�i � m�i+ , i = 1, . . . , n.
In the next sections, an experimental study based on the CVRPED and CVRPED+ instances6 is presented for the BCP 

and recourse models solved using the algorithm described in Section 4.1. The programs were written in Java and the 
experiments were conducted on the 5 nodes of a cluster. The configuration of each node is as follows: 2 processors Intel R 
Xeon R E5-2630 v3 with 8 cores per processor having a 48GB memory shared between the 2 × 8 cores of the node. Each 
instance was executed on one core that has a memory of 2.8GB.

4.3. Experimental study for the CVRPED-BCP

Our set of experiments on the CVRPED-BCP involve varying the values β and β involved in the constraints (26) and (27)
for the CVRPED and the CVRPED+ instances separately, where for each variation each instance was solved 30 times.

4.3.1. The CVRPED-BCP cost variation based on β and β
In this first part, we show results of our experiments for the CVRPED and the CVRPED+ instances in Tables 2 and 3, 

respectively. Indeed, we solved the CVRPED-BCP for two different values that we chose for the pair (β, β), such that β ≥ β , 
and both values were employed for the CVRPED and the CVRPED+ instances, separately. The columns figuring in each of 
these tables, are explained in the following. The first column is the name of each instance. The first field in this column (l
in Table 2 and l+ in Table 3), exposes the identification number of an instance and the second field “A” stands for aleatory 
indicating that the coordinates of the problem graph vertices were generated randomly in the original Augerat set A [3]. 
The third field designates the number n of vertices, while the last field provides the number m of vehicles. The “Best cost”, 
“Std. dev.” and “Avg. runtime” columns show respectively, the best solution, the standard deviation and the average running 
time that we obtained for each indicated value of the pair (β, β).

6 Our data sets can be found on the web site of the LGI2A laboratory [34].
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Table 3
Results of the simulated annealing algorithm for the CVRPED-BCP using the CVRPED+ instances.

Instance l+-A-nn-mm: β = 0.4, β = 0.25 β = 0.2, β = 0.15

l instance id, 
n clients, m vehicles

Best cost Std. dev. Avg. runtime Best cost Std. dev. Avg. runtime

1+-A-n32-m16 1830,8 28,3 3087s. 2225,4 0 3565s.
2+-A-n33-m16 1428,8 0,7 4048s. 1676,9 0,4 3790s.
3+-A-n33-m14 1196 0 4330s. 1502 24,2 4604s.
4+-A-n34-m16 1596 0,01 3389s. 1993 0 3719s.
5+-A-n36-m16 1755,3 4 3928s. 2145,7 0 4178s.
6+-A-n37-m18 1379,2 8,7 5179s. 1761,2 0 4347s.
7+-A-n37-m19 1957 0 3344s. 2542,6 0 4112s.
8+-A-n38-m16 1437,4 2,2 4017s. 1846,4 2,2 4479s.
9+-A-n39-m19 1915,5 11,2 3915s. 2203,5 0 4089s.
10+-A-n39-m18 1759 4,2 4255s. 2148,1 0 4140s.
11+-A-n44-m26 2234,2 1,5 4218s. 2796,6 0,4 5698s.
12+-A-n45-m22 2165,7 3.1 4360s. 2690,8 0 4601s.
13+-A-n45-m22 2287,7 0,9 4339s. 3099,4 0 4783s.
14+-A-n46-m22 1950,4 6,7 4603s. 2690,1 0 4795s.
15+-A-n48-m22 2359,8 5,9 5742s. 2956,3 1,8 5500s.
16+-A-n53-m25 2411,2 9,4 5747s. 3199,8 0 5883s.
17+-A-n54-m24 2591 11,4 6025s. 3165,7 0 5746s.
18+-A-n55-m27 2237,1 5,1 5716s. 2803,1 0 5493s.
19+-A-n60-m27 2744,8 9,5 6224s. 3415,5 6,4 6548s.
20+-A-n61-m30 2313,4 9,1 6125s. 3059,2 0 5877s.
21+-A-n62-m31 3217,7 8,9 6814s. 4291 3,1 6276s.
22+-A-n63-m30 3833 9,7 6057s. 4942,1 4,9 6257s.
23+-A-n63-m31 2755 5,8 5757s. 3638,6 0,4 6127s.
24+-A-n64-m29 3311,2 27,9 6656s. 4123,1 1,7 6848s.
25+-A-n65-m34 2748,1 7,7 6762s. 3509,1 9 6842s.
26+-A-n69-m33 2573,4 8,5 7135s. 3300,5 41,1 7125s.
27+-A-n80-m38 4995,8 14,7 7444s. 5986,3 13,5 7612s.

We notice the costs of the best solutions obtained with β = 0.4, β = 0.25 are lower than the costs of the best solutions 
obtained with β = 0.2, β = 0.15 in Table 2 as well as in Table 3, that is, the most constraining pair (β, β) induces the 
worst costs, as can be expected from Propositions 3 and 4. This shows that while our solving algorithm is not an exact 
optimisation method, it does exhibit experimentally a sound behaviour with respect to parameters β and β .

4.3.2. The CVRPED-BCP cost variation based on client demand ranking
This section compares the BCP results on the CVRPED instances with the BCP results on the CVRPED+ instances. Specif-

ically, Table 4 compares the best costs from Table 2 (CVRPED instances) with the bests costs from Table 3 (CVRPED+ 
instances), for the same instance id.

Recall that for each client i in an l instance, its MF m�i is at least as small as the associated MF to client i in the l+
instance, i.e., m�i � m�i+ , i = 1, . . . , n. Proposition 5 (and more specifically Corollary 1) predicted an increase in the cost of 
an optimal solution to the CVRPED-BCP when knowledge about clients demands is more pessimistic. We can observe this 
behaviour in the results presented in Table 4: for each pair (β, β) the best cost obtained with the CVRPED+ instances is 
higher than the one obtained with the CVRPED instances. This constitutes another experimental validation of the behaviour 
of our algorithm.

4.4. Experimental study for the CVRPED-recourse

In the experiments conducted for the CVRPED-recourse, we used the same generated CVRPED and CVRPED+ instances 
used for the CVRPED-BCP experiments. Our results are reported in Table 5.

The columns “Instance id l” and “Instance id l+” in this table represent the CVRPED and the CVRPED+ instances id, 
respectively. Each one of these instances was solved 30 times and the best, average and standard deviation of the costs 
along with the average running times are reported in the respective columns “Best cost”, “Avg cost”, “Stand. dev.” and “Avg. 
runtime” for the CVRPED and the CVRPED+ instances, separately. In the “Penalty cost” column for the CVRPED instances 
(respectively the “Penalty cost” column for the CVRPED+ instances), the contribution of the expected penalty costs to the 
overall costs of the best solutions to the CVRPED instances (respectively the CVRPED+ instances) is provided as percentages. 
In the case of the CVRPED instances, it varies between 16% to 25%. As for the CVRPED+ instances, it varies between 11% 
and 23%.

Recall that for each client i in an l instance, its MF m�i is at least as specific as the associated MF to client i in the l+
instance, i.e., m�i � m�i+ , i = 1, . . . , n. As expected from Proposition 7 (and more specifically from Corollary 3), best costs 
obtained with the CVRPED+ instances are higher than those obtained with the CVRPED instances, which shows that our 
algorithm for the recourse model exhibits experimentally also a sound behaviour.
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Table 4
Results of the simulated annealing algorithm for the CVRPED-BCP for the CVRPED and CVRPED+ instances.

CVRPED instances CVRPED+ instances

Instance Best cost Best cost Instance Best cost Best cost
id l β = 0.4, β = 0.25 β = 0.2, β = 0.15 id l+ β = 0.4, β = 0.25 β = 0.2, β = 0.15

1 1418,3 1850,9 1+ 1830,8 2225,4
2 1055,3 1491,6 2+ 1428,8 1676,9
3 1073,1 1480,2 3+ 1196 1502
4 1320,6 1749,1 4+ 1596 1993
5 1318,9 1718,6 5+ 1755,3 2145,7
6 1110,6 1358,8 6+ 1379,2 1761,2
7 1597,9 2113,9 7+ 1957 2542,6
8 1154,5 1571,1 8+ 1437,4 1846,4
9 1485 1944,8 9+ 1915,5 2203,5
10 1403,9 1906,9 10+ 1759 2148,1
11 1693,4 2158,2 11+ 2234,2 2796,6
12 1660,3 2184,8 12+ 2165,7 2690,8
13 1890,1 2573,2 13+ 2287,7 3099,4
14 1552,2 1980,3 14+ 1950,4 2690,1
15 1872,4 2397,5 15+ 2359,8 2956,3
16 1806,1 2358,2 16+ 2411,2 3199,8
17 2052,6 2636,8 17+ 2591 3165,7
18 1755,3 2352,6 18+ 2237,1 2803,1
19 2263,9 2969,1 19+ 2744,8 3415,5
20 1793,8 2345 20+ 2313,4 3059,2
21 2532,3 3207,2 21+ 3217,7 4291
22 2946,9 3918,9 22+ 3833 4942,1
23 2179 2881,1 23+ 2755 3638,6
24 2629,1 3261,5 24+ 3311,2 4123,1
25 2214,7 3070,9 25+ 2748,1 3509,1
26 2056,5 2668,1 26+ 2573,4 3300,5
27 3507,2 4524,9 27+ 4995,8 5986,3

Table 5
Results of the simulated annealing algorithm for the CVRPED-recourse for the CVRPED and CVRPED+ instances.

CVRPED instances CVRPED+ instances

Instance 
id l

Best 
cost

Penalty 
cost

Avg 
cost

Stand. 
dev.

Avg. 
runtime

Instance 
id l+

Best 
cost

Penalty 
cost

Avg 
cost

Stand. 
dev.

Avg. 
runtime

1 1750,3 16,8% 1783,9 16,1 1958s. 1+ 2252,6 18,3% 2283,5 13,2 1272s.
2 1327,5 16,2% 1353,2 13,6 1704s. 2+ 1650,6 17,7% 1676 9,6 1329s.
3 1296,1 18% 1338,8 16,4 1642s. 3+ 1490,3 16,6% 1510,6 11,3 1540s.
4 1661,9 19,8% 1698,7 24,6 1728s. 4+ 1999,6 19,7% 2044,9 18,7 1428s.
5 1670,1 24,2% 1741,9 29 2673s. 5+ 2205,3 16,9% 2247,3 18,6 1554s.
6 1391,2 20,1% 1425,8 12,5 3586s. 6+ 1697,5 14,9% 1737 13,2 1612s.
7 1895,6 24,4% 1947,3 21,2 2286s. 7+ 2561,5 17% 2593,8 17,5 1382s.
8 1493,8 16,1% 1525,6 15,9 2450s. 8+ 1769,7 16,6% 1802,9 18,9 1686s.
9 1851 21,1% 1897,6 27,4 2580s. 9+ 2319,9 19,9% 2355 20,5 1783s.
10 1715,2 22,2% 1755,6 22,9 3264s. 10+ 2099,3 20,7% 2146,3 20,8 1863s.
11 2127,8 20,7% 2216,7 25,3 2349s. 11+ 2858,5 11,8% 2889 15,5 1491s.
12 2147,1 17% 2193,7 21,1 2344s. 12+ 2667,9 18 % 2705,2 22 1808s.
13 2530,2 22,7% 2629,7 33,6 2427s. 13+ 3084,7 15,7% 3145,9 29,5 1755s.
14 1994,9 24,9% 2089,4 32,6 2948s. 14+ 2483,1 17,2% 2524,8 23,3 1950s.
15 2499,5 21,2% 2559,1 30,2 3348s. 15+ 3135,5 15,8% 3168,4 21,3 2293s.
16 2420,4 18,3% 2499,7 35 4715s. 16+ 3100 14,9% 3132,5 17,7 2294s.
17 2709,6 19,8% 2792,8 39,1 4129s. 17+ 3366,9 16,6% 3427 29,9 2572s.
18 2301,7 16,3% 2348,4 27,3 2844s. 18+ 2788,3 13,5% 2837,6 24,8 2110s.
19 3083 23,4% 3190,1 45,9 4193s. 19+ 3696,4 16% 3759,3 32,8 2706s.
20 2322,7 15,7% 2378 30,7 3398s. 20+ 2960,8 15,4% 3000,5 19,2 2484s.
21 3317,8 23,6% 3426,4 54,9 6604s. 21+ 4437,5 17,5% 4517,8 46,8 2382s.
22 4158,8 21% 4261,4 51,9 4148s. 22+ 5249,4 22,2% 5395,1 47,3 2692s.
23 2966,7 19,6% 3043,6 39,9 4217s. 23+ 3578,1 19,4% 3648,8 40,6 2727s.
24 3528,3 23,9% 3631,1 54,3 6365s. 24+ 4435,1 17,2% 4548,4 42,8 3162s.
25 2889,7 22,4% 3040 55,1 3857s. 25+ 3665,9 15,4% 3712,6 23,4 2573s.
26 2712,5 19,2% 2847,3 49,1 4461s. 26+ 3466,7 14,2% 3525,2 32,7 2748s.
27 5016,2 24,2% 5137,7 69,2 10401s. 27+ 6790,5 16,5% 6953,5 51,5 3357s.
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5. Conclusions

In this article, we proposed to represent uncertainty on customer demands in the capacitated vehicle routing problem via 
the theory of evidence. We tackled this problem by generalising the most popular approaches to stochastic programming: 
chance constrained programming and stochastic programming with recourse. We obtained belief constrained programming 
and evidential recourse approaches. We studied the optimal solution cost behaviour with respect to the model parameters 
and customer demand ranking in the case of the belief constrained programming model, and with respect to customer 
demand specificity in the case of the recourse model. In addition, by considering particular cases of evidential demands, 
we were able to connect our models not only to stochastic programming but also to robust optimisation. In the last part of 
this article, we solved both models by a simulated annealing metaheuristic algorithm that uses a combination of operators 
that aim at minimising the objective function of the problem. We reported the results of our experiments on instances of 
this difficult optimisation problem. Our experiments showed that our algorithm behave accordingly to the theoretical results 
studied in this paper.

Future work will include i) comparing our evidential models to the other models, and particularly the stochastic ones, 
using historical data on customer demands in order to show empirically the advantages of our evidential models; ii) extend-
ing to the evidential framework other stochastic variations of the CVRP, such as the CVRP with stochastic customers [28]; 
iii) extending our evidential models to the case of incomplete knowledge about the dependency between the evidential 
variables [21]; iv) performing a sensitivity analysis that would allow us to identify certain “key” customers, such that better 
knowledge about their demands leads to better solutions in each one of these models; and v) considering more general 
uncertainty frameworks than evidence theory to model uncertainty on customer demands. Lower previsions [53], whose 
interest to model uncertainty about constraint parameters in optimisation problems has been investigated in [44], may be 
such a framework. In particular, in the case of independent demands, 2-monotone lower probabilities would offer more 
generality while being still tractable, thanks to the results of [19].
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Appendix A. Proof of Proposition 1

Suppose mX
1 � mX

2 . For any Q , 1 ≤ Q ≤ K , we have then

BelX
1 (x ∈ A1,Q ) =

∑
a≤Q

mX
1 (A)

=
∑
a≤Q

∑
{R(A, B)mX

2 (B)|A ≤lo B}

=
∑

{R(A, B)mX
2 (B)|A ≤lo B,a ≤ Q }

=
∑

{R(A, B)mX
2 (B)|A ≤lo B,a ≤ Q ,b ≤ Q }

+
∑

{R(A, B)mX
2 (B)|A ≤lo B,a ≤ Q ,b > Q }

=
∑

{R(A, B)mX
2 (B)|A ≤lo B,b ≤ Q }

+
∑

{R(A, B)mX
2 (B)|A ≤lo B,a ≤ Q ,b > Q }

=
∑
b≤Q

mX
2 (B)

∑
A≤lo B

R(A, B) +
∑
b>Q

mX
2 (B)

∑
A≤lo B,a≤Q

R(A, B)

= BelX
2 (x ∈ A1,Q ) +

∑
b>Q

mX
2 (B)

∑
A≤lo B,a≤Q

R(A, B)

≥ BelX
2 (x ∈ A1,Q ). (A.1)

The proof is similar to show that PlX
1 (x ∈ A1,Q ) ≥ PlX

2 (x ∈ A1,Q ).
That the implication in Equation (22) is strict is indicated by the following counter-example. Let X = {x1, . . . , x8}, Q = 5

and mX
1 and mX

2 be two mass functions defined as

mX
1 ({x3, x4, x5}) = 0.8, mX

1 ({x1, x3, x4}) = 0.2,

mX
2 ({x2, x3, x5}) = 0.7, mX

2 ({x6, x8}) = 0.3.
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We have

BelX
1 (x ∈ A1,5) = 1 ≥ BelX

2 (x ∈ A1,5) = 0.7,

PlX
1 (x ∈ A1,5) = 1 ≥ PlX

2 (x ∈ A1,5) = 0.7.

However, to have mX
1 � mX

2 , it must be the case that the mass mX
2 ({x2, x3, x5}) = 0.7 can be shared among the focal sets of 

mX
1 that are smaller (according to ≤lo) than {x2, x3, x5}, which is impossible since mX

1 has only one focal set ({x1, x3, x4}) 
that is smaller than {x2, x3, x5} and this focal set has mass 0.2.

Appendix B. Proof of Proposition 2

Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk , k = 1, ..., m, such that it is not known whether this set 
respects the belief-constraints (26) and (27), but it is known that it respects all the other constraints of the CVRPED-BCP.

It is clear that for any β and β , as Q increases (starting from 1), it reaches necessarily a value at which constraints (26)
and (27) are satisfied, and thus at which C becomes a solution to the CVRPED-BCP. Hence, for Q ′ ≥ Q , the set of solutions 
to the CVRPED-BCP associated with value Q is included in or equal to the set of solutions to the CVRPED-BCP associated 
with value Q ′ .

Appendix C. Proof of Proposition 3

Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk , k = 1, ..., m, such that it is not known whether this set 
respects the belief-constraints (26), but it is known that it respects all the other constraints of the CVRPED-BCP, in particular 
constraints (27).

It is clear that for any Q , as β increases from β to 1, it reaches necessarily a value at which constraints (26) are satisfied, 
and thus at which C becomes a solution to the CVRPED-BCP. Hence, for β ′ ≥ β , the set of solutions to the CVRPED-BCP 
associated with value β is included in or equal to the set of solutions to the CVRPED-BCP associated with value β ′ .

Appendix D. Proof of Proposition 5

Let R denote a route containing N clients. Without lack of generality, assume that the i-th client on R is the client i. 
Let m�R∑ denote the MF defined on �R := {1, 2, . . . , N · Q } and representing the sum of the customer demands on R when 

the demand of client i is known in the form of MF m�i , and let m�R∑+ denote the MF representing the sum of the customer 

demands on R when the demand of client i is known in the form of MF m�i+ .
Using a similar proof to that of [25, Proposition 3] (with operation ∗ instantiated to addition +, specialisation � replaced 

by ranking � and set inclusion ⊆ replaced by lattice ordering ≤lo), it is direct to show that m�i � m�i+ , i = 1, . . . , N ⇒ m�R∑ �
m�R∑+ .

Let Bel and Bel+ (resp. Pl and Pl+) denote the belief functions (resp. plausibility functions) associated to m�R∑ and m�R∑+ , 
respectively. From Proposition 1, we have then

Bel(
N∑

i=1

di ≤ Q ) ≥ Bel+(

N∑
i=1

di ≤ Q ), (D.1)

Pl(
N∑

i=1

di ≤ Q ) ≥ Pl+(

N∑
i=1

di ≤ Q ). (D.2)

The proposition follows from the fact that Equations (D.1) and (D.2) hold for any route.

Appendix E. Proof of Proposition 6

Let Bi ⊆ �i := {0, 1}i−1, i = 2, . . . , N , denote the set of possible failure situations that may occur at the i-th customer on 
route R , i.e.,

Bi = f (A1 × · · · × Ai) , (E.1)

with A� := � A�; A��, � = 1, . . . , i.
Let hi be the function from �i to N∗ defined by hi(θ1, . . . , θi) = qi , with qi defined by (44). In other words, hi provides 

the load in the vehicle after serving the i-th customer given that customer demands are (θ1, . . . , θi).
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Remark that any ωi ∈ Bi may be obtained by several vectors (θ1, . . . , θi) ∈ A1 × · · · × Ai . As a consequence, when it is 
known that the failure situation ωi has occurred at the i-th customer, then the load in the vehicle after serving the i-th 
customer is known only in the form of a set Lωi such that

Lωi =
{

hi(θ1, . . . , θi)| ∀ (θ1, . . . , θi) ∈ A1 × · · · × Ai, f (θ1, . . . , θi) = ωi
}

. (E.2)

Consider the tree built according to Algorithm 1 and remove all its nodes below level i. Call T reei the resulting tree. 
Then, for a given leaf of T reei , by concatenating in a vector the Boolean failure variable r� at level �, � = 2, . . . , i, written on 
the path from the root to the leaf, we obtain the binary failure situation vector ti = (r2, r3, . . . , ri) ∈ �i and this leaf contains 
also an interval LTti of integers representing imprecise knowledge about the vehicle load after serving the i-th customer 
when ti has occurred. Besides, all the leaves of T reei yield the subset BTi ⊆ �i .

We will now show by induction that for i = 2, . . . , N , we have: Bi = BTi and ∀ωi ∈ Bi , Lωi = LTti for ti ∈ BTi such that 
ti = ωi . Note that from the definition of the addition of two intervals of integers I1 and I2, i.e., I1 + I2 = {x1 + x2|x1 ∈ I1, x2 ∈
I2}, we have ∀x ∈ I1 + I2, ∃x1 ∈ I1, x2 ∈ I2 such that x1 + x2 = x.

• Consider first the case i = 2, hence �2 = {ω2
1, ω2

2} with ω2
1 = (0) and ω2

2 = (1). In such case, either B2 = {ω2
1} or 

B2 = {ω2
2} or B2 = {ω2

1, ω2
2}.

◦ If B2 = {ω2
1}, then it implies that A1 + A2 ≤ Q and clearly Lω2

1
= A1 + A2. Besides, if A1 + A2 ≤ Q , then according to 

Algorithm 1 we have BT2 = {ω2
1} and LTω2

1
= A1 + A2.

◦ If B2 = {ω2
2}, then it implies that A1 + A2 > Q and clearly Lω2

2
= A1 + A2 − Q . Besides, if A1 + A2 > Q , then according 

to Algorithm 1 we have BT2 = {ω2
2} and LTω2

2
= A1 + A2 − Q .

◦ If B2 = {ω2
1, ω2

2}, then it implies that ∃(θ1, θ2) ∈ A1 × A2 such that f (θ1, θ2) = ω2
1, and thus ∃(θ1, θ2) ∈ A1 × A2 such 

that θ1 + θ2 ≤ Q , and it also implies ∃(θ1, θ2) ∈ A1 × A2 such that f (θ1, θ2) = ω2
2, and thus ∃(θ1, θ2) ∈ A1 × A2 such 

that θ1 + θ2 > Q . In particular, it implies that A1 + A2 ≤ Q < A1 + A2. Hence, since for θ1 + θ2 ≤ Q , we have q2 =
θ1 +θ2, and for θ1 +θ2 > Q , we have q2 = θ1 +θ2 − Q , we obtain that Lω2

1
= � A1 + A2; Q � and Lω2

2
= �1; A1 + A2 − Q �. 

Besides, if A1 + A2 ≤ Q < A1 + A2, then according to Algorithm 1 we have BT2 = {ω2
1, ω2

2} and LTω2
1
= � A1 + A2; Q �

and LTω2
2
= �1; A1 + A2 − Q �.

• Suppose that for i < N we have: Bi = BTi and ∀ωi ∈ Bi , Lωi = LTti for ti ∈ BTi such that ti = ωi . Let us show that it 
holds for i + 1.
From the preceding assumption, we have ∀ωi = (ri

1, . . . , r
i
i) ∈ Bi that Lωi is the interval LTti , i.e., Lωi = �Lωi ; Lωi � =

�LTti ; LTti � for ti ∈ BTi such that ti = ωi . In addition, we have ∀ωi = (ri
1, . . . , r

i
i) ∈ Bi :

◦ Either Lωi + Ai+1 ≤ Q , in which case the failure situation ωi at the i-th customer will induce a failure situation ωi+1 ∈
Bi+1 at the i + 1-th customer such that ωi+1 = (ri

1, . . . , r
i
i , 0) and Lωi+1 = Lωi + Ai+1. In addition, Lωi + Ai+1 ≤ Q is 

equivalent to LTti + Ai+1 ≤ Q , in which case the leaf of T reei associated to ti will induce according to Algorithm 1
the leaf of T reei+1 with associated vector ti+1 = ωi+1 and interval LTti+1 = LTti + Ai+1.

◦ Or Lωi + Ai+1 > Q , in which case the failure situation ωi at the i-th customer will induce a failure situation ωi+1 ∈
Bi+1 at the i + 1-th customer such that ωi+1 = (ri

1, . . . , r
i
i , 1) and Lωi+1 = Lωi + Ai+1 − Q . In addition, Lωi + Ai+1 > Q

is equivalent to LTti + Ai+1 > Q , in which case the leaf of T reei associated to ti will induce according to Algorithm 1

the leaf of T reei+1 with associated vector ti+1 = ωi+1 and interval LTti+1 = LTti + Ai+1 − Q .
◦ Or Lωi + Ai+1 ≤ Q < Lωi + Ai+1, in which case the failure situation ωi at the i-th customer will induce a failure 

situation ωi+1
L ∈ Bi+1 at the i + 1-th customer such that ωi+1

L = (ri
1, . . . , r

i
i , 0) and L

ωi+1
L

= �Lωi + Ai+1; Q � since for 

qi + θi+1 ≤ Q we have qi+1 = qi + θi+1. It will also induce a failure situation ωi+1
R ∈ Bi+1 at the i + 1-th customer 

such that ωi+1
R = (ri

1, . . . , r
i
i , 1) and L

ωi+1
R

= �1; Lωi + Ai+1 − Q � since for qi + θi+1 > Q we have qi+1 = qi + θi+1 − Q . 

In addition, Lωi + Ai+1 ≤ Q < Lωi + Ai+1 is equivalent to Lti + Ai+1 ≤ Q < Lti + Ai+1, in which case the leaf of 
T reei associated to ti will induce according to Algorithm 1 the leaf of T reei+1 with associated vector ti+1

L = ωi+1
L

and interval LTti+1
L

= �LTti + Ai+1; Q �. It will also induce the leaf of T reei+1 with associated vector ti+1
R = ωi+1

R and 

interval LTti+1
R

= �1; LTti + Ai+1 − Q �.

Appendix F. Proof of Proposition 7

The proof of Proposition 7 relies on the following lemma.

Lemma 1. Let m� and m′ � be two MF representing uncertainty about the recourses on a given route R, such that m� � m′ � . Let 
C∗(R) and C ′ ∗(R) denote the upper expected costs of R under m� and m′ � , respectively. We have C∗(R) ≤ C ′ ∗(R).
E E E E
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Proof. Let C∗
P(R) and C ′ ∗

P (R) denote the upper expected penalty costs of some route R , under m� and m′ � (denoted for 
simplicity m and m′ in this proof), respectively.

We have

C ′ ∗
P (R) =

∑
B⊆�

m′(B)max
ω∈B

g(ω), (F.1)

and

C∗
P(R) =

∑
A⊆�

m(A)max
ω∈A

g(ω). (F.2)

Since m � m′ ,

C∗
P(R) =

∑
A⊆�

⎛
⎝

⎛
⎝∑

B⊆�

S(A, B)m′(B)

⎞
⎠ max

ω∈A
g(ω)

⎞
⎠

=
∑
B⊆�

m′(B)

⎛
⎝∑

A⊆�

S(A, B)max
ω∈A

g(ω)

⎞
⎠ . (F.3)

Since S(A, B) = 0, ∀A � B , we can replace the condition of the second sum from A ⊆ � to A ⊆ B:

C∗
P(R) =

∑
B⊆�

m′(B)

⎛
⎝∑

A⊆B

S(A, B)max
ω∈A

g(ω)

⎞
⎠ . (F.4)

In addition, for any A, B ⊆ � such that A ⊆ B , we have

max
ω∈A

g(ω) ≤ max
ω∈B

g(ω),

hence

C∗
P(R) =

∑
B⊆�

m′(B)

⎛
⎝∑

A⊆B

S(A, B)max
ω∈A

g(ω)

⎞
⎠

≤
∑
B⊆�

m′(B)

⎛
⎝∑

A⊆B

S(A, B)max
ω∈B

g(ω)

⎞
⎠

=
∑
B⊆�

m′(B)max
ω∈B

g(ω)

= C ′ ∗
P (R), (F.5)

where we used the fact that S is stochastic so that max
ω∈B

g(ω) = ∑
A⊆B

S(A, B) max
ω∈B

g(ω) for any B ⊆ �. Using C ′ ∗
P (R) ≥ C∗

P(R)

we obtain

C ′ ∗
P (R) + C(R) ≥ C∗

P(R) + C(R) ,

which means

C ′ ∗
E (R) ≥ C∗

E(R) . �
Proposition 7 may then be proved as follows.
Let R denote a route containing N clients. Without lack of generality, assume that the i-th client on R is the client i. Let 

m� denote the MF representing uncertainty about recourses on R when the demand of client i, i = 1, . . . , N is known in 
the form of MF m�i , and let m�


 denote the MF representing uncertainty about recourses on R when the demand of client 
i is known in the form of MF m�i


 .
Using a similar proof to that of [25, Proposition 3] (with operation ∗ replaced by function f defined in Section 3.2.2), it 

is direct to show that m�i � m�i

 , i = 1, . . . , n ⇒ m� � m�


 . From Lemma 1, we obtain then C∗(R) ≤ C
∗(R).
E E
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Considering that the optimal solution with mass functions m�i

 consists of a set S of routes {R1, . . . , Rm}, we have then 

C
∗
E (Rk) ≥ C∗

e
(Rk) for each k ∈ {1, . . . , m}, which yields

Ĉ

Rec =

m∑
k=1

C
∗
E (Rk) ≥

m∑
k=1

C∗
E(Rk) ≥ Ĉ Rec . (F.6)

Appendix G. The simulated annealing algorithm for the CVRPED

The pseudo-code of our simulated annealing algorithm is provided by Algorithm 2. It starts by generating an initial con-

Algorithm 2 Simulated annealing algorithm.
Input: initial temperature T , temperature reduction multiplier κ , freezing temperature f reez, total number of iterations tot_iter, total number of trials 

tot_tr , modelling technique M D (BCP or recourse)
Output: Best solution ever visited BestC

1: Bestcost = ∞
2: for tr = 0 to tot_tr do
3: if tr == 0 then
4: C = initial_config(greedy, M D) � greedy generation
5: else
6: C = initial_config(random, M D) � random generation
7: end if
8: Ccost =cost(C , M D)
9: T BestC = C

10: T Bestcost = Ccost

11: repeat
12: for iter = 0 to tot_iter do
13: C∗ = neighbourhood_configuration(C, M D)
14: C∗

cost = cost(C∗, M D)

15: �cost = C∗
cost − Ccost

16: if (�cost < 0) then
17: C = C∗
18: Ccost = C∗

cost
19: if C∗

cost < T Bestcost then
20: T BestC = C∗
21: T Bestcost = C∗

cost
22: end if
23: else if rnd ≤ e− �cost

T then � rnd is a random number in [0, 1]
24: C = C∗
25: Ccost = C∗

cost
26: end if
27: end for
28: T = κ · T
29: until (T == f reez)
30: if (T Bestcost < Bestcost ) then
31: BestC = T BestC

32: Bestcost = T Bestcost

33: end if
34: end for

figuration (candidate solution) C using the initial_config(...) routine, when the initial temperature of the system 
T is at its highest value. Afterwards, T is progressively decreased until reaching the freezing temperature f reez, while a 
sequence of iterations tot_iter are performed for each T . Throughout each iteration iter, a neighbourhood configuration C∗
of the current configuration C is generated, and the variation in the cost �cost is computed. In other words, each configu-
ration represents an intermediate solution that has a different cost which is computed using the cost method, and �cost is 
equal to the difference between the new cost of the neighbourhood configuration C∗

cost and the current cost of the current 
configuration Ccost . If the cost decreases then the move to the new cost is accepted (lines 16–18).

However, if �cost is positive then the move is accepted or rejected with a probability that equals e− �cost
T . Effectively, the 

probability of accepting inferior solutions is a function of the temperature T and the change in cost �cost . We repeat this 
whole process for a total number of trials tot_tr and the algorithm finally returns the best configuration ever visited.

The set of parameters controlling Algorithm 2 were experimentally determined using Augerat set A instances of the 
CVRP [46], in which vertices coordinates were randomly constructed [3]. Specifically, the initial temperature T was set to 
5000 and was decreased by a temperature reduction multiplier κ that was set to 0.82 until reaching a freezing temperature 
f reez that equals 1. The total number of iterations tot_iter was regulated to 30000, while the total number of trials of 
the algorithm tot_tr was determined to be 5. The results with our algorithm varied between 1% and 12% from the optimal 
solutions of the CVRP, with an average running time under 30 minutes, for all instances. This algorithm is an adaptation of 
the algorithm introduced in [32] for the CVRP.
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Let us remark that a configuration in Algorithm 2 is a set of routes that can be generated either by the initial_con-
fig(...) or the neighbourhood _configuration(...) routines. Besides, the cost(...) routine evaluates the 
objective value of the configuration. All these routines depend on a “modelling technique parameter” M D that specifies 
whether we are solving the CVPRED-BCP or the CVRPED-recourse model. In particular, if M D = “BC P ” the cost(...)
routine evaluates the objective value of the configuration in the BCP model. The objective function is thus the (classical) 
total travelled distance of the routes (1). If M D = “recourse”, the cost(...) routine corresponds to using the recourse 
objective function, that aims at minimising the total upper expected cost (42). The descriptions of the routines ini-
tial_config(...) and neighbourhood _configuration(...) given the value of parameter M D , are provided 
in Section 4.1.

Appendix H. Examples for the neighbourhood operators Fix_minimum and Replace_highest_average

Example 7. (Fix_minimum) Suppose configuration C consists of the set of three routes C = {(0,3,6,10,0) , (0, 1, 5, 8, 4,

9, 7, 0), (0,2,0)}. Assume that the smallest distances between consecutive clients are those between clients < 3, 6 >, 
< 6,10 >, < 1, 5 >, < 4, 9 > and < 7, 0 >. This means that customers 3, 6, 1, 4 and 7 cannot be removed from their routes 
by the fix_minimum operator. Consequently, fix_minimum selects five random customers excluding 3, 6, 1, 4, 7 and the 
depot. For instance customer 5 is selected and removed from the second route in C and inserted randomly in one of the 
three available routes in C , while respecting all problem constraints. After selecting the new route for client 5, it is inserted 
at the position with the resulting smallest distance to client 5. We repeat the same process to move the four other random 
customers which in this example cannot be other than customers 2, 5, 8, 9 and 10.

Example 8. (Replace_highest_average) Suppose a configuration C that consists of the set of routes C = {(0,1,3,8,0) ,

(0,2,5,4,9,10,0) , (0,6,7,0)}. Suppose 1, 8, 5, 9 and 7 are the clients having the five highest average distances (separating 
each one of these clients from its neighbours). Then, these clients are removed from their routes, and we will have C =
{(0,3,0) , (0,2,4,10,0) , (0,6,0)}. Afterwards, each removed client is inserted randomly in one of the available routes. The 
position where to insert a customer is chosen, such that: i) the problem constraints are respected; and ii) the new position 
of that customer on the chosen route has the smallest average distance, if compared to all other possible positions of this 
client on the chosen route. For instance, suppose the first route in C was chosen randomly for client 1. We know that 
inserting client 1 on that route does not violate the belief-constraints, and it can be inserted either before client 3 or right 
after client 3. Suppose also that inserting client 1 right after client 3 has a smallest average distance, than if client 1 was 
inserted right before client 3. Then, client 1 is inserted right after client 3. This same process is repeated for the remaining 
clients 8, 5, 9 and 7.
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