Semidefinite programming by Projective-Cutting-Planes

<u>Daniel</u> Porumbel¹

We focus on the following standard (semidefinite programming) SDP problem, where $\mathcal{A}^{\top}\mathbf{y} = \sum_{i=1}^{k} A_i y_i$. The implication in the last constraint indicates that the SDP constraint can be expressed using an infinite number of linear cuts.

$$\mathscr{P} \begin{cases} \max \ \mathbf{b}^{\top} \mathbf{y} \\ s.t \ X = C - \mathcal{A}^{\top} \mathbf{y} \\ X \succeq \mathbf{0} \iff X \bullet \mathbf{ss}^{\top} \ge 0 \ \forall \mathbf{s} \in \mathbb{R}^{n} \end{cases}$$

$$\mathscr{P} \begin{cases} \max \ \mathbf{b}^{\top} \mathbf{y} \\ s.t \ X = C - \mathcal{A}^{\top} \mathbf{y} \\ X \succeq \mathbf{0} \iff X \bullet \mathbf{ss}^{\top} \ge 0 \ \forall \mathbf{s} \in \mathbb{R}^{n} \end{cases}$$

We could address the problem by progressively separating infeasible solutions $\mathbf{y}_{\text{out}} \in \mathbb{R}^n$. Such very standard Cutting-Planes will likely result in failure.

Three years ago I introduced Projective-Cutting-Planes to upgrade the separation sub-problem to the projection sub-problem: given feasible \mathbf{y} in a polytope \mathscr{P} and an arbitrary direction \mathbf{d} , what is the maximum step-length t^* so that $t^*\mathbf{d} \in \mathscr{P}$?

In SDP programming, projecting $\mathbf{y} \to \mathbf{d}$ requires solving $t^* = \max\{t : X + tD \succeq \mathbf{0}\}$ for this $X \succeq \mathbf{0}$ and D:

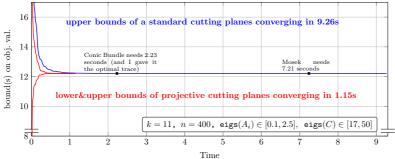
- $X = C \mathcal{A}^{\top} \mathbf{y}$ is SDP when \mathbf{y} is feasible
- $D = C \mathcal{A}^{\top} \mathbf{d}$ may be SDP or not.

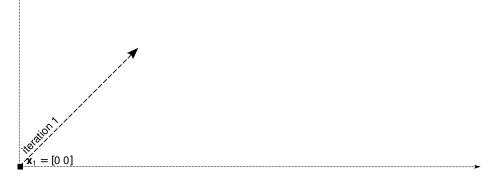
We have to project $X \to D$ in the SDP cone.

Th projection sub-problem is quite simple if $X \succ \mathbf{0}$. In this case, there is a unique Cholesky decomposition $X = KK^{\top}$ and K is non-singular. We'll see later that the following projections are equivalent, using D' = the unique solution of $D = KD'K^{\top}$.

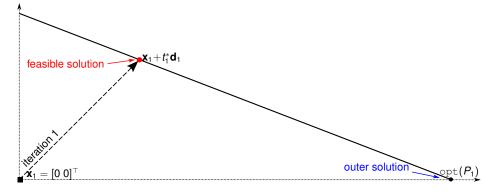
- $X \to D;$
- $I_n \to D' \implies \text{finding max}\{t: I_n + tD' \succeq \mathbf{0}\}$ is easy if you know $\lambda_{\min}(D')$

This projection is more difficult if X is not strictly SDP. Yet, this simplified case enabled us to solve some particular instances very rapidly:

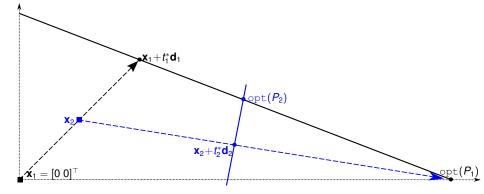




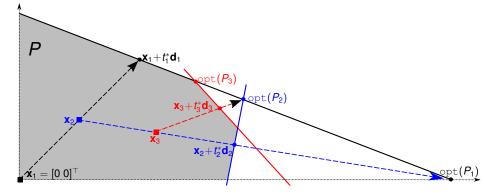
Iteration 1 : uncharted territory, follow objective function, i.e., advance along $\bm{x}_1 \rightarrow \bm{d}_1$



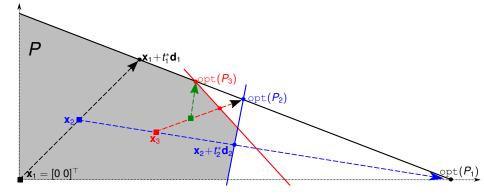
Iteration 1 : found a first outer solution $opt(P_1)$ and a first inner solution (contact point) $\mathbf{x}_1 + t_1^* \mathbf{d}_1$



Iteration 2 : an inner feasible solution (contact point) $\mathbf{x}_2 + t_2^* \mathbf{d}_2$ and a new outer solution. We take $\mathbf{d}_2 = \text{opt}(P_1) - \mathbf{x}_2$.



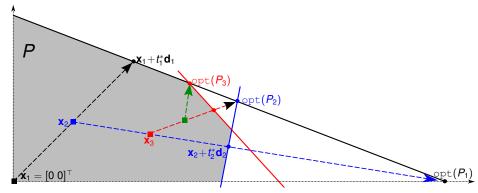
Iteration 3 : the feasible solution $\mathbf{x}_3 + t_3^* \mathbf{d}_3$ is almost optimal



Iteration 4 : optimality of $opt(P_3)$ proved

You can see the proposed method is convergent because it solves a separation problem on $opt(P_k)$ at each iteration k

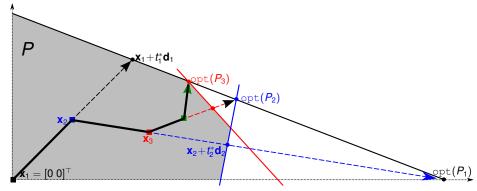
• The convergence proof takes two lines, cool !



Building on existing work [1,2], the new method was deliberately designed to be more general and when possible simpler

[1] Daniel Porumbel. Ray projection for optimizing polytopes with prohibitively many constraints in set-covering column generation. *Mathematical Programming*, 155(1):147–197, 2016.

[2] Daniel Porumbel. From the separation to the intersection subproblem for optimizing polytopes with prohibitively many constraints in a Benders decomposition context. *Discrete Optimization*, 2018.



Notice the trajectory of the inner points — there is no built-in feature in the Cutting-Planes to generate inner points

- each x_k is a point on the last projected segment, i.e., between \mathbf{x}_{k-1} and $\mathbf{x}_{k-1} + t_{k-1}^* \mathbf{d}_{k-1}$
- in this example we choose : $x_k = \mathbf{x}_{k-1} + \frac{1}{2} \cdot t_{k-1}^* \mathbf{d}_{k-1}$

everything was like a movie until here : let's move to real life

Property 1. We will see that the projection $X \to D$ can be calculated more rapidly if D belongs to the image of X. This means that each column (and row) of D can be written as a linear combination of the columns (or rows, resp.) of X. We can equivalently say that the null space of X is included in the null space of D; thus, $X\mathbf{d} = 0 \implies D\mathbf{d} = 0 \ \forall \mathbf{d} \in \mathbb{R}^n$. We will show below in cases A) and B) how it is easier to project when this property holds; if possible, Projective Cutting-Planes should thus adapt it δ own evolution to seek this property.

A) This case is characterized by $X \succ \mathbf{0}$, *i.e.*, X is non-singular; Prop 1 surely holds because the image of a non-singular X is \mathbb{R}^n . We apply the Cholesky decomposition to determine the unique non-singular K such that $X = KK^{\top}$. We then solve $D = KD'K^{\top}$ in variables D' by back substitution; this may require $O(n^3)$ in theory, but Matlab is able to compute it much more rapidly in practice because K is triangular. Let us re-write (3) as:

$$\max\left\{t: KI_nK^\top + tKD'K^\top \succeq \mathbf{0}\right\}.$$

(4)

(5)

This is equivalent (by congruence according to Prop 2) to

$$\max\left\{t: I_n + tD' \succeq \mathbf{0}\right\}.$$

The sought step length is $t^* = -\frac{1}{\lambda_{\min}(D')}$, or $t^* = \infty$ if $\lambda_{\min}(D') \ge 0$.

We still have to find a first-hit cut $\mathbf{v} \in \mathbb{R}^n$; in fact, technically, the first-hit cut will be $(A_1 \cdot \mathbf{v}\mathbf{v}^{\top}) y_1 + (A_2 \cdot \mathbf{v}\mathbf{v}^{\top}) y_2 + \dots + (A_k \cdot \mathbf{v}\mathbf{v}^{\top}) y_k \leq C \cdot \mathbf{v}\mathbf{v}^{\top}.$ If **v** is an eigenvector of $K(I_n + t^*D')K^{\top}$ with an eigenvalue of 0, this means $\mathbf{v}^{\top} K(I_n + t^*D') K^{\top} \mathbf{v} = 0$. Thus, $\mathbf{u} = K^{\top} \mathbf{v}$ is eigenvector of $I_n + t^*D'$ with an eigenvalue of 0. This latter eigenvector \mathbf{u} can be computed when determining $\lambda_{\min}(D') < 0$ above, because if the eigenvalue of **u** with regards to D' is $\lambda_{\min}(D')$ its eigenvalue with regards to $I_n + t^*D'$ is 0 (since recall $t^* = -\frac{1}{\lambda_{\min}(D')}$). The sought v solves $K^{\top}v = u$ and it can rapidly be computed by back-substitution. We have $\mathbf{u}^{\top} D' \mathbf{u} < 0 \implies \mathbf{v}^{\top} K D' K^{\top} \mathbf{v} < 0 \implies \mathbf{v}^{\top} D \mathbf{v} < 0$. We thus have $\mathbf{v}^{\top}(X+t^*D)\mathbf{v}=0$ and $\mathbf{v}^{\top}(X+(t^*+\epsilon)D)\mathbf{v}<0$ for any $\epsilon>0$.

B) In this case Prop 1 is still satisfied, but X has rank c < n. This means X contains c independent rows (and columns by symmetry), referred to as *core* rows (or columns); the other dependent rows (or columns) are *non-core* positions. Using the LDL decomposition of X, we will factorize $X = K_{nc} K_{nc}^{\top}$, where $K_{nc} \in$ $\mathbb{R}^{n \times c}$. The image of K_{nc} is equal to the image of X. Since Prop 1 is batisfied, we will see we can still solve $D = K_{nc} D' K_{nc}^{\top}$ in variables D'. A first intuition is to notice that we can project $X \to D$ only over the core rows and columns, because the non-core positions are dependent on the core ones.

But the most difficult task is to determine these core positions. We first apply the LDL decomposition and write $X = L \operatorname{diag}(\mathbf{p}) L^{\top}$ with $\mathbf{p} \geq \mathbf{0}_n$. The contribution of each p_i in $L diag(\mathbf{p}) L^{\top}$ is actually $p_i L_i L_i^{\top}$, where L_i is column *i* of L ($\forall i \in [1..n]$). If all $n \times n$ elements of $p_i L_i L_i^{\top}$ are below some precision parameter, we consider *i* is a non-core position; otherwise, it is a core position. By reducing all non-core positions p_i to zero, we can say that all n-c non core columns of L vanish in the decomposition $X = L \operatorname{diag}(\mathbf{p}) L^{\top}$. After removing these vanished n-c columns from L and the corresponding zeros from **p**, we can write $X = L \operatorname{diag}(\mathbf{p}) L^{\top} = L \operatorname{diag}(\mathbf{p})^{\frac{1}{2}} \operatorname{diag}(\mathbf{p})^{\frac{1}{2}} L^{\top} = K_{nc} K_{nc}^{\top}$ with $K_{nc} \in \mathbb{R}^{n \times c}$. We next solve $D = K_{nc} D' K_{nc}^{\top}$ in variables D'. For this, we first reduce this system to work on $c \times c$ matrices, *i.e.* we transform it into $D_{cc} = K_{cc}D'K_{cc}$ where K_{cc} is K_{nc} restricted to the c core rows and D_{cc} is D restricted to the $c \times c$ core rows and columns. To solve this square system, we apply back-substitution twice and this is very fast because K_{cc} is lower triangular. If the resulting solution D' also satisfies $D = K_{nc}D'K_{nc}^{\top}$, then we are surely in case B). We obtained a reduced-size version of (5) working in the space of $c \times c$ matrices:

	1	instance		Projective Cutting-Planes						ConicBundle		Mosek	
n	k	Eigs	Eigs	Itera-	All	Compute	Proj	LP time	Send data	Trace	Trace		
		A_i 's	С	tions	time	X & D	time	(cplex)	to LP	unknown	provided		
800	80	[-20, 100]	[0,100]	1108	410	179	44	70	102	1051	94	320	
600	40	[-20, 100]	[0,100]	155	17	4	6	1	3	148	22	72	
400	100	[-20, 100]	[0,100]	2075	572	94	13	384	71	490	42	60	
Huge instances below have $\mathbf{y} \geq 0$, a random b and $\frac{n}{5}$ fixed null eigenvectors for all A_i 's and C													
200	2000	[40, 100]	[10, 40]	31	11	5	0.2	0.2	5	timeout		717	
200	3000	[40, 100]	[10, 40]	70	49	27	0.4	0.7	18	timeout		1346	
4000	20	[20, 25]	[20, 25]	8	76	17	44	0	11	timeout		timeout	
5000	20	[20, 25]	[20, 25]	7	139	27	87	0	18	timeout		timeout	
Ta	Table 2. Seven runs of Projective Cutting-Planes, ConicBundle and Mosek on more												

Table 2. Seven runs of Projective Cutting-Planes, ConicBundle and Mosek on more varied instances. The last four instances have $y \ge 0$; such linear constraints on y simplify the problem for Projective Cutting-Planes, but this may be a non-trivial change for ConicBundle (or other algorithms that do not embed the SDP problem in a lightweight LP over y).