
Semidefinite programming by
Projective-Cutting-Planes

Daniel Porumbel1

We focus on the following standard (semidefinite programming) SDP problem,

where
�� ��A>y =

∑k
i=1Aiyi . The implication in the last constraint indicates that the

SDP constraint can be expressed using an infinite number of linear cuts.

P


max b>y

s.t X = C −A>y
X � 0 ⇐⇒ X· ss> ≥ 0 ∀s ∈ Rn



P


max b>y

s.t X = C −A>y
X � 0 ⇐⇒ X· ss> ≥ 0 ∀s ∈ Rn

We could address the problem by progressively separating infeasible solutions
yout ∈ Rn. Such very standard Cutting-Planes will likely result in failure.

Three years ago I introduced Projective-Cutting-Planes to upgrade the separa-
tion sub-problem to the projection sub-problem: given feasible y in a polytope P
and an arbitrary direction d, what is the maximum step-length t∗ so that t∗d ∈P?

In SDP programming, projecting y→ d requires solving t∗ = max{t : X + tD �
0} for this X � 0 and D:

• X = C −A>y is SDP when y is feasible

• D = C −A>d may be SDP or not.

We have to project X → D in the SDP cone.

2



Th projection sub-problem is quite simple if X � 0. In this case, there is a unique
Cholesky decomposition X = KK> and K is non-singular. We’ll see later that the
following projections are equivalent, using D′ = the unique solution of D = KD′K>.

• X → D;

• In → D′ =⇒ finding max{t : In + tD′ � 0} is easy if you know λmin(D
′)

This projection is more difficult if X is not strictly SDP. Yet, this simplified case
enabled us to solve some particular instances very rapidly:

0 1 2 3 4 5 6 7 8 9
8

10

12

14

16

Time

b
o
u
n
d
(s
)
on

ob
j.
va
l.

k = 11, n = 400, eigs(Ai) ∈ [0.1, 2.5], eigs(C) ∈ [17, 50]

upper bounds of a standard cutting planes converging in 9.26s

lower&upper bounds of projective cutting planes converging in 1.15s

Mosek needs
7.21 seconds

Conic Bundle needs 2.23
seconds (and I gave it
the optimal trace)

3



ite
ra

tio
n 1

x1 = [0 0]

Iteration 1 : uncharted territory, follow objective function, i.e.,
advance along x1 → d1

6 / 21



ite
ra

tio
n 1

x1 = [0 0]> opt(P1)

x1+t∗1d1feasible solution

outer solution

Iteration 1 : found a first outer solution opt(P1) and a first inner
solution (contact point) x1 + t∗1d1

6 / 21



x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

Iteration 2 : an inner feasible solution (contact point) x2 + t∗2d2

and a new outer solution. We take d2 = opt(P1)− x2.

6 / 21



P

x3

x3+t∗3d3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Iteration 3 : the feasible solution x3 + t∗3d3 is almost optimal

6 / 21



P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Iteration 4 : optimality of opt(P3) proved
You can see the proposed method is convergent because it
solves a separation problem on opt(Pk ) at each iteration k

The convergence proof takes two lines, cool !

6 / 21



P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Building on existing work [1,2], the new method was deliberately
designed to be more general and when possible simpler

[1] Daniel Porumbel. Ray projection for optimizing polytopes with
prohibitively many constraints in set-covering column generation.
Mathematical Programming, 155(1) :147–197, 2016.

[2] Daniel Porumbel. From the separation to the intersection subpro-
blem for optimizing polytopes with prohibitively many constraints in
a Benders decomposition context. Discrete Optimization, 2018.

6 / 21



P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Notice the trajectory of the inner points — there is no built-in
feature in the Cutting-Planes to generate inner points

each xk is a point on the last projected segment, i.e., bet-
ween xk−1 and xk−1 + t∗k−1dk−1

in this example we choose : xk = xk−1 +
1
2 ·t
∗
k−1dk−1

everything was like a movie until here : let’s move to real life

6 / 21














