Semidefinite programming by
Projective-Cutting-Planes

Daniel Porumbel

We focus on the following standard (semidefinite programming) SDP problem,

where [ATy = E?Zl Aiyij. The implication in the last constraint indicates that the

SDP constraint can be expressed using an infinite number of linear cuts.

max b'y
P st X=C—-ATy
X0 < X oss' >0VseR"

max b'y
P st X=C—-A'y
X»0 <<= Xess >0VscR"

We could address the problem by progressively separating infeasible solutions
Yous € R™. Such very standard Cutting-Planes will likely result in failure.

Three years ago I introduced Projective-Cutting-Planes to upgrade the separa-
tion sub-problem to the projection sub-problem: given feasible y in a polytope &
and an arbitrary direction d, what is the maximum step-length ¢* so that t*d € &7

In SDP programming, projecting y — d requires solving t* = max{t : X +¢D =
0} for this X = 0 and D:

e X =C — ATy is SDP when y is feasible
e D=C — A"d may be SDP or not.

We have to project X — D in the SDP cone.

Th projection sub-problem is quite simple if X > 0. In this case, there is a unique
Cholesky decomposition X = KK T and K is non-singular. We’ll see later that the
following projections are equivalent, using D’ = the unique solution of D = KD'K '.

e X —» D,
o [, » D' = finding max{t: I,, +tD’ = 0} is easy if you know Api,(D’)

This projection is more difficult if X is not strictly SDP. Yet, this simplified case
enabled us to solve some particular instances very rapidly:

16 upper bounds of a standard cutting planes converging in 9.26s)
§
= 14 i
< Conic Bundle needs 2.23
o seconds (and I gave it Mosck needs
s) the optimal trace) 7.21 seconds
= 12 =
=]
§ lower&upper bounds of projective cutting planes converging in 1.15s
2 10| .

N k=11, n =400, eigs(4;) €[0.1,2.5], eigs(C) € [17,50]] nn

8 — | | T T T T T \ \ B

0 1 2 3 4 5 6 7 8
Time

Iteration 1 : uncharted territory, follow objective function, i.e.,
advance along x; = d;

6/21

feasible solution — g

outer solution

—~opt(Py)

lteration 1 : found a first outer solution opt(Py) and a first inner
solution (contact point) x4 + t;d;

6/21

lteration 2 : an inner feasible solution (contact point) X, + £;d>
and a new outer solution. We take d, = opt(Py) — Xo.

6/21

lteration 3 : the feasible solution x3 + t;d3 is almost optimal

6/21

lteration 4 : optimality of opt(P3) proved
You can see the proposed method is convergent because it
solves a separation problem on opt(Px) at each iteration k

@ The convergence proof takes two lines, cool !

6/21

eex(P)

Building on existing work [1,2], the new method was deliberately
designed to be more general and when possible simpler

[1] Daniel Porumbel. Ray projection for optimizing polytopes with
prohibitively many constraints in set-covering column generation.
Mathematical Programming, 155(1) :147-197, 2016.

[2] Daniel Porumbel. From the separation to the intersection subpro-
blem for optimizing polytopes with prohibitively many constraints in

a Benders decomposition context. Discrete Optimization, 2018.
6/21

5t (A1)

Notice the trajectory of the inner points — there is no built-in
feature in the Cutting-Planes to generate inner points
@ each xx is a point on the last projected segment, i.e., bet-
ween X,_¢ and Xx_1 + & dx_1

@ in this example we choose : xx = Xx_1 + %-t;_1dk_1

6/21

Property 1. We will see that the projection X — D can be calculated more
rapidly if D belongs to the image of X. This means that each column (and row)
of D can be written as a linear combination of the columns (or rows, resp.) of
X . We can equivalently say that the null space of X is included in the null space
of D; thus, Xd =0 = Dd =0 Vd € R". We will show below in cases A) and
B) how it is easier to project when this property holds; if possible, Projective
Cutting-Planes should thus adapt it§ own evolution to seek this property.

A) This case is characterized by X > 0, i.e., X is non-singular; PerE surely
holds because the image of a non-singular X is R™. We apply the Cholesky
decomposition to determine the unique non-singular K such that X = KK'.
We then solve D = KD'K ' in variables D’ by back substitution; this may
require O(n?) in theory, but Matlab is able to compute it much more rapidly in
practice because K is triangular. Let us re-write (3) as:

max {t: KI,K' +tKD'K' = 0}. (4)

This is eqivalent (by congruence according to Prop|2) to

max {t : I,, +tD" = 0} . (5)

The sought step length is t* = — }wﬂl{D;}, or t* = oo if Amin(D") > 0.

We still have to find a first-hit cut v € R"™: in fact, technically, the first-hit
cut will be (Al . va) Y1 + (flg . va) Yo + -+ (A;f . va) yr < C' e vv .

If v is an eigenvector of K (I, +t*D’')K " with an eigenvalue of 0, this means
v K(I, +t*D"YK'v = 0. Thus, u = K ' v is eigenvector of I,, + t*D’ with an
eigenvalue of (0. This latter eigenvector u can be computed when determining
Amin(D") < 0 above, because if the eigenvalue of u with regards to D’ is Ayin (D’)
its eigenvalue with regards to I,, + t*D’ is 0 (since recall t* = —}”ml{D,}). The

sought v solves K' v = u and it can rapidly be computed by back-substitution.
We have u' Du <0 = v'KD'K'v <0 = v'Dv < 0. We thus have
v (X +t*D)v=0and v' (X + (t* +€)D)v < 0 for any € > 0.

B) In this case Prop |1|is still satisfied, but X has rank ¢ < n. This means
X contains ¢ independent rows (and columns by symmetry), referred to as core
rows (or columns); the other dependent rows (or columns) are non-core positions.
Using the LDL decomposition of X, we will factorize X = K,,. K, ., where K. €
R™*€¢, The image of K,,. is equal to the image of X. Since Prop is vatisfied,
we will see we can still solve D = K,,.D'K' in variables D’. A first intuition
i1s to notice that we can project X — D only over the core rows and columns,

because the non-core positions are dependent on the core ones.

But the most difficult task is to determine these core positions. We first
apply the LDL decomposition and write X = Ldiag(p)L' with p > 0,,. The
contribution of each p; in Ldiag(p)L ' is actually p;L;L,, where L; is column
i of L (Vi € [1.n]). If all n x n elements of p;L;L; are below some precision
parameter, we consider ¢ 1S a non-core position; otherwise, it is a core position.
By reducing all non-core positions p; to zero, we can say that all n — ¢ non core
columns of L vanish in the decomposition X = Ldiag(p)L'. After removing

these vanished n — ¢ columns from L and the corresponding zeros from p, we can
write X = Ldiag(p)L' = Ldiag(p)%diag(p)%LT — K, K with K,,. € R"*¢,

r.c

We next solve D = K,,.D'K. in variables D’. For this, we first reduce this

TLC
system to work on ¢ X ¢ matrices, i.e.Rwe transform it into D,. = K..D'K,.

where K. is K, restricted to the ¢ core rows and D,.. i1s D restricted to the ¢x ¢
core rows and columns. To solve this square system, we apply back-substitution
twice and this is very fast because K .. is lower triangular. If the resulting solution
D’ also satisfies D = K,,.D’ K . then we are surely in case B). We obtained a

et

reduced-size version of {E) working in the space of ¢ X ¢ matrices:

Instance Projective Cutting-Planes ConicBundle Mosek
o " Eigs Eigs [|Itera-| All |Compute|Proj|LP time|Send data|| Trace Trace
A;'s C tions [time| X & D [time| (cplex) | to LP [|[unknown|provided
800 80 [-20, 100{ [0,100((| 1108 | 410 179 44 70 102 1051 94 320
600 40 [-20, 100{ [0,100ff| 155 | 17 4 6 1 3 148 22 72
400 100 [-20, 100{ [0,100([| 2075 | 572 94 Df 13 384 71 490 42 60
Huge instances below have y > 0, a random b and < fixed null eigenvectors for all A;’s and C
200 2000 |40, 100| |10,40]|| 31 11) 0.2 0.2) timeout 717
200 3000 [40, 100| |10,40]|| 70 | 49 27 0.4 0.7 18 timeout 1346
4000 20 [20,25] [20,25] 8 76 17 44 0 11 timeout timeout
5000 20 |20,25| [20,25] 7 139 27 87 0 18 timeout timeout

Table 2. Seven runs of Projective Cutting-Planes, ConicBundle and Mosek on more
varied instances. The last four instances have y > 0; such linear constraints on y
simplify the problem for Projective Cutting-Planes, but this may be a non-trivial
change for ConicBundle (or other algorithms that do not embed the SDP problem in

a lightweight LP over y).

