Semidefinite programming by Projective-Cutting-Planes

Daniel Porumbel ${ }^{1}$

We focus on the following standard (semidefinite programming) SDP problem, where $\mathcal{A}^{\top} \mathbf{y}=\sum_{i=1}^{k} A_{i} y_{i}$. The implication in the last constraint indicates that the SDP constraint can be expressed using an infinite number of linear cuts.

$$
\mathscr{P}\left\{\begin{aligned}
\max & \mathbf{b}^{\top} \mathbf{y} \\
\text { s.t } & X=C-\mathcal{A}^{\top} \mathbf{y} \\
& X \succeq \mathbf{0} \Longleftrightarrow X \bullet \mathbf{s s}^{\top} \geq 0 \forall \mathbf{s} \in \mathbb{R}^{n}
\end{aligned}\right.
$$

$$
\mathscr{P}\left\{\begin{aligned}
\max & \mathbf{b}^{\top} \mathbf{y} \\
\text { s.t } & X=C-\mathcal{A}^{\top} \mathbf{y} \\
& X \succeq \mathbf{0} \Longleftrightarrow X \bullet \mathbf{s s}^{\top} \geq 0 \forall \mathbf{s} \in \mathbb{R}^{n}
\end{aligned}\right.
$$

We could address the problem by progressively separating infeasible solutions $\mathbf{y}_{\text {out }} \in \mathbb{R}^{n}$. Such very standard Cutting-Planes will likely result in failure.

Three years ago I introduced Projective-Cutting-Planes to upgrade the separation sub-problem to the projection sub-problem: given feasible \mathbf{y} in a polytope \mathscr{P} and an arbitrary direction \mathbf{d}, what is the maximum step-length t^{*} so that $t^{*} \mathbf{d} \in \mathscr{P}$?

In SDP programming, projecting $\mathbf{y} \rightarrow \mathbf{d}$ requires solving $t^{*}=\max \{t: X+t D \succeq$ $\mathbf{0}\}$ for this $X \succeq \mathbf{0}$ and D :

- $X=C-\mathcal{A}^{\top} \mathbf{y}$ is SDP when \mathbf{y} is feasible
- $D=C-\mathcal{A}^{\top} \mathbf{d}$ may be SDP or not.

We have to project $X \rightarrow D$ in the SDP cone.

Th projection sub-problem is quite simple if $X \succ \mathbf{0}$. In this case, there is a unique Cholesky decomposition $X=K K^{\top}$ and K is non-singular. We'll see later that the following projections are equivalent, using $D^{\prime}=$ the unique solution of $D=K D^{\prime} K^{\top}$.

- $X \rightarrow D$;
- $I_{n} \rightarrow D^{\prime} \Longrightarrow$ finding $\max \left\{t: I_{n}+t D^{\prime} \succeq \mathbf{0}\right\}$ is easy if you know $\lambda_{\text {min }}\left(D^{\prime}\right)$

This projection is more difficult if X is not strictly SDP. Yet, this simplified case enabled us to solve some particular instances very rapidly:

Iteration 1 : uncharted territory, follow objective function, i.e., advance along $\mathbf{x}_{1} \rightarrow \mathbf{d}_{1}$

Iteration 1 : found a first outer solution opt $\left(P_{1}\right)$ and a first inner solution (contact point) $\mathbf{x}_{1}+t_{1}^{*} \mathbf{d}_{1}$

Iteration 2 : an inner feasible solution (contact point) $\mathbf{x}_{2}+t_{2}^{*} \mathbf{d}_{2}$ and a new outer solution. We take $\mathbf{d}_{2}=\operatorname{opt}\left(P_{1}\right)-\mathbf{x}_{2}$.

Iteration 3 : the feasible solution $\mathbf{x}_{3}+t_{3}^{*} \mathbf{d}_{3}$ is almost optimal

Iteration 4 : optimality of opt $\left(P_{3}\right)$ proved You can see the proposed method is convergent because it solves a separation problem on opt $\left(P_{k}\right)$ at each iteration k

- The convergence proof takes two lines, cool!

Building on existing work [1,2], the new method was deliberately designed to be more general and when possible simpler
[1] Daniel Porumbel. Ray projection for optimizing polytopes with prohibitively many constraints in set-covering column generation. Mathematical Programming, 155(1) :147-197, 2016.
[2] Daniel Porumbel. From the separation to the intersection subproblem for optimizing polytopes with prohibitively many constraints in a Benders decomposition context. Discrete Optimization, 2018.

Notice the trajectory of the inner points - there is no built-in feature in the Cutting-Planes to generate inner points

- each x_{k} is a point on the last projected segment, i.e., between \mathbf{x}_{k-1} and $\mathbf{x}_{k-1}+t_{k-1}^{*} \mathbf{d}_{k-1}$
- in this example we choose : $x_{k}=\mathbf{x}_{k-1}+\frac{1}{2} \cdot t_{k-1}^{*} \mathbf{d}_{k-1}$

Property 1. We will see that the projection $X \rightarrow D$ can be calculated more rapidly if D belongs to the image of X. This means that each column (and row) of D can be written as a linear combination of the columns (or rows, resp.) of X. We can equivalently say that the null space of X is included in the null space of D; thus, $X \mathbf{d}=0 \Longrightarrow D \mathbf{d}=0 \forall \mathbf{d} \in \mathbb{R}^{n}$. We will show below in cases A) and B) how it is easier to project when this property holds; if possible, Projective Cutting-Planes should thus adapt it今 own evolution to seek this property.
A) This case is characterized by $X \succ 0$, i.e., X is non-singular; Prop 1 surely holds because the image of a non-singular X is \mathbb{R}^{n}. We apply the Cholesky decomposition to determine the unique non-singular K such that $X=K K^{\top}$. We then solve $D=K D^{\prime} K^{\top}$ in variables D^{\prime} by back substitution; this may require $O\left(n^{3}\right)$ in theory, but Matlab is able to compute it much more rapidly in practice because K is triangular. Let us re-write (3) as:

$$
\begin{equation*}
\max \left\{t: K I_{n} K^{\top}+t K D^{\prime} K^{\top} \succeq \mathbf{0}\right\} . \tag{4}
\end{equation*}
$$

This is eqdivalent (by congruence according to $\operatorname{Prop} 2$) to

$$
\begin{equation*}
\max \left\{t: I_{n}+t D^{\prime} \succeq \mathbf{0}\right\} . \tag{5}
\end{equation*}
$$

The sought step length is $t^{*}=-\frac{1}{\lambda_{\min }\left(D^{\prime}\right)}$, or $t^{*}=\infty$ if $\lambda_{\min }\left(D^{\prime}\right) \geq 0$.

We still have to find a first-hit cut $\mathbf{v} \in \mathbb{R}^{n}$; in fact, technically, the first-hit cut will be $\left(A_{1} \cdot \mathbf{v} \mathbf{v}^{\top}\right) y_{1}+\left(A_{2} \cdot \mathbf{v} \mathbf{v}^{\top}\right) y_{2}+\cdots+\left(A_{k} \cdot \mathbf{v} \mathbf{v}^{\top}\right) y_{k} \leq C \cdot \mathbf{v v}^{\top}$.

If \mathbf{v} is an eigenvector of $K\left(I_{n}+t^{*} D^{\prime}\right) K^{\top}$ with an eigenvalue of 0 , this means $\mathbf{v}^{\top} K\left(I_{n}+t^{*} D^{\prime}\right) K^{\top} \mathbf{v}=0$. Thus, $\mathbf{u}=K^{\top} \mathbf{v}$ is eigenvector of $I_{n}+t^{*} D^{\prime}$ with an eigenvalue of 0 . This latter eigenvector \mathbf{u} can be computed when determining $\lambda_{\min }\left(D^{\prime}\right)<0$ above, because if the eigenvalue of \mathbf{u} with regards to D^{\prime} is $\lambda_{\min }\left(D^{\prime}\right)$ its eigenvalue with regards to $I_{n}+t^{*} D^{\prime}$ is 0 (since recall $\left.t^{*}=-\frac{1}{\lambda_{\min }\left(D^{\prime}\right)}\right)$. The sought \mathbf{v} solves $K^{\top} \mathbf{v}=\mathbf{u}$ and it can rapidly be computed by back-substitution. We have $\mathbf{u}^{\top} D^{\prime} \mathbf{u}<0 \Longrightarrow \mathbf{v}^{\top} K D^{\prime} K^{\top} \mathbf{v}<0 \Longrightarrow \mathbf{v}^{\top} D \mathbf{v}<0$. We thus have $\mathbf{v}^{\top}\left(X+t^{*} D\right) \mathbf{v}=0$ and $\mathbf{v}^{\top}\left(X+\left(t^{*}+\epsilon\right) D\right) \mathbf{v}<0$ for any $\epsilon>0$.
B) In this case Prop 1 is still satisfied, but X has rank $c<n$. This means X contains c independent rows (and columns by symmetry), referred to as core rows (or columns); the other dependent rows (or columns) are non-core positions. Using the LDL decomposition of X, we will factorize $X=K_{n c} K_{n c}^{\top}$, where $K_{n c} \in$ $\mathbb{R}^{n \times c}$. The image of $K_{n c}$ is equal to the image of X. Since Prop 1 is satisfied, we will see we can still solve $D=K_{n c} D^{\prime} K_{n c}^{\top}$ in variables D^{\prime}. A first intuition is to notice that we can project $X \rightarrow D$ only over the core rows and columns, because the non-core positions are dependent on the core ones.

But the most difficult task is to determine these core positions. We first apply the LDL decomposition and write $X=L \operatorname{diag}(\mathbf{p}) L^{\top}$ with $\mathbf{p} \geq \mathbf{0}_{n}$. The contribution of each p_{i} in $L \operatorname{diag}(\mathbf{p}) L^{\top}$ is actually $p_{i} L_{i} L_{i}^{\top}$, where L_{i} is column i of $L(\forall i \in[1 . . n])$. If all $n \times n$ elements of $p_{i} L_{i} L_{i}^{\top}$ are below some precision parameter, we consider i is a non-core position; otherwise, it is a core position. By reducing all non-core positions p_{i} to zero, we can say that all $n-c$ non core columns of L vanish in the decomposition $X=L \operatorname{diag}(\mathbf{p}) L^{\top}$. After removing these vanished $n-c$ columns from L and the corresponding zeros from \mathbf{p}, we can write $X=L \operatorname{diag}(\mathbf{p}) L^{\top}=L \operatorname{diag}(\mathbf{p})^{\frac{1}{2}} \operatorname{diag}(\mathbf{p})^{\frac{1}{2}} L^{\top}=K_{n c} K_{n c}^{\top}$ with $K_{n c} \in \mathbb{R}^{n \times c}$.

We next solve $D=K_{n c} D^{\prime} K_{n c}^{\top}$ in variables D^{\prime}. For this, we first reduce this system to work on $c \times c$ matrices, i.e., we transform it into $D_{c c}=K_{c c} D^{\prime} K_{c c}$ where $K_{c c}$ is $K_{n c}$ restricted to the c core rows and $D_{c c}$ is D restricted to the $c \times c$ core rows and columns. To solve this square system, we apply back-substitution twice and this is very fast because $K_{c c}$ is lower triangular. If the resulting solution D^{\prime} also satisfies $D=K_{n c} D^{\prime} K_{n c}^{\top}$, then we are surely in case B). We obtained a reduced-size version of (5) working in the space of $c \times c$ matrices:

Instance				Projective Cutting-Planes						ConicBundle		Mosek
n	k	$\begin{aligned} & \text { Eigs } \\ & A_{i} \text { 's } \end{aligned}$	Eigs C	Itera- tions	$\left\|\begin{array}{c} \text { All } \\ \text { time } \end{array}\right\|$	Compute $X \& D$	$\left\|\begin{array}{l} \text { Proj } \\ \text { time } \end{array}\right\|$	LP time (cplex)	$\left\lvert\, \begin{gathered} \text { Send data } \\ \text { to LP } \end{gathered}\right.$	Trace unknown	Trace provided	
800	80	[-20, 100]	[0,100]	1108	410	179	44	70	102	1051	94	320
600	40	[-20, 100]	[0,100]	155	17	4	6	1	3	148	22	72
400	100	[-20, 100]	[0,100]	2075	572	94	13	384	71	490	42	60
Huge instances below have $\mathbf{y} \geq 0$, a random \mathbf{b} and $\frac{n}{5}$ fixed null eigenvectors for all A_{i} 's and C												
200	2000	[40, 100]	$[10,40]$	31	11	5	0.2	0.2	5	tir	eout	717
200	3000	[40, 100]	$[10,40]$	70	49	27	0.4	0.7	18	time	eout	1346
4000	20	[20,25]	[20,25]	8	76	17	44	0	11	time	eout	timeout
5000	20	[20,25]	$[20,25]$	7	139	27	87	0	18	time	eout	timeout

Table 2. Seven runs of Projective Cutting-Planes, ConicBundle and Mosek on more varied instances. The last four instances have $\mathbf{y} \geq \mathbf{0}$; such linear constraints on \mathbf{y} simplify the problem for Projective Cutting-Planes, but this may be a non-trivial change for ConicBundle (or other algorithms that do not embed the SDP problem in a lightweight LP over \mathbf{y}).

