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Abstract This work aims at finding the global
minimum of a quadratic function f with box
constrained variables. For this goal, we construct
a piecewise-quadratic convex relaxation of f
defined as the maximum of k ≥ 1 convex
functions. We show that when k → ∞ the
optimal solution of this relaxation converges to
an optimal solution of the SDP relaxation of the
initial problem. The resulting convexification is
tighter that the one produced by previous rela-
ted methods that use k = 1. Its integration into
a spatial branch-and-bound algorithm brings
a second advantage : compared to previous
related methods, it can refine the bound at each
node by computing new convex functions spe-
cifically tailored to act on the considered node.
Numerical results suggest that our algorithm can
outperform different solvers or other methods
based on quadratic convex relaxations.

Keywords Quadratic Programming, piecewise-
quadratic underestimator, cutting-quadrics

1 Introduction

We consider a non-convex Quadratic Box-
constrained Program (QBP) of the form :

(QBP)

{
min f (x) ≡ 〈Q, xx>〉+ c>x

`i ≤ xi ≤ ui ∀i ∈ I , (1)

where 〈A, B〉 = ∑n
i=1∑n

j=1aijbij, I = {1, . . . , n},
(Q, c, `, u) ∈ Sn × Rn × Rn

+ × Rn, and Sn is
the set of symmetric matrices of order n. Wi-
thout loss of generality, we assume that the box
constraints (1) take the form xi ∈ [0, 1]. (QBP)
is a fundamental NP-hard global optimization
problem [13]. The most classical methods for

solving it include branch-and-bound algorithms
that use various convex relaxations to deter-
mine lower bounds, e.g., either linear, quadratic
convex or semi-definite relaxations (see [9, 7]).
For many of these cases, the quadratic func-
tion can be expressed in an extended space of
variables, introducing new variables Yij with
i, j ∈ I that are meant to satisfy Yij = xixj. This
traditional approach was first used for the linear
relaxation, leading to a branch-and-bound based
on the relaxation of the non-convex equalities
Yij = xixj (see for instance [15, 19, 21]).

We also express the problem in this extended
(x, Y) space, but we go beyond the linear relaxa-
tion. We propose the following model which is
equivalent to (QBP) for any semidefinite posi-
tive (SDP) matrix S0 � 0.

min 〈S0, xx>〉+ c>x + 〈Q− S0, Y〉
Y = xx>

`i ≤ xi ≤ ui i ∈ I
Y ∈ Sn

(2a)

(2b)
(2c)
(2d)

A well-known SDP relaxation of (QBP) is ob-
tained by lifting x to a symmetric matrix X =
xxT and by relaxing the non-convex constraints
X = xxT into X − xxT � 0. After linking X and
x using the McCormick constraints (3a)-(3d), we
obtain the model below, also called the “Shor’s
plus RLT” relaxation of (QBP) [1].

(SDP)



min f (X, x) ≡ 〈Q, X〉+ cTx
Xij ≤ ujxi + `ixj − `iuj, i, j ∈ I (3a)
Xij ≤ `jxi + uixj − ui`j, i, j ∈ I (3b)
Xij ≥ ujxi + uixj − uiuj, i, j ∈ I (3c)
Xij ≥ `jxi + `ixj − `i`j, i, j ∈ I (3d)(

1 xT

x X

)
� 0 (3e)

x ∈ Rn X ∈ Sn (3f)
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FIGURE 1 – Convex function fS0 in black may reach
its minimum over many solutions of the (x, Y) space
(see the long flat segment [A,D]), because S0 may
have a large null space, often of dimension close to n

2 .
The resulting convexification in light-gray is weaker
than the piecewise-quadratic convexification from the
striped area (max of fS0 , fS1 and fS2 ) that has the same
minimum; this latter convex function reaches its mi-
nimum over a segment [B,C] shorter than [A,D].

By solving the above (SDP) in a pre-
processing step, the method MIQCR [5] deter-
mines a positive semidefinite matrix S0 that
maximizes the lower bound associated to the fol-
lowing convex relaxation of (2a)–(2d) : minimize
fS0(x, Y) over all (x, Y) that satisfy the McCor-
mick constraints [15] (instead of Y = xxT), where
fS0 is the quadratic surface (quadric) given by :

fS(x, Y) = 〈S, xx>〉+ c>x + 〈Q− S, Y〉 (4)

The main idea of our work is to replace this
unique function fS0 with multiple functions fSk ,
with k = 0, 1, 2, . . . ; we then minimize the func-
tion f ∗(x, Y) = maxk fSk(x, Y) over all (x, Y).
Since each function fSk is quadratic and convex,
f ∗ is a piecewise-quadratic convex understima-
tor (see Figure 1). We generate the functions fk
one by one as in a cutting-planes approach ; each
function fk aims at cutting the current optimal
solution (x, Y) by making it sub-optimal.

Figure 1 shows how this approach based on
multiple quadratic cuts (k > 1) may generate a
tighter convexification than MIQCR (k = 1), even
if it does not improve the bound computed at
the root node of the branch-and-bound. The
new algorithm can also provide a better bound
than MIQCR at any non-root node, because it can
integrate cuts specifically generated to penalize
solutions associated to any given node. Notice
that it would have been impractical for MIQCR to
solve (SDP) at each node.

The paper is organized as follows. Section
2 introduces a parameterized family of relaxa-
tions of (QBP) that are piecewise-quadratic and
convex ; we will show that the optimal value of
this relaxation reaches the value of (SDP). Sec-
tion 3 introduces an iterative Cutting Quadrics
Algorithm (CQA) that can be seen as an exten-
sion of the cutting-planes algorithm that uses
quadratic surfaces (or quadrics) instead of hyper-
planes. In Section 4, this algorithm is integrated
within a branch-and-bound to solve (QBP) to
global optimality. Finally, Section 5 presents ex-
perimental results on the boxqp instances, sug-
gesting that our new approach is faster than
state-of-the-art solvers, and is able to signifi-
cantly reduce the number of nodes in compari-
son to the basic MIQCR.

2 A family of convex piecewise-
quadratic relaxations

Given a set K = {Sk � 0 , k = 0, 1, . . . , p} of
SDP matrices, the multi-cut version of (2a)–(2d)
takes the form below, forming a family of equi-
valent formulations of (QBP) indexed by K :

(PK)



min t
t ≥ 〈Sk, xx>〉+ c>x + 〈Q− Sk, Y〉, Sk ∈ K (5a)
Y = xx> (5b)
`i ≤ xi ≤ ui i ∈ I (5c)
Y ∈ Sn, t ∈ R (5d)

Like in the mono-cut version (2a)–(2d) of the
above program, the only non-convexity of (PK)
comes from Constraints (5b) that we can classi-
cally relax using the McCormick envelopes (6c)–
(6f). We obtain (PK) a family of convex relaxa-
tions of (QBP) indexed by a set K as above :

(PK)



min t (6a)
t ≥ 〈Sk, xx>〉+ c>x + 〈Q− Sk, Y〉, Sk ∈ K (6b)
Yij ≤ ujxi + `ixj − `iuj, i, j ∈ I (6c)
Yij ≤ `jxi + uixj − ui`j, i, j ∈ I (6d)
Yij ≥ ujxi + uixj − uiuj, i, j ∈ I (6e)
Yij ≥ `jxi + `ixj − `i`j, i, j ∈ I (6f)
`i ≤ xi ≤ ui, i ∈ I (6g)
Y ∈ Sn, t ∈ R (6h)

Clearly, for any set K, the problem (PK) is a
relaxation of (QBP), since for any solution x̄ of
(QBP) of value t, the solution (x̄, x̄x̄>, t) is fea-
sible for (PK) with a value of t. Moreover, since

2



Y

x

f(x)

fS1(x0, Y0)–fS0(x0, Y0)

fS0

{

(x0, Y 0) =

opt(PK0
) and

x0x0>−Y 0 � 0

• Y

x

f(x)

•

fS1

(x1, Y 1) =

opt(PK1
) and

x1x1>−Y 1 � 0

•

FIGURE 2 – The Cutting Quadrics Algorithm (CQA) starts from an initial convex function fS0 (blue surface)
of problem (PK0) whose optimal solution is (x0, Y0), see the small blue disk. Then it generates matrix S1
to impose penalty fS1(x0, Y0) on (x0, Y0), as marked by the black vertical arrow in both figures. Thus, after
adding function fS1 (red surface) to (PK0), the optimal solution of (PK1) moves to (x1, Y1).

all matrices Sk ∈ K are SDP, each constraint (6b)
define a quadratic convex set, and so, (PK) is
a convex problem. Now, given an integer p, we
pose the problem (LBp) of determining the best
set of matrices K = {S0, S1, . . . Sp}, in the sense
of leading to the tightest lower bound of (QBP) :

(LBp)

{
max

S0,S1,...Sk�0
v
(

P{S0,S1,...Sk}
)

This connects our work with previous convex
relaxations [4, 5, 11] ; when we restrict (PK) to
K = {S0}, we obtain the original MIQCR method
from [5]. It is proven in [11], that, the optimal so-
lution of (LB1) can be deduced from the optimal
dual solution of (SDP). It is, moreover, proven
in [11] that, if strong duality holds for (SDP), the
optimal value of (LB1) equals the optimal value
of (SDP). We now state Proposition 1

Proposition 1 v(LB∞) = v(LBp) = . . . =
v(LB0) = v(SDP).

Proof. The last equality (for K = {S0}), follows
from [11, Theorem 3.1]. Moreover, by construc-
tion, we obviously have v(LB∞) ≥ v(LBp) ≥
. . . ≥ v(LB1) = v(SDP). We now show
v(LB∞) ≤ v(SDP). Take a feasible solution
(X, x) of (SDP) of objective value f (X, x) =
〈Q, X〉+ cTx. The solution (Y = X, x = x) is fea-
sible for (PK) with a value of max

k∈K
〈Sk, xx>−X〉+

c>x + 〈Q, X〉 ≤ f (X, x) ; this was obtained from

〈Sk, xx> − X〉 ≤ 0, which is true for any Sk � 0
given that xx> − X � 0 by virtue of (3e). 2

3 The cutting-quadrics algorithm

The Cutting Quadrics Algorithm (CQA)
starts from an initial relaxation (PK0) associated
to an initial set K0 of SDP matrices (that may
contain the matrix determined by MIQCR). At
each iteration k, CQA calls a convex solver to
determine the optimal solution (xk, Yk, tk) of
(PKk). It then constructs a matrix Sk+1 � 0 such
that fSk+1(xk, Yk) > tk making current solution
(xk, Yk, tk) infeasible for (PKk+1), i.e., for the
new program (6a)-(6h) enriched with fSk+1 . The
next iteration has to move to a new solution,
as illustrated in Figure 2. We thus generalize
the well-known cutting-planes algorithm by
generating convex quadratic cuts instead of
separating hyperplanes.

We define Sk+1 = rk · vmaxv>max, where vmax is
the eigenvector of (xkxk> − Yk) of maximum ei-
genvalue. In practice, we can also define Sk+1 =
rk ∑ vivT

i , where the sum is carried out over all
eigenvectors vi having a positive eigenvalue.

The overall solution method is summed up in
Algorithm 1, and we prove its convergence in
Theorem 1. Note that we start for set K0 that will
at least integrate the null matrix 0n, that corres-
ponds to the standard linearization of f (x).
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Algorithm 1: The Cutting-Quadrics Algorithm
Input : variable bounds ` and u, precision parameters ε and δ, (optional) initial matrices K0
Output: The best lower bound on (LB∞)
K0 ← K0 ∪ {0n} // K0 may contain the optimal matrix used by MIQCR
(x0, Y0, t0)← Solve(PK0) // variable t0 is actually the optimum obj. value
k← 0
while (xkx

k> −Yk � 0) // In practice we use λmax(xkx
k> −Yk) > δ

do
rk = 100 + k // A penalty parameter; we keep rk = 100 in practice
vmax ←the eigenvector of x∗k x

∗>
k −Y∗k of maximum eigenvalue

Sk+1 ← rk · vmaxv>max // Or Sk+1 = r ∑ vivT
i , where the sum is carried out over all

// the eigenvectors vi associated to a positive eigenvalue
Kk+1 = Kk ∪ Sk+1 // add a new quadratic cut associated to Sk+1

(xk+1, Yk+1, tk+1)← Solve
(

PKk+1

)
k← k + 1
if tk − tk−1 < ε then

break // Bound progress too small (only in practice)

return tk as the optimal solution of (QBP) if Yk = xkxk>, or as a lower bound otherwise

Theorem 1 When k→ ∞, the value of the solutions
tk generated by Algorithm 1 converge to the optimal
value of (SDP).

Proof. We use three steps : i) the new quadric
added at iteration k + 1 separates the current op-
timal solution (xk, Yk, tk) of iteration k, which im-
plies that the sequence of optimal values tk in-
creases monotonically, ii) the maximum eigen-
value of xkxk> − Yk converges to 0, and iii) tk

reaches the optimal value of (SDP) when k→ ∞.
(i) Let (xk, Yk, tk) the optimal solution to (PKk)

of iteration k of objective value tk. We first prove
that the new quadric fSk+1 cuts (xk, Yk, tk), or
equivalently that fSk+1(xk, Yk) > fSk(xk, Yk) = tk.
Let v be the eigenvector of (xkxk> −Yk) of maxi-
mum eigenvalue λmax. By definition, we have
Sk+1 = rk+1 · vv> and we obtain :

fSk+1(xk, Yk)− fSk (xk, Yk)

= 〈Sk+1, xkxk>〉+ c>xk + 〈Q− Sk+1, Yk〉
− 〈Sk, xkxk>〉 − c>xk − 〈Q− Sk, Yk〉

= 〈Sk+1 − Sk, xkxk> −Yk〉
= rk+1λmax − 〈Sk, xkxk> −Yk〉
≥ rk+1λmax − rkλmax,

where for the last inequality we used that Sk has
the form Sk = rk · uu> (where u is an eigenvector
of xk−1xk−1> −Yk−1) coupled with the following

well-known property [17, §3.2] :

λmax = max
u∈Rn||u||=1

〈uu>, xkxk> −Yk〉

This proves fSk+1(xk, Yk) > fSk(xk, Yk), because
rk+1 > rk as imposed by the first line of the while
loop.
(ii) We will now prove that for any δ > 0 no
matter how small, there exist some k such that
λmax

(
xkxk> −Yk) < δ for any k ≥ k. Suppose for

the sake of contradiction that this is not the case.
This means that the algorithm generates an infi-
nite number of matrices (xkxk> − Yk) ∈ Sn that
all satisfy λmax

(
xkxk> −Yk) ≥ δ. The Bolzano-

Weierstrass theorem states that any infinite se-
quence in a bounded set (recall that (x, Y) belong
to the unit hypercube) contains a convergent
subsequence. This means that there exists a sub-
sequence (ki) such that (xki xki> −Yki) converges
to some fixed point xx> − Y when i → ∞.
By assumption, this convergence point satisfies
λmax

(
xx> −Y

)
≥ δ. For any infinitesimal ε,

there exists some kε such that for any ki > kε, any
element in matrix (xki xki> − Yki) is at a distance
smaller than ε from the corresponding element
of (xx>−Y), i.e., it stays in a neighborhood Nε of
(xx> − Y) of ∞-norm below ε. But here comes the
contradiction. For a sufficiently small ε, we have
λmax(xx> −Y) > δ′ > 0 ∀(x, Y) ∈ Nε for some δ′

arbitrarily close to δ. Thus, for a sufficiently large
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k̂ and rk̂ = 100+ k, fSk̂
(x, Y) includes a penalty of

rk̂δ′ that is large enough to make any (x, Y) ∈ Nε

sub-optimal. No iteration after k̂ can stay in Nε.
(iii) We now prove that tk → v(SDP).

Let us first take any convergence point (x, Y, t)
of Algorithm 1 that has to satisfy (xx> − Y) � 0
and use it to build a feasible solution of (SDP)
such that t ≥ v(SDP). Since (xx> − Y) � 0, the
solution (x = x, X = Y) is feasible for (SDP)
with a value of c>x + 〈Q, Y〉 ≥ v(SDP). The op-
timal value t can be written as below (regardless
of how exactly K was constructed) :

t =max
S∈K
〈S, xx> −Y〉+ c>x + 〈Q, Y〉

=c>x + 〈Q, Y〉 ≥ v(SDP)

We used max
S∈K
〈S, xx> − Y〉 = 〈0n, xx> − Y〉 =

0 which is true because 0 ∈ K and because
〈S, xx> −Y〉 ≤ 0 for any SDP matrix S ∈ K.

This proves that t ≥ v(SDP) and we now ex-
plain why we can not have t > v(SDP). Take the
optimal solution (x, X) of (SDP) and notice that
its value in (6a)-(6f) is

max
S∈K
〈S, xx> − X〉+ c>x + 〈Q, X〉

=max
S∈K
〈S, xx> − X〉+ v(SDP) ≤ v(SDP),

where we simply used 〈S, xx> − X〉 ≤ 0, which
is true by virtue of S � 0 and xx> − X � 0. 2

The proof of Theorem 1 implies the following
Corollary.

Corollary 1 Algorithm 1 solves problem (SDP). In
particular, if (x, Y, t) is a convergence point of Algo-
rithm 1, (Y, x) is an optimal solution to (SDP) with
a value of t = v(SDP).

Theorem 1 thus state that Algorithm 1 ge-
nerates the same lower bound as MIQCR, i.e.,
v(SDP). However, as mentioned previously, the
additional quadrics tighten the convexification
by reducing the set of optimal equivalent solu-
tions (like in Figure 2). This increases the poten-
tial of the new convexification when integrated
in a branch-and-bound algorithm.

Recall Algorithm 1 can start from any set K0.
To improve its convergence, we describe hereaf-
ter several ways to populate K0. The first one
consists in adding to K0 the optimal matrix cal-
culated by MIQCR, which is S0 = Q + Φ1 + Φ2 −

Φ3−Φ4, where Φ1, Φ2, Φ3, Φ4 are the symmetric
matrices built from the optimal dual variables
associated with Constraints (3a)–(3d) of (SDP).
This approach has the drawback of requiring sol-
ving a large SDP problem. A faster way is the fol-
lowing : take the matrix Q and increase its dia-
gonal by the opposite of the smallest eigenva-
lue of Q, i.e., S0 = Q − λmin · In � 0. Another
choice relies on extracting the convex part of Q,
by constructing the matrix S0 = ∑ λivivT

i where
the sum is carried over all non-negative eigenva-
lues λi of Q associated to eigenvectors vi. Preli-
minary tests show that the latter approach is still
very fast and produces better results than the se-
cond one. Note moreover that the size of K0 is
not limited, so it is possible to include all these
matrices in the initial set K0.

4 A branch-and-bound algorithm
to optimally solve (QBP)

A classical way to solve (QBP) is to use
a branch-and-bound algorithm (see [3] for a
complete description) where the bounding step
is based on CQA. We here provide more details on
our implementation.

The variable selection strategy
Let εb > 0 be the precision parameter that state
if an equality is satisfied, and (xk, Yk) be the so-
lution of (PKk) at the current node, two cases are
possible :

1. If −εb ≤
(
Yk − xkxk>)

ij ≤ εb for all i, j ∈
I, then (x, Y) is the optimal solution of the
considered branch.

2. Else, we first try to determine i∗ by solving
problem below restricted to the diagonal (to
i∗ = j∗). If this fails, we solve the same pro-
blem below with no restriction on i∗ and j∗ :

(i∗, j∗) = argmax|(xixj −Yij)|

The branching rules
The feasible interval [`i∗ , ui∗ ] of the selec-
ted variable xi∗ is always split in half : the
two child nodes are xi∗ ∈

[
`i∗ ,

`i∗+ui∗
2

]
and

xi∗ ∈
[
`i∗+ui∗

2 , ui∗
]
.

The node selection strategy
For selecting the next sub-problem we use the
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"best-first" selection strategy, i.e., we select the
node with the highest evaluated lower bound.

Upper bounding
We use a rather basic coordinate descent heuris-
tic to determine upper bounds. We start from the
solution xk of (PKk) at the current node (ignoring
all Yk components), that is also feasible for the
original (QBP). Our coordinate descent begins
by iterating over all i ∈ [1..n] ; for each i, we fix
all variables to their current values except for
xk

i . We then solve an optimization sub-problem
with only one decision variable, namely xk

i . After
scanning all variables once, we can repeat the
process as long as there is at least one variable i
for which we detect a possible improvement.

Lower bounding
At each node of the B&B, we evaluate (PKk) from
scratch, i.e. without inheriting any quadratic cuts
produced by CQA at previous nodes. In fact, we
only keep the matrices of setK0 ∪ 0n (first step of
Algorithm 1). We stop executing CQA on a given
node as soon as the progress of the lower bound
tk+1 − tk becomes smaller than a fixed value δ.
We will evaluate two algorithm versions :

CQBB-1 use a value of δ = 0.01,

CQBB-2 for this version, we actually force at
maximum one iteration per node.

Regarding CQBB-2, notice that to generate a
first S1 we need a first solution (x0, Y0). To ac-
celerate the node evaluation, we proposed a pre-
solving initial iteration to generate an initial solu-
tion (x0, Y0) without fully solving (PK0). When
we first evaluate a new node, we fix all values
of x and Y to that of the optimal value of the
parent node, with the exception of the variables
that no longer satisfy the new McCormiks enve-
lopes. We thus evaluate the resulting simplified
problem with fewer variables more rapidly than
fully solving (PK0).

5 Numerical results

We evaluate our global optimization algorithm
CQBB on 81 purely continuous quadratic ins-
tances with box constraints called boxqp [8, 20].
The sizes of the instances vary from n = 20 to
90 and the densities of matrix Q from 20%, to
100%. An instance with n variables, a density

d%, and whose instance number with the same
characteristics is k is named spar-n-d-k.

Experimental environment :
Our experiments were carried out on a server
with 2 CPU Intel Xeon of 2.3 GHz, each of them
having 32 thread, and 8 ∗ 16 GB of RAM with a
Linux operating system. We will compare to the
original MIQCR method [11] and to the standard
solvers Cplex 12.9 [14], Baron 21.1.13 [18],
and Gurobi 9.1.1 [16].

For both CQBB-1 and CQBB-2, we start with the
initial set K0 = {S0}, where S0 is obtained by
solving (SDP) heuristically by calling the sol-
ver Mosek [2] together with the Conic Bundle
library [12] within a lagrangian duality frame-
work as described in [6]. We only use rk = 100
to compute all Sk with k ≥ 1, and we solve
the convex relaxations (PKk) at each CQA itera-
tion using the C interface to the solver Mosek.
Finally, we set the total time limit to 1 hour for
all methods and the relative optimality gap of
the branch-and-bound to εb = 10−4. We define
Sk+1 = rk ∑ vivT

i , summing over all eigenvectors
vi associated to an eigenvalue no smaller than
0.01.

To compare the performances of the solvers,
we use a performance profile of the CPU times
(see [10]). The basic idea is the following : for
each instance i and each solver s, we denote by
tis the time for solving instance i by solver s, and
we define the performance ratio as ris = tis

min
s

tis
.

Let N be the total number of instances conside-
red, an overall assessment of the performance of
solver s for a given ρ is given by P(ris ≤ ρ) =
1
N ∗ number of instances i such that ris ≤ ρ. In Fi-
gure 3, we present the performance profile of the
CPU times for all the compared algorithms for
the boxqp instances. Our new approach CQBB-2
outperforms the original MIQCR method and com-
pares well with other solvers in terms of the
number of instances solved. In fact, Cplex solves
73 instances, Baron 74 solves instances, CQBB-1
solves 77 instances, MIQCR and Gurobi solve 78
instances, and CQBB-2 solves 80 instances, out of
81 within the time limit of 1 hour.

If the performance profile starts for ρ = 1 with
a smaller value P(ris ≤ ρ) for CQBB-2 than for
the commercial solvers, this is because the smal-
lest instances are solved more rapidly by Gurobi
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FIGURE 3 – Performance profile of the total CPU time for the boxqp instances with n = 20 to 90 with a time
limit of 1 hour.

or Cplex. However, the focus of our algorithm is
on the largest and denser instances ; and with re-
gards to them, CQBB-2 dominates the compared
methods, by solving more instances in the long
run.

Table 1 reports the total number of generated
nodes for the boxqp instances with n ∈ [30..90]
with a time limit of 1 hour ; we also removed the
easier instances that require less than 30 nodes
for all methods. The number of nodes is signifi-
cantly reduced for method CQBB-2 in comparison
to MIQCR (by a factor of 1.4 on average), and is fur-
ther reduced with method CQBB-1, i.e. when we
allow more CQA iterations per node.

6 Conclusions

We have presented a generic approach to solve
box-constrained quadratic programs to global
optimality. The main idea is to combine the
strength of quadratic convex relaxations with the
cutting-planes logic. Indeed, instead of conside-
ring a unique under-estimator of the objective
function, we propose a family of convexifications
indexed by an arbitrary number of quadrics.

We have proposed an original algorithm to ge-
nerate these quadrics one by one. The quadric
generated at each iteration is actually a quadra-
tic cut that separates the current optimal solu-
tion, acting similarly to a hyper-plane of the well

known cutting-planes method. We proved that
this iterative algorithm converges to the optimal
value of a tight semidefinite relaxation of (QBP).

To solve (QBP) to global optimality, we have
implemented a spatial branch-and-bound algo-
rithm that relies on the bound computed by CQA
at each node. Numerical results suggest that the
resulting method outperforms standard solvers
on the largest instances. Since CQA can refine the
bound at each node of the branching tree, we al-
most systematically reduce the total number of
B&B needed nodes compared to MIQCR.

Many improvements are still possible to make
the method reach its full potential, both in theory
or in practice. For instance, from a practical point
of view, one idea would be to aggregate the ma-
trices of the set K at each iteration of the al-
gorithm, to solve more rapidly the convex qua-
dratic relaxation. The method can quite easily
extend to integrate binary variables, linear or
convex constraints, or to minimize the maximum
of several non-convex functions (a problem of a
different nature, beyond the power of MIQCR).
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