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Abstract. A very undesirable behavior of any heuristic algorithm is
to be stuck in some specific parts of the search space, in particular in
the basins of attraction of the local optima. While there are many well-
studied methods to help the search process escape a basin of attrac-
tion, it seems more difficult to prevent it from looping between a limited
number of basins of attraction. We introduce a Position Guided Tabu
Search (PGTS) heuristic that, besides avoiding local optima, also avoids
re-visiting candidate solutions in previously visited regions. A learning
process, based on a metric of the search space, guides the Tabu Search
toward yet unexplored regions. The results of PGTS for the graph col-
oring problem are competitive. It significantly improves the results of
the basic Tabu Search for almost all tested difficult instances from the
DIMACS Challenge Benchmark and it matches most of the results ever
obtained by the best algorithms in the literature.

1 Introduction

It is well known that the performance of all heuristic algorithms is heavily in-
fluenced by the search space structure. Consequently, the design of an efficient
algorithm needs to exploit, implicitly or explicitly, some features of the search
space. For many heuristics, especially local searches, the difficulty is strongly in-
fluenced by the asperity of the local structures of local optima (e.g. isolated local
optima, plateau structures, valley structures, etc.). A paradigmatic example of
a difficult structure is the trap [1], i.e., a group of close local minima confined in
a deep ”well”. If trapped into such a structure, even a local search with local op-
timum escape mechanisms can become locked looping between the local minima
inside the well. Several global statistical indicators (i.e., convexity, ruggedness,
smoothness, fitness distance correlation) have also been proposed to predict the
performance of both local and evolutionary algorithms; we refer to [2, 3] for a
summary of such measures and related issues.

Other research studies focus on the structural similarities between local op-
tima (i.e., the ”backbone” structures) or on their global arrangement (see [4] for
a detailed summary of the research threads in search space analysis). Indeed, the
different local optimum characteristics of the search space (the number of local



optima, their space distribution, the topology of their basins of attraction, etc.)
may be very different from one problem to another and even from one instance
to another. These specific properties have been investigated for several classi-
cal problems, such as: boolean satisfiability [5,6], the 0–1 knapsack problem [7],
graph coloring [8–10], graph bi-partitioning [11], the quadratic assignment prob-
lem [12], job shop or flow shop scheduling [4,13], and arc crossing minimization
in graph drawing [14]. All these studies conclude that the local optimum analysis
has a great potential to give a positive impact on the performance.

However, the operational integration of specific search space information in
a search process remains a difficult problem. To achieve this, a heuristic needs
to learn how to make better local decisions using global information available at
coarser granularity levels. Moreover, the search process has usually no informa-
tion on the search space before actually starting the exploration. To overcome
such difficulties, the integration of a learning phase in the optimization process
(“learning while optimizing”) seems very promising. This approach, using ideas
of reactive search [15], aims at developing an algorithm capable of performing a
self-oriented exploration.

In this paper, we focus on the graph coloring problem and we present such a
reactive algorithm with two central processes: (i) a classical local search based on
Tabu Search (TS) [16], (ii) a learning process that investigates the best configura-
tions visited by the first process. This learning process has the role of effectively
guiding TS toward yet unexplored regions. It integrates a positional orientation
system based on a metric of the search space; for this, we use a distance function
that indicates how many steps TS needs to perform to go from one configuration
to another.

More precisely, the Position Guided Tabu Search (PGTS) algorithm employs
an extended tabu list length whenever it detects that it is exploring the prox-
imity of a previously visited configuration, i.e., so as to avoid re-exploring the
region. This strategy does not strictly prevent the algorithm from revisiting such
regions, but the probability of avoiding them is strongly increased by a reinforced
diversification phase associated with the extended tabu list. Here, we propose
for the graph coloring problem a strategy based on a tractable distance com-
putation, with time complexity O(|V |), where V is the vertex set of the graph.
We show that PGTS significantly improves the performances of the basic TS
algorithm on a well-known set of DIMACS instances, and that it competes well
with the best algorithms from literature.

The rest of the paper is organized as follows. Section 2 briefly outlines the
graph coloring problem and its traditional TS algorithm (Tabucol). The Position
Guided Tabu Search for graph coloring and the distance definition are presented
in section 3. Section 4 is devoted to experimental results. Section 5 presents
related work and provides elements for the generalization of PGTS to other
combinatorial optimization problems, followed by some conclusions in the last
section.
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2 The Graph Coloring Problem and Its Classical Tabu

Search Algorithm

We briefly recall the basic notions and definitions related to the graph coloring
problem and to the tabu search algorithm adapted to this problem.

2.1 Definitions

Let G = (V,E) be a graph with V and E being respectively the vertex and edge
set. Let k be a positive integer.

Definition 1. (Graph coloring and k-coloring) The graph G is k-colorable if and
only if there exists a conflict-free vertex coloring using k colors, i.e., a function
c : V → {1, 2, · · · , k} such that ∀{i,j} ∈ E, c(i) 6= c(j). The graph coloring
problem (COL) is to determine the smallest k (the chromatic number denoted by
χG) such that G is k-colorable.

Definition 2. (Color (array) based representation) We denote any function c :
V → {1, 2, · · · , k} by C = (c(1), c(2), · · · , c(|V |)). We say that C is a candidate
solution (or configuration) for the k-coloring problem (G, k).

Moreover, C is said to be a proper (conflict-free) or legal coloring if and only if
c(i) 6= c(j), ∀{i, j} ∈ E. Otherwise, C is an improper (conflicting) coloring. A
legal coloring is also referred to as a solution of the k-coloring problem (G, k).

Definition 3. (Partition representation) A k-coloring C = (c(1), c(2), · · · , c(|V |))
is a partition {C1, C2, . . . , Ck} of V (i.e., a set of k disjoint subsets of V covering
V ) such that ∀x ∈ V , x ∈ Ci ⇔ c(x) = i.

We say that Ci is the class color i induced by the coloring C, i.e., the set
of vertices having color i in C. This partition based definition is particularly
effective to avoid symmetry issues arising from the color based encoding. We
will see (Section 3.2) that the distance between two colorings can be calculated
as a set theoretic partition distance.

Definition 4. (Conflict number and objective function) Given a configuration
C, we call conflict (or conflicting edge) any edge having both ends of the same
color in C. The set of conflicts is denoted by CE(C) and the number of conflicts
(i.e., |CE(C)|—also referred to as the conflict number of C) is the objective
function fc(C). A conflicting vertex is a vertex v ∈ V , for which there exists an
edge {v, u} in CE(C).

In this paper, we deal with the k-coloring problem (k-COL), i.e., given a
graph G and an integer k, the goal is to determine a legal k-coloring. From an
optimization perspective, the objective is to find a k-coloring minimizing the
conflict number fc(C).
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2.2 Tabu Search for Graph Coloring

Following the general ideas of TS [16], Tabucol [17] is a classical algorithm for
k-COL that moves from one configuration to another by modifying the color of
a conflicting vertex. The main adaptation of the Tabu Search meta-heuristic to
graph coloring consists in the fact that it does not mark as tabu a whole configu-
ration, but only a color assignment. To check whether a specific neighbor is tabu
or not, it is enough to test the tabu status of the color assignment that would
generate the neighbor. The general skeleton of our Tabucol implementation is
presented in Algorithm 1; the stopping condition is to find a legal coloring or to
reach a maximum number of iterations (or a time limit). The most important
details that need to be filled are the neighborhood relation N and the tabu list
management.

Algorithm 1 Basic Tabu Search Algorithm for Graph Coloring

Input: G, k

Return value: fc(Cbest) (i.e., 0 if a legal coloring is found)
C: the current coloring; Cbest: the best coloring ever found
Begin
1. Set C a random initial configuration
2. While a stopping condition is not met

(a) Find the best non-tabu C′ ∈ N(C) (a neighbor C′ is tabu
if and only if the pair (i, i′), corresponding to the move

C
C(i):=i′

−→ C′, is marked tabu)
(b) Set C = C′ (i.e., perform move C(i) := i′)
(c) Mark the pair (i, i′) tabu for Tℓ iterations
(d) If (fc(C) < fc(Cbest))

– Cbest = C

End

Neighborhood N Given a coloring problem (G(V,E),k), the search space Ω con-
sists of all possible colorings of G; thus |Ω| = |V |k. A simple neighborhood
function N : Ω → 2Ω − {∅} can be defined as follows. For any configuration
C ∈ Ω, a neighbor C ′ is obtained by changing the color of a single conflicting
vertex in C.

Tabu list management There are several versions of this basic algorithm in the
literature, but their essential differences lie in the way they set the tabu tenure Tℓ.
In our case, it is dynamically adjusted by a function depending on the objective
function (i.e., the conflict number fc(C) = |CE(C)|—as in [18–20]), but also on
the number m of the last consecutive moves that did not modify the objective

function. More precisely, Tℓ = α ∗ fc(C) + random(A) +
⌊

m
mmax

⌋

, where α is a

parameter taking values from [0, 1] and random(A) indicates a function returning
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a random value in {1, 2, . . . , A}. In our tests, as previously published in [20], we
use α = 0.6 and A = 10.

The last term constitutes a reactive component only introduced to change
Tℓ when the conflict number does not change for mmax moves; typically, this
situation appears when the search process is completely blocked cycling on a
plateau. Each series of consecutive mmax (usually mmax = 1000) moves leaving
the conflict number unchanged increments all subsequent values of Tℓ—but only
until the conflict number changes again; such a change resets m to 0.

3 Position Guided Tabu Search Algorithm

3.1 Generic Description

The main objective of the algorithm is to discourage the search process from visit-
ing configurations in some space regions that are already considered as explored.
Taking as a basis the classical Tabu Search for graph coloring (see Algorithm 1),
the new algorithm PGTS (Position Guided Tabu Search) integrates a learning
component (Step 4.(c) in Algorithm 2) that processes all visited configurations
and records a series of search space regions S(C) that cover the whole exploration
path. Ideally, these recorded regions contain all colorings that are structurally
related to the visited ones.

A statistical analysis of the search space, briefly described in Section 3.3, has
led us to define S(C) as the closed sphere centered at C of radius R:

Definition 5. (Sphere) Given a distance function d : Ω × Ω −→ IN , a configu-
ration C ∈ Ω and a radius R ∈ IN , the R-sphere S(C) centered at C is the set
of configurations C ′ ∈ Ω such that d(C,C ′) ≤ R.

Here, the distance d(C,C ′) (see also Section 3.2) can be interpreted as the short-
est path of TS steps between C and C ′. More formally, d(C,C ′) is the minimal
number n for which there exist C0, C1, . . . Cn ∈ Ω such that: C0 = C,Cn = C ′

and Ci+1 ∈ N(Ci) for all i ∈ [0 . . . n − 1].
PGTS starts iterating as the basic TS does, but, with the learning com-

ponent (Step 4.(c), Algorithm 2), it also records the center of the currently
explored sphere. While the current configuration C stays in the sphere of the
last recorded center Cp, we consider the search process ”pivots” around point
Cp. PGTS performs exactly the same computations as TS except checking the
distance d(C,Cp) that is performed each iteration (in Step 4.(c)).

As soon as the search leaves the current sphere, the learning component
activates a global positioning orientation system. It first compares C to the list of
all previously recorded configurations (procedure Already–Visited in Algorithm
2) to check whether it has already visited its proximity or not. If C is not in the
sphere of a previously recorded configuration, it goes on only by changing the
pivot; i.e., it replaces Cp with C and records it. Otherwise, this means the search
is re-entering the sphere of a previously recorded configuration and that should
be avoided. This is a situation that triggers a signal to make more substantial
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Algorithm 2 Position Guided Tabu Search
PROCEDURE ALREADY-VISITED
Input: current configuration C
Return value: TRUE or FALSE
1. Forall recorded configurations Crec:

– If d(C, Crec) ≤ R

• Return TRUE
2. Return FALSE
ALGORITHM POSITION-GUIDED TABU SEARCH
Input: the search space Ω

Return value: the best configuration Cbest ever visited
C: the current configuration
1. Choose randomly an initial configuration C ∈ Ω

2. Cp = C (the pivot, i.e., the last recorded configuration)
3. Tc = 0 (the value by which PGTS extends the tabu tenure Tℓ)
4. While a stopping condition is not met

(a) Choose the best non-tabu neighbor C′ in N (C)
(b) C = C′

(c) If d(C, Cp) > R (the Learning Component)
– Cp = C

– If ALREADY-VISITED( Cp)
• Then Increment Tc

– Else
• Tc = 0
• Record Cp

(d) Mark C as tabu for Tℓ + Tc iterations
(e) If (fc(C) < fc(Cbest))

– Cbest = C

(f) If (fc(C) < fc(Cp))
– Replace Cp with C in the archive
– Cp = C (i.e., “recentering” the current sphere)

5. Return Cbest

configuration changes: a diversification phase is needed. For this purpose, the
chosen mechanism is to extend the classical tabu tenure Tℓ with a Tc factor.

Using longer tabu lists makes configuration changes more diverse because the
algorithm never repeats moves performed during the last Tℓ + Tc iterations. As
such, by varying the tabu tenure, we control the balance between diversification
and intensification—a greater Tc value implies a stronger diversification of the
search process. A suitable control of Tc guarantees that PGTS is permanently
discovering new regions and that it can never be blocked looping only through
already visited regions.

The performance of this algorithm depends on three factors: a fast procedure
to compute the distance (Section 3.2), a suitable choice of the spherical radius
R (Section 3.3), and a strategy to quickly check the archive (Section 3.4).
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3.2 Distance definition and calculation complexity

The definition of the sphere S(C) in the search space Ω is based on the following
distance: the minimal number of neighborhood operations that need to be applied
on a coloring so that it becomes equal with the other. This distance reflects the
structural similarity between two colorings, the smaller the distance the more
similar the colorings are. The equality is defined on the partition definition of
a coloring (Definition 3): two colorings Ca and Cb are equal if and only if they
designate the same classes of colors, i.e., if there exists a color relabeling σ (a

bijection {1, 2, . . . , k}
σ
→ {1, 2, . . . , k}) such that Ci

a = C
σ(i)
b , with 1 ≤ i ≤ k.

The coloring distance can thus be expressed as a set-theoretic partition dis-
tance: the minimal number of vertices that need to be transferred from one class
to another in the first partition so that the resulting partition is equal to the
second. This distance function was defined since the 60ies and it can be calcu-
lated with well-studied methods—for example, see [21] for a general set-theoretic
approach or [22] for the graph coloring application. Most studies consider a
O(|V | + k3) algorithm based on the Hungarian method. However, we recently
proved that, under certain conditions [23], this distance can be computed in
O(|V |) time with a enhanced method. Indeed, a fast distance computation is
crucial to the PGTS algorithm as it calculates at least one distance per iteration
and the time complexity of an iteration is O(|V | + k × fc(C)) (mainly due to
operation 2.(a) in Algorithm 1).

The O(|V |) distance calculation method is a Las Vegas algorithm (i.e., an
algorithm that either reports the correct result or informs about the failure) that
could calculate more than 90% of the required distances in practice: only less
than 10% of cases require using the Hungarian algorithm (of complexity between
O(|V |+k2) and O(|V |+k3) in the worst case). Basically, the distance is calculated
with the formula d(Ca, Cb) = |V | − s(Ca, Cb), where s is the complementary
function of similarity, i.e., the maximum number of elements of Ca that do not
need to be transfered to other Ca classes in order to transform Ca into Cb.
Our algorithm goes through each element x ∈ V and increments a matching

counter between color class Ca(x) of Ca and Cb(x) of Cb. Denoting by C
σ(i)
b

the best match (with the highest counter) of class Ci
a, the similarity is at most

∑

1≤i≤k |C
i
a ∩C

σ(i)
b |. The computation time can be very often reduced as PGTS

does not actually require the precise value of the distance; it only has to check
whether it is greater than R or not. If the aforementioned sum is less than |V |−R,
the distance is greater than R.

Let us note that, as the distance values are in [0, |V |), we often report the
distance value in terms of percentages of |V |.

3.3 Choice of the spherical radius

In the exploration process of the regions, the parameter R controls the size of
the visited spheres and, indirectly, the number of recorded spheres. The extreme
value R = 0 forces the algorithm to record all visited configurations and that
compromises the solving speed (via the Forall loop of the Already-Visited
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procedure). For the other extreme value R = |V |, the whole search space is
contained in a unique sphere (because the distance is always less than |V |) and
the algorithm is equivalent to the basic TS.

The effective choice of R has been determined from an analysis of a classical
TS scenario: start the exploration process from an initial local minimum C0,
and denote by C0, C1 ,C2, . . . , Cn the best colorings it visits, i.e., the visited
configurations satisfying fc(Ci) ≤ fc(C), with 0 ≤ i ≤ n (note that most of
the C ′s can be local optima, too). We recorded all these configurations up to
n = 40000 and we studied the possible values of the distances between each Ci

and Cj with 1 ≤ i, j ≤ n.
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The histogram of the statistical distribution of
these distance values directly showed a bimodal dis-
tribution with many occurrences of very small values
(around 0.05|V |) and of some much larger values—
see an example on the right figure. There exist some
distant clusters of close points; the high distances cor-
respond to inter-cluster distances and the small ones
to intra-cluster distances. If we denote a ”cluster diam-
eter” by cd, we observed that cd varies from 0.07|V | to
0.1|V | depending on the graph; moreover we noticed
that:

– there are numerous pairs (i, j) such that d(Ci, Cj) < cd;
– there are numerous pairs (i, j) such that d(Ci, Cj) > 2cd;
– there are very few (less than 1%) pairs (i, j) such that cd < d(Ci, Cj) < 2cd.

It is important to note that any two visited local minima situated at a dis-
tance of more than 0.1|V | are not in the same cluster because, ideally, they have
different backbones. We assume that this observation holds on all sequences of
colorings visited by TS; the value of R is set to 0.1|V | on all subsequent runs.
Hence, as soon as PGTS leaves the sphere S(C) of a visited configuration C, it
avoids to re-visit later other configurations from the same cluster.

3.4 Archive exploration

The exploration of the archive is a tricky stage for the computation time because
of the numerous distance computations. Our objective is to keep the execution
time of the learning component in the same order of magnitude as the exploring
component. Due to the small bound of the distance computation time, computing
one distance per iteration (i.e., in Step 4.(c)) is fast. The critical stage appears
when PGTS needs to check the distance from the current coloring to all colorings
from the archive (the Forall loop of Step 1, procedure Already-Visited in
Algorithm 2). If the archive size exceeds a certain limit, the learning component
execution time can become too long.

However, the processing of the archive may be tractable if we focus the learn-
ing component only the high quality configurations.
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Definition 6. (High-quality configuration) We say that configuration C ∈ Ω is
high-quality if and only if fc(C) ≤ Bf , where Bf is a fitness boundary. Otherwise,
we say that C is low-quality.

The fitness boundary Bf is automatically set by PGTS so that the total num-
ber of iterations stays in the same order of magnitude as the number of distance
computations. This proved to be a good ”thumb rule” for obtaining an effective
algorithm. To be specific, Bf directly controls the learning overhead because the
whole learning component (Step 4.(c)) is now executed only if f(C) < Bf . In
practice, Bf varies from 5 conflicts to 20 conflicts; for some problems we can
even set Bf = ∞ and still obtain an acceptable speed. However, the algorithm
automatically lowers and raises Bf according to the balance between the number
of computed distances and the number of iterations.

4 Numerical Results

In this section, we show experimentally that the learning component helps the
TS algorithm to obtain several colorings never found before by any other TS
algorithm [17–20, 24]. In fact, PGTS competes favorably with all existing local
search algorithms.

4.1 Benchmark graphs

We carry out the comparison only on the most difficult instances from the
DIMACS Challenge Benchmark [25]: (i) dsjc1000.1, dsjc1000.5, dsjc1000.9,
dsjc500.5 and dsjc250.5—classical random graphs [26] with unknown chromatic
numbers (the first number is |V | and the second denotes the density); (ii)
le450.25c and le450.25d—the most difficult ”Leighton graphs” [27] with χ = 25
(they have at least one clique of size χ); (iii) flat300.28 and flat1000.76—the
most difficult ”flat” graphs [28] with χ denoted by the last number (generated by
partitioning the vertex set in χ classes, and by distributing the edges only be-
tween vertices of different classes); (iv) R1000.1—a geometric graph constructed
by picking points uniformly at random in a square and by setting an edge be-
tween all pairs of vertices situated within a certain distance.

For each graph, we present the results using a number of colors k such that
the instance (G, k) is very difficult for the basic TS; most of the unselected graphs
are less challenging.

4.2 Experimental procedure

Note that PGTS is equivalent to TS in the beginning of the exploration, while
the archive is almost empty. The learning process intervenes in the exploration
process only after several millions of iterations, as soon as the exploration process
starts to run into already explored spheres. Therefore, if the basic TS is able to
solve the problem quite quickly without any guidance, PGTS does not solve it
more rapidly; the objective of PGTS is visible in the long run.
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Instance PGTS Basic TS

Graph K Success rate Time [h] Success rate Time [h]

dsjc250.5 28 10/10 < 1 10/10 < 1
dsjc500.5 48 2/10 35 0/10 –
dsjc1000.1 20 2/10 9 0/10 –
dsjc1000.5 87 5/10 28 0/10 –
dsjc1000.9 224 8/10 24 2/10 44
flat300 28 0 29 7/10 8 0/10 –
le450 25c 25 4/10 11 3/10 7
le450 25d 25 2/10 19 2/10 12
flat1000 76 0 86 3/10 33 0/10 –
r1000.1c 98 10/10 < 1 10/10 < 1

Table 1. Comparison of PGTS and basic TS for a time limit of 50 hours. Columns
1 and 2 denote the instance, the success rate (Columns 3 and 5 respectively) is the
number of successful execution series out of 10; the time column presents the average
number of hours needed to solve the problem (if the success rate is not 0).

In Table 1, we perform comparative tests of TS and PGTS by launching 10
independent executions with time limit of 50 hours each. Within this time limit,
PGTS re-initializes its search with a random k-coloring each time it reaches 40
million iterations. All these restarts share the same archive of spheres for PGTS.
To guarantee that the comparison is unbiased, we impose the same running time
limit of 50 hours for both algorithms.3

Generally speaking, a PGTS iteration is more computationally-expensive
than a TS iteration, and, consequently, TS can perform many more iterations
for the same CPU time. However, the learning process accounts for an important
performance gain: in many cases in which the basic TS fails (or has a very low
success rate in finding a solution, see Table 1, Column 5), PGTS (Column 3)
solves the problem.

Comparison with the best algorithms Table 2 reports the best results
obtained by PGTS on our graph set, along with a comparison with the basic TS
and with the state-of-the-art algorithms. Note that many presented k-colorings
were never reported before by other local search algorithm. Among all local
searches that we are aware of, only VSS and PartialCol (columns 5 and 6)—two
very recent algorithms using an evolved neighborhood function and a enhanced
representation, respectively, compete effectively with PGTS.

Let us mention that in the literature on graph coloring, it is a common
practice to run a local search algorithm for hours in order to (try to) solve
large problems. For example, the most recent coloring algorithms [24, 29] use

3 We used a 2.7GHz processor using the C++ programming language compiled −O2
optimization option under Linux. The source code is the same for both algorithms,
the difference is only made by the learning component that is enabled for PGTS and
disabled for TS.
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Graph χ, k∗ TS PGTS VSS PCol ACol MOR GH MMT

[29] [24] [30] [31] [20] [32]
2008 2008 2008 1993 1999 2008

dsjc250.5 ?, 28 28 28 - - 28 28 28 28
dsjc500.5 ?, 48 49 48 48 48 48 49 48 48
dsjc1000.1 ?, 20 21 20 20 20 20 21 20 20
dsjc1000.5 ?, 83 88 87 88 88 84 88 83 83
dsjc1000.9 ?, 224 224 224 224 225 224 226 224 226
le450.25c 25, 25 25 25 26 25 26 25 26 25
le450.25d 25, 25 25 25 26 25 26 25 26 25
flat300.28 28, 32 30 29 29 28 31 31 31 31
flat1000.76 76, 82 87 86 87 87 84 89 83 82

r1000.1c ?, 98 98 98 − 98 - 98 − 98

Table 2. Comparison of the minimum number of colors for which a solution is found
by: (i) the basic TS (Column 3), (ii) the new PGTS algorithm (Column 4) and (iii)
state-of-the-art algorithms (Columns 5-10). Column 2 denotes the chromatic number
(? if unknown) and the best k for which a legal coloring was ever reported in the liter-
ature. The colorings we report are publicly available on the Internet: www.info.univ-
angers.fr/pub/porumbel/graphs/pgts/

running times of 10 hours for the largest instances. Another important point is
that PGTS can continually explore new regions if it is given more computation
time. Consequently, it is able to find better solutions by using the additional
computational resources. Notice that this is a desirable characteristic which is
not given by many existing algorithms. Very often, running them beyond some
time (or iteration) threshold will not lead to better results simply because either
the algorithms are trapped in deep local optima or because they re-explore again
and again the same search space areas.

5 Discussion

Here, we discuss the properties of our new approach comparing to previous
ones, and propose a generalization of PGTS to other combinatorial optimization
problems.

5.1 Related work

PGTS shares some basic ideas and objectives with the feature-based Guided Lo-
cal Search [33] but our solving strategy is very different. We do not use explicit
penalties and we do not need to identify specific solution features to penalize the
evaluation function. In fact, we implicitly use a form of penalization (by encour-
aging the investigation unvisited regions) but at a higher level. Our method of
avoiding certain regions is very targeted, in contrast with the penalty approach
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that might apply the same penalty (triggered by a situation in a particular re-
gion) to some very different and distant configurations.

A drawback of PGTS, when compared to the underlying basic TS, is that
it might not sufficiently explore some spherical regions that are avoided after a
first visit. This point could be completed by an algorithm that investigates only
the interior of the spheres of the best recorded local minima. However, the new
algorithm is still competitive even with the best known algorithms (see columns
5-10 in Table 2) from the literature.

Compared to other local search algorithms for graph coloring, one can see
that PGTS resorts to a more global view of the exploration. Most previous local
search algorithms focused on local level improvements, i.e., they use more pow-
erful neighborhood relations, alternative solution encodings, specific evaluation
functions, etc. Generally speaking, there are numerous such problem-specific
techniques able to increase the performance of a combinatorial optimization
heuristic. However, we showed that, by focusing on global-level learning tech-
niques, one can more easily overcome the limitations to which the local-level
improvement potential is inevitably exposed.

5.2 Toward a generalization for other combinatorial problems

A careful examination of the code of Position Guided Tabu Search (see Algo-
rithm 2) shows that it contains no particular references to the coloring problem.
The only required components are: a search space, a neighborhood function, an
objective function and a search space metric. The performance of PGTS is al-
ways dependent on three factors: a fast procedure to compute the distance, a
suitable choice of the spherical radius R, and a strategy to quickly search the
archive.

Hence, as long as there exists a distance measure whose computation time
does not significantly outweighs the computation time of a TS iteration, PGTS
can be applied effectively to any combinatorial problem. This search space dis-
tance should express the minimal required number of neighborhood moves to
arrive from a configuration to the other. Ideally, one should be able to group in
a R-sphere of a local optimum only“equivalent“ local optima—i.e., configurations
sharing a common “backbone” substructure.

One can find several examples of easy–to–compute distances that can also be
defined in this manner by using some specific neighborhoods:

– the Hamming distance for problems with array representation using the 1-
Flip neighborhood (i.e., constraint satisfaction problems with a neighbor-
hood operator that consists in changing the value of a single variable of the
current configuration),

– the Kendall tau distance [34] for problems with permutation-based repre-
sentation using a neighborhood defined by adjacent transpositions (i.e., the
travelling salesman problem considering a neighborhood in which a move in-
verses two adjacent cities—the adjacent pairwise interchange neighborhood),
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– the edit distance for problems with an array representation and with the
neighborhood defined using edit operations.

Concerning the archive processing time, it can be substantially reduced in at
least three ways: (i) by focusing on high-quality configurations, (ii) by increasing
the value of the radius R and (iii) by transforming the archive into a queue
that removes the oldest element at each insert operation. In the later case, the
algorithm becomes a Double Tabu Search with two lists: (1) the traditional list
of the last visited configurations that are forbidden, (2) the tabu list of spheres,
used to avoid revisiting spheres visited in the recent past. The significance of the
expression ”recent past” would depend on the size of the queue which should be
tailored according to the learning component overhead.

6 Conclusions

We have presented a new local search algorithm that uses a learning process
to guide the exploration process toward unvisited search space regions. It is
possible to integrate this learning process in a classical tabu search with an
acceptable overhead for all combinatorial optimization problems, provided that
the distance computation is not too expensive. Moreover, the new algorithm does
not necessarily introduce too many auxiliary user-provided parameters because
the Bf value required in archive processing can be automatically set. The R

value could be determined by calculating the distances between the local minima
discovered during a classical search of the search space; for the graph coloring
problem, we found that these local optima are typically grouped in clusters that
can be confined in R-spheres with R = 0.1|V |. For other problems, R might be
determined by finding the maximum distance between two configurations sharing
an important backbone substructure.

This algorithm enabled us to improve the results of the basic TS for all graphs
for which there is at least a different algorithm that ever reported better colorings
than TS. Even compared to the best known algorithms from the literature (few of
them local searches), PGTS proved to be very effective. Except very few graphs,
it always finds the best known coloring. Moreover, in combination with another
intensification algorithm, we found for the very first time a solution with 223
colors for the well-studied dsjc1000.9 graph.
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