From the Separation to the Intersection Sub-problem in Benders
Decomposition Models with Prohibitively-Many Constraints

Daniel Porumbel*
*CEDRIC CS Lab, CNAM, 292 rue Saint-Martin, F-75141 Paris, France

Abstract

We consider a linear program over a polytope & described by prohibitively-many constraints. Given
a ray direction 0 — r, the intersection sub-problem asks to find: (i) the intersection point ¢*r between
the ray and the boundary of & and (ii) a constraint of & satisfied with equality by t*r. In [12, §2],
we proposed a method based on the intersection sub-problem to optimize general linear programs. In
this study, we use a classical Cutting-Planes method in which we simply replace the separation sub-
problem with the intersection sub-problem. Although the intersection sub-problem is more complex,
it is not necessarily computationally more expensive than the separation sub-problem and it has other
advantages. The main advantage is that it can allow the Cutting Planes algorithm to generate a
feasible solution (using t*r € &) at each iteration, which is not possible with a standard separation sub-
problem. Solving the intersection sub-problem is equivalent to normalizing all cuts and separating; this
interpretation leads to showing that the intersection sub-problem can find stronger cuts. We tested such
ideas in a Benders decomposition model with prohibitively-many feasibility cuts. We show that under
certain (mild) assumptions, the intersection sub-problem can be solved within the same asymptotic
running time as the separation one. We present numerical results on a network design problem that asks
to install a least-cost set of links needed to accommodate a one-to-many flow.

1 Introduction

Let us start with a general Integer Linear Program (ILP) often arising in Benders reformulations:!

min{d'y:u'y>b, V(u,b) €C, yeZ}} =min{d'y:ye 2, yeZ}}, (1.1)

where C is a set of rows (constraints). We do not formally impose any condition on the size of C, but
we consider that listing all rows is computationally very exhausting, if not impossible. As such, practical
algorithms for this ILP only manipulate a subset of C. A standard Cutting-Planes or Branch-and-cut
optimizes the above ILP by progressively removing infeasibility. For each intermediate optimal solution y,
one solves the separation sub-problem to (try to) separate y and to add a new constraint of C. A disadvantage
of the canonical Cutting-Planes is that it reports no feasible solution before the end of the convergence.

The standard Cutting-Planes belongs to the class of dual (outer) meth-
ods, because it converges to the optimum of the above LP through a sequence
of infeasible (outer, dual) solutions. In contrast, a primal method constructs
a converging sequence of feasible (interior) solutions. The primal and dual
methods are described in greater detail in [12, §1.1.1.1]. The approach pro-
posed in this paper can be seen as a primal and dual method, because it
generates a convergent sequence of both feasible and infeasible solutions.

Given a ray direction 0 — r, the intersection sub-problem asks to find the
minimum t* > 0 such that u” (t*r) > b, V(u,b) € C. If b > 0V(u,b) € C (so Figure 1: An intuitive view of
that 0 is infeasible), this is a generalization of the separation sub-problem: if a ray projection. The first-hit
t* < 1, then r satisfies all constraints in C (as in the example from Figure 1); constraint is depicted in red.
otherwise, r is infeasible and can be separated by a constraint of C. Besides

IThe condition y € Z7 will be lifted in Section 4.3, which amounts to solving a Linear Program (LP) instead of an ILP.

the value of t*, the intersection sub-problem asks to find a first-hit constraint u'y > b satisfied with equality
by y = t*r. This first-hit constraint separates all points tr with ¢ < t* from the feasible polytope Z.

Let us briefly compare the intersection and the separation sub-problems. A Cutting-Planes algorithm
works with a relaxed version of (1.1) using only a subset of the constraints C, i.e., a relaxed master ILP. Given
the current optimum solution r of this relaxed master ILP, the separation sub-problem asks to maximize:

max b—u'r. (1.2)
(u,b)eC

If the result of this sub-problem is greater than 0 for some (u;,b;) € C, then r does not satisfy u,y > b;,
and so, a Cutting-Planes algorithm would separate r by adding u,y > b; to the current constraint set.
Then, it would re-optimize the new relaxed master ILP using the new enlarged set of constraints.

We now give a short proof that the intersection sub-problem along 0 — r reduces to maximizing the
ratio below, assuming u'r > 0,b > 0 V(u,b) € C to avoid unnecessary complication in the introduction.?

b
t* = ma

—_— 1.
(u,b)}e(C u'r (1.3)

b%_ > 0, so that #;r satisfies with equality the constraint
u.

v,y > b;. Taking t* = max(y, »,)ec ti, we obtain t* > ¢; for all (uy, b;) € C, and so, u (t*'r) > u/ (t;ir) = b,
where we used u;rr > 0. This shows that t*r satisfies all constraints in C, i.e., t*r € . We still need
to show that t* is minimum with this property. This follows from the fact that t*r satisfies u, (t*r) = b;
for some (u;,b;) € C that maximizes (1.3). As such, any ¢ < t* would lead to u; (tr) < b;, violating the
constraint u; y > b;. A similar result in the context of a maximization problem can be found in Proposition
3 of [12, §3.2]. Comparing (1.2) and (1.3), the intersection sub-problem can be seen as a generalized version
of the separation sub-problem. We will also discuss in Section 2.4.1 that solving the intersection sub-problem
is equivalent to normalizing all constraints (i.e., make them all have a right-hand side term of 1) followed
by choosing one constraint by classical separation.

Since the invention of the Benders decomposition in 1962 [2], the approach has become increasingly
popular in optimization and hundreds of papers have used it for a wide variety of applications.? In particular,
the Benders reformulation has been very successful for network design problems [5, 6, 7, 8]. The prohibitively-
many constraints C correspond to the extreme solutions (optimality cuts) and the extreme rays (feasibility
cuts) of a polytope P referred to as the Benders sub-problem polytope. To solve the separation sub-problem,
one optimizes a Linear Program (LP) over P. We will see (Section 2.2) that the intersection sub-problem
reduces to solving a linear-fractional program over P, maximizing an objective like (1.3). This can be done
by casting the linear-fractional program into an LP using the Charnes-Cooper transformation [3]. Based on
this approach, the computational complexity of the intersection sub-problem algorithm is the same as that
of the separation algorithm, i.e., it is the complexity of solving an LP over P.

A fractional feasible solution t*r € &2 determined by the intersection sub-problem might not necessarily
respect the integrality constraint t*r € Z'} imposed by (1.1). However, the Benders decomposition models
discussed in this paper use integer master variables to indicate a number of times that a transmission facility
(e.g., a cable) is installed and one can obtain an integer feasible solution by rounding up all components of
t*r. There is no natural constraint in &2 that forbids an increase (by rounding) of the number of installed
facilities, see Observation 4 at the end of Section 3.3 for an explicit application example.

The proposed method is designed for large-scale ILPs (1.1) of a particular form, arising in Benders
reformulations. However, the most general intersection ideas could be potentially useful for other problems
that fit well the general ILP (1.1). The necessary condition is to have an efficient intersection sub-problem
algorithm and to be able to apply a rounding procedure as above. Appendix A presents two problems (using
no Benders decomposition) that fit well the ILP (1.1) and that do allow a rounding procedure because their

We associate each (u;,b;) € C to a value t; =

r

2In Theorem 1 of Section 2.2 we solve the intersection sub-problem by addressing all degenerate cases.

3The reader whose curiosity is piqued can further relate to surveys [4, 13] and to the references therein. As early as 1981,
[9] compiled a list of successful applications (see page 1) such as scheduling the movement of railway engines, airline routing,
industrial distribution systems, or vehicle routing. Many more other examples can be found in more recent work [4, 13].

constraints C only have non-negative coefficients. Other problems with positive and negative coefficients
would not allow such a rounding. Finally, the intersection ideas are most useful when 0 is infeasible (i.e.,
I(u,d) € C such that b > 0) and the feasible solutions have positive objective values.

The remaining is organized as follows. Section 2 presents the main theoretical description from this
paper: the study of the intersection sub-problem in a Benders reformulation model with feasibility cuts;
this includes algorithmic aspects of the Benders’ cut generating ILP, e.g., the use of solution smoothing
techniques to accelerate the convergence (both for separation and intersection sub-problems). Section 3 is
devoted to a network design application example and its specific intersection sub-problem. Section 4 provides
numerical results on this network design problem, followed by conclusions in the last section. Appendix A
presents two examples of other (non Benders) ILP models for problems that fit well the general ILP (1.1).
Appendix B describes a generalized intersection sub-problem algorithm, for a Benders decomposition model
with both optimality and feasibility cuts. Appendix C provides greater detail on a few arguments from the

paper.

2 The intersection sub-problem in a Benders decomposition con-
text and advanced Cutting-Planes

2.1 The classical Benders decomposition and the model with feasibility cuts

The Benders decomposition [2, 4] is generally used to solve general mixed integer linear program such as:
min{dTy—i—cTX: Dy >e, By+ Ax>b, yeZ}, x> 0}. (2.1)

As a general example, in network design (resp. facility location problems) y might encode the placement
of transmission (resp. production) facilities and x could quantify flows (resp. delivered goods or products).
Considering fixed (design) decisions y, one can interpret 2 = ¢ x as a projected cost associated to y. Using
the well-known Benders reformulation steps (see Appendix C.1), one can re-write above (2.1) as follows:

mind'y + 2 (2.2a)
Dy > e
2> (b—By)'u’, forany vertex u’ € P (2.2b)
0> (b—By) u®, for any extreme ray u® € P (2.2¢)
yEZT 5 €R, (2.2d)
where
P={u>0:ATu<c} (2.3)

is the Benders sub-problem polytope that does not depend on the current y.

Observation 1. The Benders’ Cutting-Planes method iteratively solves a relazation of (2.2a)-(2.2d) with
constraints (2.2b)-(2.2c) removed (or added laterif needed). Given an optimum (y,2) for the relazation, we:

(A) solve max{(b — By)'u : u € P} to (try to) separate the current optimal solution (y,2). If 2 <
max{(b —By) u: u € P}, one has to insert a cut (2.2b) or (2.2¢c) associated to the optimal u € P
to separate (y,2). If there is an extreme ray u® that does not respect (2.2c¢), then the current solution
(yv,2) can be considered infeasible regardless of the value of Z, hence (2.2c) are called feasibility cuts.

(B) add the cut generated above to the relaxation and re-optimize it to find a new optimal solution (y, 2).

(C) repeat from Step (A), until the optimal solution (y,Z) of the relaxation can no longer be separated, i.e.,
until (y,2) becomes optimal for (2.2a)-(2.2d).

We hereafter focus on the case ¢ = 0. This can arise when ¢ represents zero flow costs in network design
or network loading problems (see examples in Section 3.1). Since ¢ = 0, all constraints involving x in the
initial program (2.1) are only useful to decide on the feasibility of y, because x has no influence in the
objective function of (2.1). As such, the projected cost # = ¢'x in (2.1) can be either 0 when a primal
feasible x exists for the current y, or oo otherwise , i.e., if By + Ax > b is infeasible for the current y.
With regards to the Benders reformulation model (2.2a)-(2.2d), the feasible solutions of (2.2a)-(2.2d) can
only have a form (y, 2) with 2 = 0 (see also the duality with (C.1a)-(C.1d) from Appendix C.1).

Observation 2. The Benders sub-problem polytope P in (2.3) is a pointed polyhedral cone when ¢ =0, as
it takes the form P = {u >0:ATu< O}. This means that P consists only of rays, because u € P —>
au € P, Ya > 0. The only vertex of P is 0, and so, all constraints (2.2b) reduce to 0 > 0 and can be
ignored. As such, we solely consider feasibility cuts (2.2c) that can be written 0 > (b — By) 'u,Vu € P.*
Such a cut remains unchanged if we replace u by au, Ya > 0. We can hereafter work with

P'={u>0: ATu<0,1Tu=1}, (2.4)
since any ray au of P intersects P’ in a unique point u’ such that 0 > (b —By) v’ <= 0> (b—By) u.

Thus, the Benders reformulation (2.2a)-(2.2d) simplifies to the integer-only master problem below with
feasibility cuts only, i.e., the optimality cuts (2.2b) are dropped. All constraints (2.5c) are associated to
vertices of P’; or, equivalently, to rays of P.

min d'y (2.5a)
Dy > e (2.5b)
0> (b—-By) uforalueP (2.5¢)

y €7} (2.5d)

As for the mixed-integer problem (2.2a)-(2.2d), the Benders’ Cutting-Planes algorithm generates the
feasibility constraints (2.5¢) one by one, using a repeated call to the separation sub-problem max{(b —
By) u: u € P’'}. It executes exactly the same steps indicated by Observation 1 in the case of a master
with both optimality and feasibility cuts. However, when only feasibility cuts are present, a canonical
Cutting-Planes would not allow one to generate feasible solutions y (upper bounds) for (2.5a)-(2.5d) along
the iterations. This will become possible using the proposed intersection sub-problem, for which we present
an intersection algorithm in Section 2.2 next. This algorithm can actually be extended to the case of non-zero
flow costs ¢ # 0, with both optimality and feasibility cuts, as described in Appendix B.

2.2 Solving the intersection sub-problem

Definition 1. (Benders intersection sub-problem) Given ray 0 — r, the intersection sub-problem along
0 — r asks to find:

— the minimum ¢* > 0 such that y = t*r is feasible with regards to constraints (2.5c), if such t* exists;
— an element u € P’ for which (2.5¢) is satisfied with equality by t*r, when a t* defined above exists.

A solution t*r calculated by solving the intersection sub-problem is always feasible with regards to
constraints (2.5¢), but it does not necessarily satisfy the design constraints (2.5b) or the integrality constraints
(2.5d). However, the number of constraints (2.5b) is bounded and it is possible to list them all and pick
the minimum value ¢p such that tpr satisfies all (2.5b). By executing t* + max(t*,tp) at the end of the
intersection algorithm, ¢*r becomes feasible with regards to both (2.5b) and (2.5¢).

4Using the presentation from [7, § 2.5], this constraint can also be seen as a consequence of the Farkas’ lemma: the system of
equations {Ax > b — By,x > 0} from (2.1) has a solution if and only if all u > 0 such that AT u < 0 satisfy (b —By) ' u <0
(i.e., if and only if all u € P satisfy (b —By)' u < 0). In other words, there is no hyperplane separating b — By from the
conical hull of the columns of A and of the negative orthant.

case (i): no intersection, case (ii.a.1): only tr = 0 case (ii.a.2): a zero case, case (ii.b): proper
whole ray infeasible could be feasible (Br)"u’ =b"u’ =0 intersection, (Br) 'u >0

Figure 2: The four cases of ray projection in Theorem 1

To satisfy the integrality constraint (2.5d), it is possible to round up all components of t*r, i.e., construct
y* by taking y¥ = [t*r;] Vi € [1..n]. In network design, y; can represent a number of installed transmission
facilities and there is no constraint that forbids increasing this number. Under this interpretation, y* > t*r
means that y* installs more facilities than ¢*r; as such, y* can accommodate more flow than ¢*r, and so, y*
is also feasible. For an explicit application example, see also Observation 4 at the end of Section 3.3.

Theorem 1. When the flow costs are ¢ = 0 and the demands satisfy b > 0, the intersection sub-problem is
as tractable as the separation sub-problem.

Proof. We will show that the intersection sub-problem requires solving a few linear programs over a polytope
of the size of P’, i.e., of the same size as the one solved by the separation sub-problem.
Given r as input to the intersection sub-problem, we replace y with t*r in (2.5¢) and obtain:

t*(Br)'u>b'u, Yue P’ (2.6)

The goal of the intersection sub-problem is to find the minimum ¢* > 0 that satisfies the above family of
constraints for the current r. We need to separate two main cases:

(i) a degenerate case in which no t* > 0 satisfies (2.6) above, i.e., the ray 0 — r does not even “touch” the
polytope &2, see case (i) of Figure 2 above for an intuitive illustration;

(ii) the non-degenerate in which there exists some ¢* > 0 that satisfies (2.6) above.

We first address the degenerate case (i). It arises if there is some u* € P’ such that (Br) u* < 0 and
b u* > 0. To detect such cases, it is enough to maximize:

max {b'u: ue P, (Br)'u<o0} (2.7)

If this LP has an optimal objective value strictly greater than 0 for some u* € P’, then there is no t* > 0 that
respects (2.6) for u*. The intersection sub-problem returns u* € P’, but it reports no feasible t*. A Benders
Cutting-Planes algorithm can simply deal with this case by adding the valid inequality (By) u* > b u*
to the current relaxed master ILP associated to (2.5a)-(2.5d), so as to separate the current r and all its
multiples tr, t > 0.

We now address the non-degenerate case (ii), considering there is no u* € P’ satisfying the conditions
of the above degenerate case (i), i.e., there is no u* € P’ such that (Br) u* < 0 and b"u* > 0. Assuming
P’ is not empty (otherwise, (2.5a)-(2.5d) has a limited number of constraints), all u € P’ respect one of the
following, depending on the value of (Br) "u:

(ii.a) (Br)'u < 0 and b"'u = 0. Notice that (Br)"u < 0 = b'u = 0, because both b'u > 0 and
bTu < 0 are impossible in this case. Indeed, b"u > 0 can not hold because we ruled out (i) above
and b"u < 0 is impossible because all u € P’ satisfy u > 0 in (2.4) and b > 0 by hypothesis.

(ii.b) (Br) u > 0.

The case (ii.a) can be detected by solving (2.7). If the best objective value in (2.7) is exactly 0, then
there exists at least a vector u® € P’ such that b'u® = 0 and (Br)"u® < 0. We need to further distinguish
between (Br)Tu® < 0 and (Br)"u’ = 0, see also cases (ii.a.1) and (ii.a.2) of Figure 2 for an intuitive
illustration. Let us now take u’ = arg min {(Br)'u: ue P, b'u=0}.

(ii.a.1) If (Br)"u® < 0, then the constraint (2.5¢) or (2.6) defined by u’ separates r, as well as all tr with
t > 0. In this case, the intersection sub-problem returns u® to make the Cutting-Planes separate r.
Since the constraint (2.5¢) defined by u® separates all tr with ¢ > 0, this is a very strong cut and there
is no need to search for other constraints, i.e., the intersection sub-problem algorithm could stop and
return u’, to provide a strong constraint for the next Cutting-Planes iteration.

(ii.a.2) If (Br)"u® = 0, then all y = tr with ¢ > 0 are feasible with regards to the constraint (2.5¢) or (2.6)
defined by u®. The smallest t* > 0 value associated to this u® is t* = 0. To find vectors u € P’ that
lead to higher ¢* values, the intersection algorithm has to continue with the non-degenerate case (ii.b).

We hereafter address the main case (ii.b), i.e., the case of vectors u € P’ that can lead to a larger t*
value than the value t* = 0 that might be associated to case (ii.a.2) above. The existence of such u can be
detected by maximizing (Br) u over all u € P’. If the objective value is not strictly positive, case (ii.b)
does not exist and the proof is finished in case (ii.a). Otherwise, the set of u € P’ satisfying (ii.b) is not
empty. In this case, the intersection sub-problem asks to find the minimum ¢* that satisfies:

t*>bT7u Yue P, (Br) u>0
~ (Br)Tu’ ’ u
To determine t*, one needs to solve:
bT
t* = Imax {@‘)]-I—H] cuce 73/7 (BI‘)Tu > 0} 5 (28)

This is a linear-fractional program that can be solved within the same asymptotic running time as a linear
program over P’ using the following modeling inspired by the Charnes—Cooper transformation [3]. Writing

u= uﬁ, (2.9)

the linear-fractional program (2.8) above translates into the following pure linear program:

t* =maxb'u (2.10a)
ATa<o (2.10b)
(Br)'a=1 (2.10c)
>0 (2.10d)

We now show that any u € P’ in case (ii.b) is associated to a feasible u = ﬁ in (2.10a)-(2.10d) such

that u and @ have the same objective value, in (2.8) and resp. (2.10a). First, since (Br)Tu > 0, the value
of u is well-defined in (2.9). Furthermore, U satisfies (2.10b) because u is u divided by a positive value and
ATu <0, recall the definition of P’ in (2.4). Finally, the constraint (Br) @ = 1 follows from the definition
of U, and so does the last constraint (T is u > 0 divided by a positive value). This shows that any u € P’

leading the linear-fractional program (2.8) to t* = % can be associated to u = ﬁ that generates

the same t* value in the above linear program (2.10a)-(2.10d).
Conversely, we prove that any feasible solution u® of above (2.10a)-(2.10d) can be associated to a feasible
u® € P’ such that u® and T® have the same objective value in, respectively, (2.8) and (2.10a). This u® is

given by u® = %O, choosing a value of @ > 0 so that 1Tu® = 1, to make u® satisfy the second (equality)

constraint of P’ as defined in (2.4). The first constraint A Tu® < 0 of P’ is also satisfied by u°, because u°
is W’ divided by some positive value a and A"u° < 0 holds in (2.10b). To show that u® € P’ leads (2.8) to
the same t* = b 1’ we write the objective value of u® = %= € P’ in (2.8) as follows:

b u° b b u’ b'w
= o — E— =t*, (2.11)
(Br)Tw> (Br)™® (Br)'u’ 1

where we used (Br) '@’ = 1, as imposed by (2.10c). This shows that u® = %O € P’ leads (2.8) to the same
t* value as the one achieved by T° in (2.10a). Also, notice that this u® respects condition (ii.b), because
(Br)Tu° = % =1>0.

We still need to address the (degenerate) case of unbounded rays in (2.10a)-(2.10d), i.e., the case in
which (2.10a)-(2.10d) contains some ray of the form W = @’ + Sz (with 8 > 0) of unbounded objective
value. We show below that one can associate such z to a solution z' € P’ that is degenerate as in case
(i) above, i.e., a 2 € P’ such that bz’ > 0 and (Br)'z' = 0. This proves that if (2.10a)-(2.10d)
contained such unbounded rays, the intersection algorithm would stop in degenerate case (i). As such,
if the intersection algorithm arrives at case (ii.b), then such unbounded rays can not exist. The objective
value b' (@ + z) can only be unbounded when 3 — oo if b'z > 0. Replacing @ = @’ + 3z in (2.10c), we
observe (Br)" (0 + z) = 1¥8 >0 = (Br)"z = 0. We still need to show that z € P: for this, we replace
U = @ + Bz in (2.10b) and we obtain AT (@’ + Bz) < 0. Since this is satisfied by all 3 > 0 we need to
have ATz < 0, i.e., z has to belong to P as described in (2.3). As such, z belongs to P and satisfies both
b’z > 0and (Br)'z = 0, i.c., after an appropriate scaling using a factor a > 0 (as in the above paragraph),
we obtain z' = £ € P’ that belongs to the above degenerate case (i). This case would thus be detected by
solving the LP (2.7) associated to the case (i). O

2.3 Basic Benders Cutting-Planes using the intersection sub-problem

We propose a new Benders Cutting-Planes algorithm for (2.5a)-(2.5d), by replacing the separation sub-
problem of the standard Benders Cutting-Planes (see Observation 1, p. 3) with the intersection sub-
problem. At each iteration, the intersection sub-problem leads to one of the cases discussed in Theorem 1:

(i) an u* € P’ such that no y = t*r can be feasible with regards to the constraint (2.5¢) or (2.6) defined by
u', i.e., the degenerate case in which the ray 0 — r does not even “touch” the feasible polytope . It

is thus enough to add a cut (2.5¢) defined by u* to separate all tr with ¢ > 0.

(ii.a.1) an u’ € P’ such that bTu® = 0 and (Br)"u’ < 0. One has to add to the current relaxed master
ILP the constraint (2.5¢) associated to u’, so as to separate all tr with ¢ > 0.

(ii.a.2) an u® € P’ such that b'u’ = 0 and (Br)"u® = 0. This is equivalent to finding t* = 0 (all tr with
t > 0 are feasible) and it happens only when case (ii.b) does not lead to a higher ¢*. The current value
of r can not be separated and the Cutting-Planes algorithm finishes by reporting an optimal r.

(ii.b) an u € P’ that maximizes the linear-fractional program (2.8) and the associated t* = %. The

resulting y = ¢*r satisfies all constraints (2.5¢) and it can be easily used to determine an upper bound.
If t* <1, then r is feasible, and so, the Cutting-Planes algorithm finishes reporting optimal solution
r. Otherwise, r does not satisfy the constraint (2.5¢) defined by u. As such, the Cutting-Planes
process adds to the current relaxed master ILP the cut (2.5¢) associated to u, so as to separate r.

After enriching the current (relaxed) master ILP with a new constraint (2.5¢) generated as above, the
new proposed Benders Cutting-Planes algorithm has to (re-)optimize the resulting (relaxed) master ILP,
to obtain the next optimal solution (ray r). Optimizing this master integer program requires (much) more
computing time than the intersection sub-problem algorithm that only solves a few pure LPs.

If the separation subproblem has multiple optimum solutions, it could be very useful to select one that
yields a strongest cut. To this aim, one can apply the existing enhancement techniques for the standard
Benders algorithm [9, 5, 4, 6, 7]. However, our experiments suggest that the intersection sub-problem has
relatively few optimal solutions and other techniques could be more efficient, as discussed in Section 2.4 next.

2.4 Advanced Cutting-Planes using separations and intersections

To reach its full potential, a Cutting-Planes algorithm has to use enhancement techniques to speed-up the
convergence, for both sub-problems. We will first argue (Section 2.4.1) that the simple use of the intersection

sub-problem implicitly applies an enhancement technique, in the sense that this sub-problem returns the
strongest normalized cut. We will then present in Section 2.4.2 a solution smoothing technique that is
essential to limit the constant oscillations of the intermediate optimal solutions along the iterations, for both
sub-problems. Appendix C.2 presents an additional very practical amelioration: it simply enforces a time
limit on the master ILP solver, to avoid unnecessarily blocking the overall Cutting-Planes. As we do not
always require an optimum solution to the relaxed master, we can safely work with a sub-optimal current
solution at all iterations before the last one.

2.4.1 The intersection sub-problem can find stronger normalized cuts by construction

Let us first introduce the central idea of this section in the context of a general LP (1.1), recalled below for
the reader’s convenience.

min {dTy cu'y >b, Y(u,b)€C, ye€ Zi} = min {dTy yeP, ye Z’}r}

We start with a simple example (with n = 3 variables) that nevertheless captures the essence of this section.
Consider, for instance, that r = [1 1 1]T is the current optimal solution at a given Cutting-Planes iteration
and that one has to choose between the following (Benders) cuts:

(1) 4y; + 6y2 + 8yz >= 20, .., u! =[4 6 8] and b' = 20;
(2) y1+2yo +y3 >=5,4.e,u?=[121]" and b? = 5.
The standard separation problem would choose constraint (1) by solving max b—u'r as in (1.2), notice

(u,b)eC
that 204 —-6—-8 =2 >1=5—1—2— 1. The intersection sub-problem would choose (2) by solving

b
—— as in (1.3), notice that 2= =1+ § <1+ 1= We can easily argue that constraint (2)

5
(ﬂ%}éc u'r 1+6+8 TF2F1°
is indeed stronger than (1), more by violated by r = [1 1 1]. For this, it is enough to normalize constraints
(1) and (2), to make them both have the same right-hand side value, allowing us to make an unbiased

comparison. We obtain the following normalized cuts, completely equivalent to above (1) and resp. (2).
(1°) 0.2y; + 0.3y +0.4y3 >=1, i.e., u! =[0.2 0.3 0.4]" and b= 1;
(2°) 0.2y; +0.4ys +0.2y3 >=1, d.e., u? = [0.2 0.4 0.2]" and b= 1.

When comparing these normalized constraints, we can say that (2') dominates (1) because 0.2+ 0.3+ 0.4 >
0.2+ 0.4+ 0.2, and so, (2') is more violated than (1’) by the current optimal solution r = [1 1 1]. Both the
separation and the intersection sub-problem would choose (2') in this case.

More generally, if all cuts were normalized, the separation and the intersection sub-problem would both
return the same cut — assuming u'r > 0 V(u, b) € C. Indeed, if the right-hand side is always fixed to b = 1,

both the separation and the intersection sub-problem reduce to finding (mi)nc u'r.
u,l)e

Let us focus on the more general case in which the cuts are not all normalized. In this case, we can say
that the intersection sub-problem first normalizes all cuts and then returns the most violated one. Indeed,

T

one could determine max ——— by normalizing all constraints followed by minimizing min_u ' r, where C

(wbh)ecu'r (u,1)eC
is the set of normalized constraints. Solving the intersection sub-problem is thus equivalent to normalizing
all constraints and separating (by minimizing mi)niuTr). We can easily argue that it makes most sense
(u,1)eC

to compare two cuts only when they are normalized. This idea has been implicitly used since 1981, when
[9, § 2] defined the domination relation by comparing cuts with the same variable-free term (right-hand
side value b in our terminology). One can say that the intersection sub-problem requires finding the most
violated normalized cut; this is actually the strongest constraint in the sense that it is more violated than
other constraints with the same right-hand value.

On the other hand, experiments suggest that the weak point of the new Benders Cutting-Planes is the
degenerate case (i) from Theorem 1, i.e., the ray r does not even “touch” the feasible polytope &. This can
only happen when there is a constraint u,y > b, such that u/ r < 0 and b, > 0. A very unfortunate example

P

constraint found
by separation

is illustrated in Figure 3. It can arise, for instance, when one has to choose
between (a) 3y; + 2y2 + 2y3 > 10 and (b) 50y; > 1 forr = [0 1 1]7. The
intersection sub-problem has to return constraint (b) as a degenerate case,
i.e., the constraint (b) makes the whole ray infeasible, because all points
tr = [0t t]T with ¢ > 0 violate (b). The separation sub-problem returns the
cut (a) which is stronger than (b) in the sense that one has to increase
to r1 = 2 to satisfy (a), why a small value of ; = 0.02 is enough to satisfy
(b). We can no longer take profit from the above ideas on normalized cuts,
because the intersection algorithm does no longer minimize a ratio, but it
has to maximize an LP of the form (2.7) to find constraints like u,y > b, above. We present in the next
subsection a smoothing strategy that can reduce such limitations and also overcome other drawbacks.

Figure 3: An unfortunate
case for the intersection sub-
problem (degenerate case).

2.4.2 Accelerating the convergence: smoothed solutions for separation and intersection

A frequent drawback of Cutting-Planes algorithms is that the convergent progress can be characterized
by strong oscillations of the current optimal solution along the iterations, which can seriously slow down
the convergence. If the current optimal solution is taken as query point (i.e., by calling the separation
sub-problem on it), the Cutting-Planes algorithm is also referred to as the Kelley’s method. The query
points generated along the iterations can be far from each other, and also quite far from the feasible area.
As [10] put it, this algorithm has a lack of stability that had been noted for a long time, with intermediate
“solutions possibly moving dramatically after adding cutting planes”. Experiments suggest that our Benders
Cutting-Planes algorithms do suffer from such issues, i.e., the optimal solution at a given iteration might
share very few features (selected edges) with the optimal solution at the previous iteration.

An approach that can (partially) overcome this drawback consists of “solution smoothing”, i.e., instead
of applying the separation or the intersection sub-problem on the current optimal solution at each iteration,
we apply it on a smoothed solution. The query point is a thus smoothed solution that can be obtained, for
instance, by taking the midpoint between the current optimal solution and the previous optimal solution.
This solution smoothing approach is also very popular as a stabilization method in Column Generation,
where the dual optimal solutions exhibit strong oscillations along the iterations. At least in this context,
the solution smoothing approach can address at the same time “oscillations, tailing-off and degeneracy
drawbacks” — see [11] for arguments on this and further details on (dual) solution smoothing.

We propose to use this smoothing technique both for the standard and the new Benders Cutting-Planes al-
gorithms. For the standard algorithm, we first apply the separation sub-problem on a smoothed solution (the
midpoint between the current and the previous optimal solution). If the resulting cut separates the current
optimal solution, we say the smoothed cut is successful (a hit). Otherwise, the smoothed cut is unsuccessful
and we need to call a second separation on the current optimal solution.

Regarding the new Cutting-Planes algorithm, we consider that the search progress consists of two
phases: a degenerate phase in which most rays (current optimal solutions) do not even “touch” the feasible
polytope & (i.e., they are in the degenerate case (i) of Theorem 1) and a normal phase in which the rays
r usually intersect the feasible polytope & in points of the form ¢*r. We consider that the search is in the
degenerate phase as long as the best upper bound is more than twice the current lower bound.

At each iteration of the degenerate phase, we determine a smoothed solution as for the standard Benders
Cutting-Planes case, i.e., take the midpoint between the current optimal solution r and the optimal solution
at the previous iteration. As argued in Section 2.4.1 above, this degenerate phase is the weak point of the
new Benders Cutting-Planes, because the cuts generated by intersection are not particularly strong when
the rays do not “touch” the feasible polytope &?. To overcome this, the advanced version of the new
Cutting-Planes algorithm first applies the standard separation sub-problem on the smoothed solution. If
the resulting cut shows that the ray 0 — r does not “touch” &, we then consider that the smoothed cut
is successful (a hit). Otherwise, the smoothed cut is unsuccessful and we need to call the intersection sub-
problem on the current ray r. By using a separation sub-problem during this degenerate phase, one can say
that the advanced version of the new Benders Cutting-Planes algorithm actually combines the intersection
and the separation sub-problems.

During the normal (non-degenerate) phase, the smoothing technique can use the feasible primal solutions
generated by solving intersection sub-problems at previous iterations. As such, the query point is defined
as the the midpoint r,, between the current optimal solution r and the best (non-rounded) feasible solution
discovered so far. At each iteration, we first solve the intersection sub-problem on this query point r,,. If the
returned cut separates the current optimal solution r, we consider the smoothed intersection is successful (a
hit) and we no longer apply the intersection sub-problem on r. Otherwise, the smoothed cut is unsuccessful
and we need to call a second intersection sub-problem on r. The use of the best feasible solution to define the
query point is reminiscent of centralization methods (or centering schemes), in which one uses more interior
solutions as query points — e.g., see references on the analytic-center Cutting-Planes method in [10, 11].

3 An application example

3.1 The primal integer linear model

Suppose one needs to install multiple transmission facilities — such as cables or other telecommunication
links — over the edges of a graph (telecommunication network) G = (V, E). We consider a source (origin)
O€ V and a set of destination terminals 7’C V' with O ¢ T the goal is to construct a least-cost set of links
that allow a multicast flow x to pass from O to T. In other words, we ask to minimize the total cost of the
mounted links y needed to accommodate a required one-to-many flow.

As argued in [14, 8], the flow cost can be ignored in many computer networks: this is realistic when
there is no volume-based cost for using installed telecommunication links (e.g., TCP/IP Ethernet cables).
However, there is a fixed charge d;; incurred for leasing a communication link from a telecommunication
carrier or for installing a private link from ¢ to j. The network design problems with zero flows cost have also
been referred to as network loading problems [8, 7], in the sense that one has to load transmission facilities
(e.g., cables) that can carry flow at no cost along the edges, see also the beginning of [8, §1]. Zero flow costs
can also arise in other applications areas, for instance, in networks of electric lines or in networks of water
supply pipes. It is indeed reasonable to assume that the volume-based cost for using an electric line or a
water pipe is insignificant compared to the installation or construction cost.

We use decision variables y;; to indicate the number of installed links between 7 and j, each of bandwidth
(capacity) bwa; variables x;; represent the flow from i to j. Notice that d;; and y;; are undirected variables
associated to undirected edges {i,j} € E, i.e., we can use the convention d;; = dj; and y;; = y,;. In contrast,
the flow variables x;; are directed. The following model is an adaptation of (21)—(25) from [4], of (10)—(14)
from [5], of (1)—(4) from [7], of (1)—(6) from [6], or of (1)—(3) from [8].

min Z dijYi; (3.1a)
{i,j}€E
>owi— Y wi; >0, Vig¢ TU{O} (3.1b)
{i,j}€E {i,j}eE
Sooawi— > wy=b, VieT (3.1c)
{i,j}€E {i,j}€E
bwayi; —xij — x4 >0, V{i,j} € E, i<j (3.1d)
Yij € Ly, wijyxj; >0, V{i,j} € B, i <j (3.1e)

The above model replaced the classical flow conservation equality constraints (see, e.g., (22) of [4] or (1)
of [7]) with inequalities (3.1b)-(3.1c). For instance, (3.1b) states that the flow entering ¢ has to be greater
than or equal to the flow exiting ¢. This is weaker than an equality constraint, but a feasible solution (y, x)
that satisfies a constraint (3.1b) or (3.1¢) without equality can be transformed into a feasible solution that
satisfies it with equality. For this, it is enough to decrease the flow > (ijreE Tji entering in i, by decreasing
any x;; terms. We prefer to use these inequality flow constraints, because the goal is to make the above ILP
better fit the model (2.1) and Theorem 1. We do not add any constraint (3.1b) or (3.1c) for ¢ = O, because

10

there is no flow conservation at the source. The flow values zp; with {O,j} € E can become as large as
necessary, and there is no flow ;o entering O because O ¢ T.

Finally, constraints (3.1d) ensure that the total traffic on each link is bounded by the total installed
bandwidth, i.e., the number of installed links multiplied by the bandwidth byq of an individual link. This
type of inequality arises, for instance, in (3) of [14] or in (2) of [8].

3.2 Constructing P’ and the Benders reformulation model

The variables of the Benders sub-problem polytope P The inequalities (3.1b)-(3.1d) are instanti-
ations of the general constraints By + Ax > b from (2.1). Using the Benders decomposition steps from
Appendix C.1, these constraints can be used inside an inner LP of the form (C.1c). By dualizing this inner
LP as for constructing (C.2)-(C.3), we obtain the variables of the Benders sub-problem polytope P from (2.3):

(a) |V|—1 dual variables u; > 0 associated to (3.1b)-(3.1c). There are |V| — 1 such dual variables (primal
constraints), because there is no constraint (3.1b) or (3.1c) for the source O.

(b) |E| dual variables u;; > 0 associated to (3.1d). For each edge {i,j} with ¢ < j, we define a unique dual
variable w;;;

Summing up above (a) and (b), the vectors u of polytope P from (2.3) have size |E| + |[V| — 1.

The constraints of the Benders sub-problem polytope P There are 2|E| constraints in P, because
each edge {7, j} € E is associated to two primal variables x;; and xj;. The dual constraints associated to the
columns of x;; and resp. x;; (with ¢ < j) are (3.2a) and resp. (3.2b) below, constructing the polytope P:

—ugg —ui+u; <0 V{i,j} € B, i <j (3.2a)
Pq —uij—uj+ui <0 Vi, jle B, i< (3.2b)
u Z 07 (32(‘,)

where we use the convention that if ¢ (resp. j) equals O then the term u; (resp. u;) vanishes in (3.2a)-(3.2b).
The first (resp. second) constraint corresponds to column x;; (resp. ;;). The argument justifying the first
constraint is the following: (i) —u;; comes from the —z;; term of (3.1d), (ii) —u; comes from the —z;; term
(flow exiting 7) of either (3.1b) or (3.1c) defined by 4, (iii) +u; comes from the x;; term (flow entering j) of
(3.1b) or (3.1c) defined by j. The second constraint follows from an analogous argument.

Notice that the resulting polytope P defined by (3.2a)-(3.2c) above has the particular structure described
in Observation 2 (p. 4), i.e., it is a pointed polyhedral cone consisting only of rays (except vertex 0). Then,
the definition of P’ follows immediately by imposing 1Tu = 1 as stated by (2.4).

The Benders reformulation model We now reformulate (3.1.a)-(3.1e) to obtain a Benders reformulation
of the general form (2.5a)-(2.5d). In fact, we will instantiate (2.5a)-(2.5d) to our application, using a similar
approach as in Section 2.1. Recall that (2.5¢) actually states that the dual objective function (b — By) 'u
over all u € P’ (or equivalently u € P) is no larger than 0. To instantiate this to our application, notice
that the variables u; with ¢ € T have dual objective function coefficient b;, because constraints (3.1c) have a
right-hand side value of b;; variables w; with ¢ ¢ T'U {O} have dual objective function coefficient 0 because
of the right-hand 0 in (3.1b). Similarly, variables u;; have dual objective function coefficient —bway.;, by
moving byqy;; in the right-hand side of (3.1d). Since P contains only rays (except 0), the following inequality
needs to hold® to keep the dual objective function over u € P no larger than 0 as in (2.5¢).

0> - Z bwayijuij + Zbiui
{(i.jYeE i€T

A similar constraint was derived in [5, (5)] for the (generalized) case of multi-commodity flows. Also, the
constraints (3.2a)-(3.2¢) defining our polytope P are very similar to (4) from [5].

5 All next sums of y or u terms over edges {i,j} € E use the convention i < j. Whenever we refer to variables Yij, Uij OF
T3, we assume that ¢ < j holds, see also the arguments from the 6t paragraph of [4, §3].

11

The main Benders reformulation model (2.5a)-(2.5d) becomes:

mind'y (3.3a)

0 > — Z bwdyijuij + Z biui, Yu € Pl (33b)
{ij)eE ieT

yEeZ (3.3¢)

After determining the optimal solution y at the current iteration, a Cutting-Planes algorithm searches
for some u’ € P’ (i.e., an u’ satisfying (3.2a)-(3.2c) and 1Tu’ = 1) that maximizes — 2 (ijyer bwayijug; +
> ier biujg, i.e., it tries to separate the current y, so as to add a new constraint to the current relaxed master.

3.3 Solving the intersection sub-problem

To solve the intersection sub-problem along some 0 — r in the above Benders reformulation (3.3a)-(3.3¢c), one
has to replace y = t*r in (3.3b) and then find the minimum ¢* > 0 that satisfies the following (instantiation
of (2.6) from Theorem 1):

tr- Z bwdﬁ‘juij > szul Yu e P (34)

{i.g}yeE ieT

Observation 3. (degenerate case) Following Theorem 1, we first separate the degenerate case (1) in which
there is no t* > 0 for which the above (3.4) holds. This can only happen if there is some u* € P’ such
that Z{i’j}eE buyarijug; =0 and > icr biug > 0. Such a case can be detected by solving the following LP, an
instantiation of (2.7) from Theorem 1:

max {ZieT biu; : u € Pl, Z{i,j}eE bwdrijuij = 0} . (35)

If the best objective value of this LP is strictly greater than 0 for some u* € P’, the proposed Cutting-Planes
algorithm adds the constraint Z{M}GE buayijui; > Y ier biug, so as to separate all tr with t > 0 from the
feasible area of (3.3a)-(3.3c). Also notice that 3y, iyepbuwarijui; = 0 is always satisfied during the Benders
Cutting-Planes, because u > 0 holds in (3.2c), r € Z!} is a non-negative optimal solution of a relaxed
master associated to (3.3a)-(3.3¢), and byq is a non-negative bandwidth.

We now address the particular case (ii.a) of Theorem 1, that can be detected if the maximum of the above
LP (3.5) is exactly 0. First, the (sub-)case (ii.a.1) can not arise, because } ; e pbwarijui; = 0 Vu € P’
as explained above. We are left with the particular case (ii.a.2) in which there is some u® € P’ such that
Z{z‘,j}eE bwdmju?j =0and) ,.p biul = 0. This u’ allows any t* > 0 to be feasible in (3.4), yielding
t* = 0. As such, the constraint (3.3b) associated to this u’ does not generally lead to the strongest cut in
(3.3a)-(3.3c). If it does, the Cutting-Planes algorithm can stop and report that r is an optimal solution.

As in Theorem 1, after separating the above particular cases, we can focus on elements u € P’ that
respect Z{i,j}eE bwarijui; > 0, d.e., the main case (ii.b). To find ¢* in this case, one needs to solve the
following linear-fractional program, a particularization of (2.8):

. > ier biti
t* = max { Z{i j};z T cuep, Z{id’}EE bwarijug; > 00, (3.6)

We can apply the following Charnes-Cooper transformation as in (2.9)

1

u=u ,
2o (ijyer bwarijti

so as to translate (3.6) into:

12

t* =maxb'u =3, ;b (3.8a
(

)

— Ty~ +u; SOV{i,j} €E, i<j° 3.8b)

Uy~ + W <OV{i,j}€E, i<j® (3.8¢)

Z deTijﬂij =1 (38(1)
{i,j}€E

u>0 (3.8¢)

As in Theorem 1, any feasible u € P’ from (3.6) is transformed by (3.7) into a feasible W in (3.8a)-(3.8e)
such that u and @ have the same objective value in (3.6) and resp. (3.8a). To show U is feasible, we first
notice that since u € P’ satisfies (3.2a)-(3.2b), then w = u/f (with 8 = 3 ; ;1 bwarijui; > 0) satisfies
(3.8b)-(3.8¢c). Secondly, u > 0 from (3.2c) leads to W= u/8 > 0, i.e., constraint (3.8¢). Finally, constraint
(3.8d) follows from the definition of @ in (3.7). It is not hard to check now that the objective value of u in
(3.6) is the same as that of U in (3.8a).

Conversely, any optimal solution u° of (3.8a)-(3.8e) above” can be associated to a feasible u® € P’ by
applying a scaling of the form u°® = %0, choosing an a > 0 such that 1Tu® = 1, so as to make u° belong to
P’. This u’ leads (3.8a) to the same t* value as the one associated to u® in (3.6). This comes from the fact

that = e pbwariyuf; = 1 as stated in (3.8d), so that 37,4 buf = 2ier b Lier bif

T ShaenwariT Tigyen twaliu; |
Finally, u® satisfies the last constraint of (3.6), because Z{i,j}eE bwarijug; = 1 > 0 and « is a strictly
positive value.

After solving the LP (3.8a)—(3.8¢), the intersection algorithm returns the hit point y = ¢*r that satisfies
with equality the constraint (3.3b) or (3.4) associated to u°. If t* > 1, one can separate r by adding
the constraint (3.3b) defined by u® to the relaxed master associated to (3.3a)-(3.3c). After adding such a
constraint, the Cutting-Planes algorithm re-optimizes the resulting master enriched with one constraint
more, so as to find a new current optimal solution r.

The Cutting-Planes based on the intersection sub-problem was discussed in greater detail in Sec-
tion 2.3 (basic version) and in Section 2.4 (advanced version). All results from Section 2.4 on the advanced
Cutting-Planes algorithm apply perfectly well to the models from this section, and so, we will use this
advanced algorithm for most numerical tests.

Observation 4. The solutiony = t*r > 0 returned by the intersection algorithm satisfies all constraints (3.3b),
but not necessarily the integrality of y from (3.3c). To obtain a solution 'y’ that does respect all constraints
(3.3b)~(3.3c), it is enough to set yi; = [yi;|, V{i,j} € E, i < j. This rounded y" satisfies the constraint
(3.3b) defined by any u € P’, because the following is true by virtue of u > 0 and byq > 0:

0> - Z bwayijti; + Zbiui > — Z buwdlijij + Z biu;.
{i.j1eE ieT {i.teE ieT

One can obtain the same result using the primal constraints (3.1b)-(3.1e). The solution y’ allows all required
flow to pass in (3.1b)—(3.1e), because y’ imposes even less constraints than'y on the variables x in (3.1d).

4 Numerical Results: Basic and Advanced Benders Cutting-Planes

We start out with a brief Section 4.1 that evaluates the intersection sub-problem on the basic Benders
Cutting-Planes from Section 2.3, using a few small instances that can generally be solved in less than one
minute. We will then continue in Section 4.2 with the advanced accelerated Cutting-Planes from Section
2.4, providing statistical results over larger, harder and more varied instances. We will finish in Section 4.3

61f 4 or j is O, the associated term Wo vanishes, recall we used the same convention when we defined P in (3.2a)-(3.2c). For
instance, if j = O, constraints (3.8b)-(3.8c) become —u;; — U;, —u;j + U; < 0.

7If (3.8a) is unbounded, t*r is infeasible for any ¢* > 0. This case would be detected as the degenerate case (i) described by
Observation 3 (p. 12), see the last paragraph of Theorem 1 for a proof.

13

with an evaluation of the potential integration of the proposed new upper bounds in a Branch-and-Bound
algorithm based on the linear relaxation of the Benders reformulation model.

4.1 Basic Cutting-Planes based on the intersection sub-problem

We here evaluate a basic Cutting-Planes in which we only replace the separation sub-problem with the
intersection sub-problem. We generated 20 instances of 4 different sizes, with |F| ranging from 150 to 220
and |V| ranging from 25 to 50. For each size, we consider 5 random graphs, identified by an id from 1 to 5.
The demand b; for each vertex (sink) ¢ € V' \ {O} is generated uniformly at random from the interval [0, 10];
we consider d = 1 (each link has the same installation cost) and a unitary bandwidth byq = 1.

Table 1 compares the new Cutting-Planes algorithm with the standard one. Columns 1-3 describe the
instance, Column 4 reports the integer optimum, Columns 5-6 indicate the computing effort (iterations and
CPU time in seconds) needed by the new method to reach a gap of 20% between the upper and the lower
bound, Columns 7-8 provide the total computing effort spent by the new method to fully converge, and
the last two columns indicate the total computing effort of the standard Cutting-Planes. For 13 of the 20
instances, the new method needs less CPU time than the standard Cutting-Planes.

id |E| V]| OPT New Meth. Computing Effort Std. Meth. Computing Effort
Gap 20% Full convergence Full convergence
iters time[s] | iters time]s] iters timel[s]
1 150 25 174 40 0.37 40 0.37 91 2.51
2 150 25 164 58 1.92 85 3.44 34 0.28
3 150 25 141 74 2.02 78 2.22 93 3.8
4 150 25 131 73 0.80 79 0.89 100 1.22
5 150 25 177 35 0.31 35 0.31 48 0.4
1 200 40 371 105 1.4 105 1.4 120 1.8
2 200 40 333 65 0.84 65 0.84 94 4.7
3 200 40 332 91 2.5 104 3.4 120 5.8
4 200 40 358 51 0.96 51 0.96 83 3.2
5 200 40 298 56 0.62 56 0.62 111 5.1
1 210 45 348 72 2.33 76 2.73 91 2.51
2 210 45 348 87 6.72 344 60 122 28.3
3 210 45 318 69 0.73 69 0.73 93 13.8
4 210 45 364 159 134 302 61.6 105 13.6
5 210 45 382 63 2.16 63 2.16 158 25.4
1 220 50 402 82 2.8 82 2.8 135 5.64
2 220 50 414 142 3.3 192 10.9 165 8.52
3 220 50 509 | 119 9.7 302 68.1 135 16.2
4 220 50 432 158 8.6 178 13.9 145 12.3
5 220 50 515 79 1.9 79 1.96 165 3.22

Table 1: Comparison of the new basic Cutting-Planes using the intersection sub-problem and the standard
basic Cutting-Planes on small random instances (called random-10 instances in Table 2).

Table 1 suggests that the total running time depends more on the number of iterations than on the
choice between the separation and the intersection sub-problem. In both cases, the sub-problem requires
solving a few LPs, but the main computational bottleneck is the iterative resolution of the master integer
LP associated to (3.3a)-(3.3c). The more constraints are added to this master integer LP, the slower the
ILP solver. As such, the Cutting-Planes algorithms become increasingly slower as the number of iterations
grows. By doubling the number of iterations, the total running time is multiplied by more than 2.

The results from this section were obtained by running C++ programs compiled with g++ (with code
optimization option -03) using the Cplex 12.6 library for C++. We used a mainstream Linux computer with
a CPU i7-55000U.

14

4.2 Advanced Cutting-Planes and statistical comparisons

To better evaluate the intersection sub-problem, we now use it within the advanced Benders Cutting-Planes
from Section 2.4. The most important feature of this advanced algorithm is that it first calls the (separation
or intersection) sub-problem on a smoothed solution instead of the optimal one, i.e., it uses a smoothed query
point at each iteration. This reduces the oscillations of the query points along the iterations, bringing the
advantages described in Section 2.4.2. If the cut determined using this smoothed solution does separate the
current optimal solution, then the smoothed cut is considered successful (a hit). Otherwise, the smoothed
cut is unsuccessful and one has to call the sub-problem again, this time on the current optimal solution. The
very practical technique from Appendix C.2 has also been used, i.e., we put a time limit on the master ILP
Cplex solver — otherwise it could stay blocked virtually indefinitely on certain very hard master ILPs that
can be occasionally generated by all presented Benders algorithms. These two techniques have been applied
for both the standard and the new Cutting-Planes.

We will report statistics over 20 runs, indicating the average, the standard deviation and the minimum
value of the number of iterations and of the CPU time. We will also provide the number of successful
smoothed cuts (hits) and the percentage of CPU time spent on solving (relaxed) master ILPs. Reporting
statistical results is slightly complicated by the fact that all our Cutting-Planes algorithms have no random
component by default. Indeed, the algorithmic descriptions from Sections 2-3 do not mention any point where
an algorithm has to randomly break ties. If some LP or ILP encountered along the search has multiple optimal
solutions, we let Cplex break ties and it always returns the same optimal solution.

However, we can quite easily randomize the algorithms by simply adding random cut-set inequalities in
the beginning. More exactly, we add 10 random cut-set inequalities before launching the Cutting-Planes
algorithm, to change the way it starts, this way changing its whole evolution. These are well-known valid
inequalities [5] that we implemented as follows. We first randomly split the vertex set V in two sub-sets, a
subset V; containing the source and a subset V; containing 10 terminals (sinks). We then impose that the
edges linking vertices from V; to vertices from V; need to have enough installed bandwidth to carry all the
demands of V;, i.e., to route all the traffic from V5 (including the source) to V;. The following is an example
of a cut-set inequality, very similar to (9) from [5]: Z Yij > Z b;

_{igleE JEV
i€Vs, jJEV;

We use larger instances than in the previous Section 4.1. All of them have the same installation cost for
each edge (i.e., d = 1). The first four instance classes have an unitary bandwidth byq = 1 and the last one
has byq = 3. For each graph class, we choose 4 sizes, so as to generally solve the smallest one in a time of
minutes and the largest one in about one hour (between 30 and 90 minutes). These are the instance graph
classes:

— instances random-10 representing random graphs with random demands in the set {0, 1, 2...10}.
— instances random-2 representing random graphs as above but with random demands in the set {1, 2}.

— instances layered-10 with random demands in the set {0, 1, 2...10} representing layered graphs,
i.e., graphs in which all edges {i,j} € F respect |i — j| < 20. This means that a source at vertex 0
needs a path of length at least 2 to reach vertices in the interval [21..40], a path of length at least 3 to
reach vertices in [41, 60], 4 for the vertices in [61.80], etc. Such layered instances are more realistic in
the sense that very distant vertices (hosts) are not usually directly connected (by cables) in computer
networks;

— instances layered-2 representing layered graphs as above but with random demands in the set {1,2}.

— instances random-10-bwd3 that are identical to the first instances random-10 except for the fact that
the links have a bandwidth of byq = 3.

The results of the advanced Cutting-Planes for both the intersection and the separation sub-problem®
are reported in Table 2, next page. The columns of this table can be divided into three groups:

8The C++ source code is publicly available on-line at cedric.cnam.fr/~porumbed/benders/, along with the instances.

15

"SOOTR)SUI 95Ie] pUR PIBY ISAO 9UO PIEpUR)S o) 0} pareduwiod poyIoUWL MAU 9} JO SINSI [edISIIRIG g d[qe],

16

polre} sunt 0z/0z 1e - - - - 07/€T :oyel ss000ns 9ve1 | zov (ge1) ¢ g6 O 001 1 N
pofrey sunt 0z/0g Ire - - - - 0G/8 :oyel ssaoons 6eL | 197 (191) oE sg1 g€ 06 ¢ | gE
0G/€ :oyel ss000ms 6GET | ¥20T (TTT) 8TIT 0G/€T :oyel ss000ms BEPT | 62L (86E) FeIT || V€T G 06 T | 2§
(€78) 76T | %66 €cS (€6€) PIT | 81 (¥'6€) ¥We || (9°€2) 8T | %66 S9T (G6T) ¢'€8 | 92T (G'8z) SLI 88 0¢ 08 ¢ | =L
(8°08) ¥z | %66 6'8G (9'8F) 9¢1 | 681 (z'h) 9.2 | (L'2e) OFL | %66 12€ (£'6€) 6'€6 | 021 (z'L€) 06T || 001 06 08 I | 2%
(€'LT) €8T | %66 ST (6'62) F'67 | €TT (5'82) 9OT | (6'01) 6728 | %86 T0c (VeT) T'6¢ | LOT (2ST) wel | &L ¢ 0L ¢ | w2
(01) 10T | %26 6G¢ (62L) 891 | 06 (211) 91T || (S¥1) 6°0L | %96 8¢ (92L) ¥er | € (I¢r) 1¥%6 | 28 S 0L 1 w
0g/1T :oyer sso00ns 861¢ | 99¢ (¢'2e) SI¥ 0g/1T :oyel ss000ns 90GT | T1¢e (9°22) L2 | 998 OFT 008 T | —
(9°61) 01 | %86 796 (¥21) 6¥el | 99z (5°02) ¢1e || (6°ST) 6L | %96 €eg (€21) 9L | 89T (L°91) 00% || 269 02T 009 & | 5 .
(€72) 682 | %86 V4L A%i@: ez (L'7e) €62 || (G°01) L'88 | %66 8¢9 (1'28) @8L | 64T (I'T1) L6T || @¥9 021 009 1 | 2 &
(Le1) 922 | %86 66 (¥°1L) ¢ 0Tz (7'€1) 2ee || (9°21) 899 | %56 ST (T'2F) 0Sg | S€T (I'ST) 8ST || 20 00T 00F & | 2 m
(6'2T) 062 | %86 8¢¢ (89) L 00¢ (T'71) 9¢¢ | (2'GT) 628 | %86 0¥¢ (8TT) €L¢ | 69T (SLT) €L | €0g 00T 00F T | E &
(%1) 621 | %%6 S0z (671) ¢ TIT (z'e1) €e1 || (82)69¢ | %%6 921 (972) L%% | 28 (6) COT || #¥8¢ 08 00z & | &
(9 mc 8GT | %26 ¢¥¢ (T2g) T mw 8eT (671) $OT || (6°€1) ¢'OL | %26 & (L'02) 0L | TOT (L'T1) g21 || 69¢ 08 00 T | =
(8%2) 0g¥ | %86 €SLT (861) ¢STc | 08¢ (L'¢e) Se¥ || (92) 991 | %L6 6¥1T (olc) L1ST | 1€¢ (S°Le) @8c | 9¢1¢ OFT 008 1T T
(1'92) g€ | %26 9201 (L61) 69T | @62 (9'9%) 6€€ || (691) 91T | %96 T1L (1gl) 636 | 061 (¥'9T) 1gc || ¥8€c 02T 009 ¢ | & &
(7'12) 18€ | %86 00ST (65T) RS 168 (v'1e) 88 | (¢L1) €01 | %6 9101 (£96) €811 | 612 (L'91) 162 | €282 021 009 1 | o<
(68T) 202 | %86 611 (S¢9L) 8 0.1 (z'61) 012 || (9¢T) T'eL | %96 T€s (¢LL) Tge | €11 (z'¢1) TP || 991 00T 00V ¢ | 2 &
(T¥1) L¥e | %86 98¢ (T'LS) ¢ 16e (L71) 0Sg || (8°€T) 678 | %96 GLe (1°99) ¢9¢ | €51 (¢'e1) T1A1 || 99T 00T o00F T | 2 %
(€°€1) 6241 | %%6 8°GT (1°9T) @@ veT (9°€1) 81 || (9°€T) 618 | %06 #'1T (€61) L2g | 91T (¥¥1) GET | 92T 08 00 ¢ | — o
(ot)evt | %¥6 ¥6 (¥er) ¥8e | 9g1 (9°01) ¢vl [[(01) 299 | %e6 6€¢1 (T71) 1€ | 16 (¥8) CIT || 9961 08 00 1 |
AS) 09 | %88 €z (¥g0T) 6921 | 9¢v (ST1) 2.8 || (1T) 2°0L | %g6 <8¢ (¥eg) 0SL | SPT (9°2T) €9T | @6c 0zT 00ST T | —
(@¥8) 667 | %68 9zz (69L) 1601 | €6¢ (o8) €16 || (1'8) ¢6g | %8s vog (6V1) 9vG | v€r (8) S¥I || 192 01T 00€ @ | % g
(veT) 9vs | %68 ¥re (6L9) %E 10v (9€1) 295 | (01) 19 | %e6 641 (0€1) €Ig | 621 (8°01) ¥1 | 29 OTT 0061 1T | Z g
(25)68¢ | %8 01T (00g) € 91 (9'99) 96¢ || (T1)6'€S | %T6 16T (6°06) 80F | STT (W'1T) 0T || 61 00T 000 & | Z &
(979) 66¢ | %16 061 (6FF) L L0¢ (799) vov || (9°€1) 6°1¢ | %06 9¢¢ (¥P1) ¥9¥ | SeT (¢F1) 8PT || @b 00T 000T T | E §
(8°TF) 2Lz | %L8 LEh (GLL) L 90z (1°gr) ¥Le | (eL1) 28 | %68 @ (9°9¢) 16T | ¥IT (6°¢1) 1€1 || €v¢ 06 009 @ | ="
(892) 792 | %96 11z (80T) & otz (L'82) 69z | (21)81 | %96 cer (¢er) 6¢¢ | 8e1 (I°61) 89T || ¥e& 06 009 1 | =
(161) 6L | %56 96L (L897) €10¢ | cev (961) #08 || (z'€1) 8¢S | %16 ¥€8 (The) €6ST | 9T (8°1T) ¥8T | ©L€T 0ST 000 1T T
(L'19) 98% | %06 98T (8¢8) 080T | €8¢ (629) G0S || (9°€T) G'68 | %I 9€¢ (86T) S¥S | 8ET (€'2T) €4T || €211 OET 00T & | & 4
(8%8) QIS | %06 €91 (SFOT) 0zel | S6¢ (7°¢8) ©es || (7'91) S¢ | %e8 18T (61c) 985 | @¥bl (€CT) @91 | Lvel 08T 00ST T | o~ &
(899) 0F& | %F8 ¢'19 (2sg) qLe | 99z (99) 6ve ||(z01) T'8e | %e8 L¥ (00T) 8Tg | STT (8°0T) €€T | ¥86 OIT 0001 & | 2 m
(9°99) 90¢ | %es8 €¢e (6L1) 0T | 91¢ (9'89) €1¢ [(¢8) 60V | %98 99¢ (676L) LST mS (¢L) gt | ee6 OIT 0001 T | B
(ge)6ee | %es 1°ge (679) 901 | 81 (¢¢) e ||(101) 8¢ | %es aev (L9z) ¢98 | 96 (&6) TI1 | 268 06 009 ¢ | —°©
(v m@ ¥92 | %¥8 8FF (1°8F) 61T | #61 (€9¢) 128 || (T2)e¥y | %Ll T1¢ (SLT) 629 | 96 (€L) TIT || ¥%8 06 009 1 | S
(p1s) Sae | sqrqf ura (pys) 3 urn (pjs) Sae || (pis) Sae | sqrI] wnu (pjs) Sae | utw (pys) Sae
M‘MMOQE:M MMMHOM [s00s] Te709 BTULT, SUOT}RIN)] M‘MMOQE:M MMMMM [s00s] 10} oLy, SUOT}RIN)] Ldo Al lal pr gmMMMV
werqoid-qns uorjeredog oy} SUISN SoURTJ-IUTIANY wR[qoId-qns UOT0sIU] 91} SUIST seueTd-SUTIN) QDURISU]

Columns 1-5 describe the instance as follows: the graph class is provided in Column 1, the instance number
(¢d) in Column 2, the number of edges |E| (i.e., the number of decision primal variables y) in Column
3, the number of vertices |V| in Column 4 and the optimal integer value in Column 5.

Columns 6-14 indicate the average computing effort of the new Cutting-Planes algorithm, as follows:
statistics on the number of iterations (over 20 runs) in Columns 6-8, statistics on the CPU time (over 20
runs) in Columns 9-11, the average percentage of the total CPU time spent on solving (relaxed) integer-
only master problems in Column 12, and finally the number of successful smoothed cuts (average and
standard deviation) in Columns 13-14. All statistics indicate the average value, the standard deviation
and the minimum over 20 runs.

Columns 15-23 indicate the average computing effort of the standard method, using the same format as
above, more exactly: statistics on the number of iterations (over 20 runs) in Columns 15-17, statistics
on the CPU time in Columns 18-20, the average percentage of the total CPU time spent on integer-
only master problems in Column 21, and finally the number of successful smoothed cuts (average and
standard deviation) in the last two columns.

The main conclusion that can be drawn from Table 2 is that the new Cutting-Planes method typically
requires significantly less iterations, which often leads to a CPU time speed-up between 1.2 and 2. In the
best case, the new method reaches a CPU time speed-up of 3 (i.e., it is 3 times faster) on the last instance
of the random-10 graphs. While the new method is not always systematically faster in terms of CPU time,
the only instances for which it is slightly slower are the smallest ones, for which the slow-down induced by
the number of iterations (or calls to master ILP solver) is less important compared to other factors (e.g.,
loading the initial program with the cut-set constraints).

Let us now examine the progress over the iterations of both Cutting-Planes algorithms. Figures 4-6
(next page) depict the values of the lower and the upper bounds generated by the new Cutting-Planes (on
three instances), compared to those of the standard Cutting-Planes (lower bounds only). Notice that the
upper bound is not available during the first (degenerate) phase of the new Cutting-Planes, associated to
the degenerate case (i) described in Theorem 1 (Section 2.2) or in Observation 3 (Section 3.3), i.e., the rays
0 — r do not even “touch” the feasible area. The initial degenerate phase is longer in Figure 4, and this is
the main weak point of the new algorithm, as already stated in Section 2.4.1. However, even in Figure 4,
the new upper bounds are useful to close the gap earlier at the end of the convergence (tail cutting). In
Figure 6 where the bandwidth is bygq = 3, the gap of the bounds of the new Cutting-Planes algorithm is
roughly 40% after only a sixth of the total number of iterations.

Figures 4-6 also suggest that the lower bounds of both methods are relatively strong, i.e., they can reach
about 90% of the optimum after only a fifth of the total number of iterations. During the second half of
the search, the new Benders Cutting-Planes can not really improve the lower bound substantially, but it
actually tries to prove that this lower bound is close to optimal. Upper bounds can thus be very useful to
reduce or close the gap, and it seems more difficult to generate quality upper bounds than quality lower
bounds.

We now investigate what are the most computationally expensive operations for both Cutting-Planes
methods. Returning to Table 2, notice that about 80% — 99% of the total CPU time is spent on solving
relaxed master ILPs (see the percents in Columns 12 and 21), for both Cutting-Planes methods. The total
CPU time is not always exactly proportional to the number of iterations, because there are many factors
that can influence the total running time. For instance, the smoothed cuts are very often sufficient for the
standard Cutting-Planes method (next-to-last column), meaning that it is often enough to generate a

17

1,200 T L/\/\/ T

—
o
o
o

T
|

800

Bound Values

—— upper bounds reported by the new method (intersection sub-problem)
—— lower bounds reported by the new method (intersection sub-problem)

lower bounds reported by the standard method (separation sub-problem)
I I I I I I I I I I

I
0 20 40 60 80 100 120 140 160 180 200 220 240 260

Iterations

600

Figure 4: The running profile of the new Cutting-Planes method and of the standard Cutting-Planes
method on instance id = 1 of graph class random-10 with |E| = 600 and |V| = 90.

5,000
4,000 |- -
g
= 3,000 |- i
> m
’-g ,/.)\"‘xwx
z 2,000 i -
M . —— upper bounds reported by the new method
1,000 |~ . lower bounds reported by the new method .
~ lower bounds reported by the standard method
| | | I I I I
0 50 100 150 200 250 300 350
Iterations

Figure 5: The running profile of the new Cutting-Planes method and of the standard Cutting-Planes
method on instance id = 1 of graph class layered-10 with |E| = 600 and |V| = 120.

100 ISP TY YT TYYYTLLIIIIIILE
250 ><><><x;:x:éé“..gngixxxXXXH R
80, coe®
200 |- .
& 60 b ‘ ‘
= 150 20 10 |
>
< /_/\
§ 100
M s (\ —— upper bounds reported by the new method
50 | . lower bounds reported by the new method |
lower bounds reported by the standard method

| I I I
0 20 40 60 80 100 120 140 160 180 200 220 240 260

Iterations

Figure 6: The running profile of the new Cutting-Planes and of the standard Cutting-Planes on instance
id =1 of graph class random-10-bnd3 (hence with a bandwidth of 3) with |E| = 80 and |V| = 30.

18

unique smoothed constraint at each iteration. The new method has less successful smoothed cuts (Column
13), meaning that it often has to generate two constraints at each iteration, leading to (relaxed) master ILPs
with more generated constraints, increasing the CPU time.?

A natural question that arises is whether the new method achieves similar or better speed-ups on larger
graphs. On the first random-10 instances of Table 2 one can simply note the following CPU time speed-ups:
1.33 for the instance id = 1 with |E| = 1000, 2.27 for the instance id = 1 with |E| = 1500 and 3.27 for
the instance id = 1 with |E| = 2000. This already suggests a speed-up increase hypothesis: the speed-
up obtained by the new method increases with the instance size. Table 3 below presents the speed-ups
obtained on random-10 graphs (id = 1) with | F| ranging from 1000 to 5000. The reported figures represent
averages over 5 runs, except for the first two instances with |E| < 2000 for which we simply copied the
CPU time values from Table 2. This table confirms the above speed-up increase hypothesis, i.e., the speed-
up obtained by the new method becomes increasingly higher as the graph size grows, reaching speed-ups
close to 10, when |E| = 5000. More detailed results on these new runs are publicly available on-line at
cedric.cnam.fr/~porumbed/benders/, along with the code source.

Bl VI B WU IEL VI EL VI EL V| LB V]

1500 130 | 2000 150 | 2500 175 | 3000 200 | 3500 225 | 5000 275
CPU Time speed-up 2.27 3.27 3.78 4.49 5.65 9.21
CPU Time new meth. 536 1533 1886 2912 4164 8636
CPU Time old meth. 1220 5013 7124 13063 23521 79564
Iters new meth. 162 184 221 257 280 340
Iters old meth. 532 804 961 1179 1518 1983

Table 3: Speed-up of the new Cutting-Planes compared to the standard one on larger random-10 graphs
(all with id = 1). The figures for the first two graphs are copied from Table 2.

The most difficult instances are by far the last ones (random-10-bwd3) that use a bandwidth of 3. In this
case, the optimal integer solution always wastes some capacity (bandwidth), at least for any demand that is
not a multiple of 3. Experiments suggest that if one adds ten more edges (compare results with |E| = 80,
|E| =90 and |E| = 100 in the last rows of Table 2), both Cutting-Planes methods can easily require twice
more CPU time. When setting |E| > 100, both methods have high chances of failing — notice the last two
rows in which we prefer to provide the success rates instead of detailed CPU time statistics. We will thus
use this more difficult instance class to solve in Section 4.3 the linear relaxation of our models (using larger
instances), discussing the potential of the new upper bounds in a Branch-and-Bound method.

4.3 The potential of the new upper bounds to improve a Branch-and-Bound
method based on a linear relaxation

As stated above, the instances random-10-bwd3 are by far the most difficult. Both Cutting-Planes algo-
rithms can only rarely solve such instances with |E| > 100 in reasonable time, while they do solve instances
with thousands of edges for the other graph classes. We here consider large random-10-bwd3 instances,
taking the same sizes (with |E| from 600 to 2000) used in Table 2 for the random-10 graphs of unitary
bandwidth (the random-10-bwd3 instances use the same underlying graphs as random-10, but only the

9Let us exemplify this on the first instance of Table 2. The standard Cutting-Planes requires an average of 271 iterations
and the smoothed constraint is sufficient in most of them (next-to-last column indicates an average of 264); the remaining
271-264 iterations need two constraints, leading to a total of 264+2X(271-264)=276 generated constraints along all iterations.
In average, the new method needed 111 iterations but only about 44 of the smoothed cuts were sufficient. This means that for
about 111 — 44 iterations in average, the new Cutting-Planes needed to add more than one constraint per iterationhlgading to

a total of roughly 44+2 x (111 —44) = 178 generated constraints. The ratio (speed-up) of the average CPU times is g3 ~ 1.89,
271

the ratio of the numbers of iterations is {77 & 2.44 and the ratio of the numbers of generated constraints is roughly f—;g ~ 1.55.
Notice the CPU time ratio is sandwiched by the ratio of the other two indicators, that can both influence the total CPU time.

19

bandwidth differ). As it stands, we do not know how to find the optimum integer solutions of such large
random-10-bnd3 instances. We can only solve their linear relaxation, in which we assume that y can be
fractional in the initial model (3.1.a)-(3.1e), i.e., allow the installation of a fractional number of cables along
the edges. We can apply the same Cutting-Planes algorithms but instead of iteratively solving a relaxed
master ILP (associated to (3.3a)-(3.3¢c)), we solve a linear relaxation of this master ILP, also referred to as
the relaxed master LP.

@ e Fc% Cutting-Planes with intersections || Standard Cutting-Planes
= id |E] |V] £ g|OPTLP UB | iters timefs] fime solve " time[s] time solve
O e primal LPs primal LPs
1 600 90 10 281.33 311 141 16.1 1.78% 283 20.8 4.08%
312 600 90 10 279 306 138 16.9 1.84% 243 18.6 4.14%
211 1000 110 10 310.67 346 125 34 1.14% 277 53 2.81%
é 2 1000 110 10 328 361 151 46.5 1.46% 391 70.1 4.1 %
L 1 1500 130 10 415.67 461 167 99.5 1.05% 361 133 2.57%
S 2 1500 130 10 374.33 421 155 88.1 0.859% 396 143 2.53%
= 1 2000 150 10 457.33 507 216 215 1.14% 480 268 2.84%
S| 2 2000 150 10 430 482 223 228 0.723% 494 271 2.84%
m| 1 600 90 100 | 2918.7 2948 148 15.7 2.12% 235 17.5 3.84%
2l 2 600 90 100 2782 2812 109 12.8 2.03% 224 17.5 3.06%
Tl 1 1000 110 100 | 3414.7 3454 749 170 3.78% 320 61.6 3.89%
§ 2 1000 110 100 | 3080.3 3117 163 48.4 1.48% 328 64.9 3.12%
L 1 1500 130 100 3922 3960 895 388 2.26% 408 155 2.82%
S 2 1500 130 100 | 4033.7 4077 955 403 2.34% 529 196 4.14%
5 1 2000 150 100 4638 4688 209 199 1.11% 563 309 3.95%
S| 2 2000 150 100 4584 4636 | 1114 679 2% 494 280 2.93%
n| 1 600 90 300 7265.7 7295 126 15 2% 247 19.1 3.86%
Bl 2 600 90 300 | 8154.7 8186 241 23 2.57% 207 15.2 3.07%
211 1000 110 300 | 9060.3 9095 130 38.4 1.24% 335 65.8 3.69%
(% 2 1000 110 300 10163 10203 | 3367 733 20.1% 379 71.7 3.97%
L 1 1500 130 300 12607 12652 | 619 297 1.73% 470 162 3.1 %
S 2 1500 130 300 12003 12051 | 670 272 1.81% 503 176 2.14%
g1 2000 150 300 13314 13370 | 199 189 1.3% 537 286 2.86%
S| 2 2000 150 300 13358 13408 | 197 182 0.934% 545 290 2.84%

Table 4: Results on the linear relaxation of the random instances with bandwidth byq = 3, using different
values of the maximum demand (Column 5). The gap between the lower bound (fractional optimum in Col-
umn 6) and the integer upper bound obtained by solving intersection sub-problems (Column 7) is relatively
small, varying from 10% to less than 0.5%.

Table 4 presents the results of both Cutting-Planes methods on the relaxed instances with bandwidth
bwa = 3 mentioned above. The first five columns describe the instance and the maximum demand, Col-
umn 6 indicates the fractional LP optimum, Column 7 provides the integer upper bound reported by the
Cutting-Planes algorithm based on the intersection sub-problem. Columns 8-10 and respectively Columns
11-13 report the computing effort needed by the new and respectively the standard Cutting-Planes to fully
converge. For each of these two algorithms, we provide three columns indicating the number of iterations, the
total CPU time and the percentage of the CPU time spent on solving relaxed master LPs (linear relaxations
of master ILPs).

Table 4 shows that the gap between the LP optimum and the integer upper bound can vary from about
10% (instances with maximum demand 10) to less than 0.5% (instances with maximum demand 300). It is
well-known that the effectiveness of a Branch-and-bound algorithm depends substantially on the quality of
the bounds at the root of the branching tree. We can safely conclude that the Cutting-Planes algorithm
based on the intersection sub-problem can provide strong upper bounds (leading to small gaps) at the root
node, at least for instances with higher demands (last rows of Table 4). This suggests that the approach

20

could be successfully embedded in a Branch-and-bound, but the evaluation of such an algorithm lies outside
the scope of this paper.

Exceptional cases aside (e.g., besides instances of high demand with |E| = 1500), the new Cutting-Planes
algorithm can be faster than the standard one. It can reach a speed-up of up to a factor of 2 in terms of
the number of iterations (see instance 2 for |E| = 600 or |E| = 1000 with a maximum demand of 100), but
the CPU time speed-up is smaller than the iteration speed-up. This may be explained due to the fact that
we can no longer say that the computational bottleneck of the algorithm is the resolution of the relaxed
master LP (see the percents in Columns 10 and 13), because it is far easier to solve an LP than an ILP.
Since the intersection sub-problem needs to solve more LPs than the separation sub-problem, the intersection
iterations are slower than the separation iterations. For the instances mentioned above with an iteration
speed-up of 2, the CPU time speed-up is about 1.5.

5 Conclusions and Prospects

We showed it is possible to improve a standard Cutting-Planes algorithm by “upgrading” the standard
separation sub-problem to the intersection sub-problem. We focused on ILPs with prohibitively-many cuts
in a Benders decomposition model. An advantage of the intersection sub-problem is that it allows one
to calculate both a lower and an upper bound (feasible solution) at each Cutting-Planes iteration. We
explained how solving the intersection sub-problem is equivalent to normalizing all cuts and separating
(the normalized cuts). This normalization interpretation shows that the intersection sub-problem can find
stronger cuts, as argued in Section 2.4.1. Under the (mild) assumptions of Theorem 1, we proved that the
intersection sub-problem can be solved within the same asymptotic running time as the separation one, i.e.,
it has the computational complexity of solving an LP over the Benders sub-problem polytope P.

After a brief study of a basic Benders Cutting-Planes, the main experimental evaluation (Section 4.2)
concerns a more advanced Cutting-Planes version. Recall this advanced Cutting-Planes uses solution
smoothing techniques to reduce the (strong) oscillations of the current optimal solution along the iterations
(see Section 2.4.2), for both sub-problems. In certain cases, the advanced Cutting-Planes based on the
intersection sub-problem actually combines the separation sub-problem with the intersection sub-problem
to finish more rapidly an initial problematic phase in which the rays do not even “touch” the feasible
polytope. Once this issue solved, the new advanced Cutting-Planes algorithm converges more rapidly
than the standard one. Experiments suggest that the new upper bounds can also be potentially useful in a
Branch-and-Bound algorithm, because they can generate quite strong gaps (between 10% and 0.5%) at the
root of the branching tree.

The intersection ideas could be potentially useful to overcome certain limitations of current practices on
canonical Cutting-Planes, by allowing one to generate feasible solutions along the iterations. This is the
second paper after [12] in a series of planned work that relate to the intersection sub-problem in different
polytopes with prohibitively-many constraints, arising in various optimization problems. For instance, an
interesting avenue for further research could be the study of the intersection sub-problem for the primal LP
models of the two problems in Appendix A (that use no Benders decomposition), for a Benders decomposition
model with non-zero flow costs (Appendix B), in robust programs with prohibitively-many constraints, etc.

Acknowledgments I am grateful to two reviewers whose valuable comments helped me improve the paper.

A Prospects for applying the new method to other problems
We here present two other problem examples that fit well the general LP (1.1) on which intersection ideas

could be applied. Consider a graph G = (V, E) and let us associate the decision variables y > 0 to the
edges E. We ask to minimize) . ye subject to prohibitively-many constraints of the form below, where

21

f:2F —[0,00) is a function that can be defined as exemplified next.

D Ve > fS)VSCE
eeS
— Consider f(S) > 1 if S is a length-bounded path between a source and some destination(s) in G and

f(S) = 0 otherwise. The resulting problem is essentially the LP (1) from [1]. The value f(S) could
represent a number of units (e.g., surveillance cameras) that need to be placed along the path indicated
by S. As an application example, consider the problem of finding the minimum number cameras needed
to visualise at least once any train traveling along a length-bound path S. We can define f(S) =11if S is
a length-bounded path (or f(S) > 1 if S has actually the capacity to accommodate multiple trains) and
f(S) = 0 otherwise.

— Suppose one has to install facilities on certain operative (installable) edges E C E, considering it is
impossible to install any facility on the non-operative edges E — E, equivalent to imposing ys = 0 Vé €
E — E. Define f(S) =+ -|5| if S are the edges of an induced subgraph of G of a given minimum size, or
f(S) = 0 otherwise, for a parameter v > 0. Any such induced S should contain at least one operative edge,
but it can also contain non-operative edges. This model asks to place more facilities on denser induced
subgraphs than on sparser induced subgraphs. In a road network, one can often need more facilities (e.g.,
electric vehicle charging points, public bikes, etc.) servicing denser areas than sparser areas.

Since the coefficients of the above constraints are all non-negative, a fractional feasible solution can be

converted into an integer feasible solution by rounding it up (as in Observation 4, p. 13).

B The intersection sub-problem for non-zero flow costs, for Ben-
ders reformulations with both feasibility and optimality cuts

The intersection algorithm from Theorem 1 (p. 5) can be extended to the case where the flow costs are
non-zero (¢ # 0). This section follows the reasoning from Theorem 1 and it presents all the modifications
needed to address the case of non-zero flow costs.

Recall that Theorem 1 finds the minimum ¢* such that t*r is feasible with regards to the constraints
(2.5¢) that are associated to a zero flow cost Z = 0. If we consider non-zero positive flow costs, we need
to check the feasibility with regards to two types of constraints (2.2b) and (2.2c), that can lead to some
non-zero flow cost £ > 0. We can re-formulate (2.2b) and (2.2c) resp. as:

Y

(b—By)'uVueP (B.1a)
(b —By)Tu® for any extreme ray u® € P, (B.1b)

S W
vV

where P is the Benders polytope P = {u >0:ATu< c}, as defined in (2.3). The second above constraint
set (feasibility cuts) can actually be seen as a consequence of the first constraint set (optimality cuts). If a
feasibility constraint (B.1b) does not hold for some ray u® € P, then (B.1a) does not hold either for some
u = au® with a large-enough «a > 0. Indeed, if 0 < (b—By) "u®, then (b —By) au® can become arbitrarily
large when o — oo, and so, (B.1a) can not hold for all u = cu®. This means that if all constraints (B.la)
all valid, then so are all constraints (B.1b). Thus, it is enough to focus on the optimality cuts (B.1a) and
we will see they can actually be used by the intersection sub-problem algorithm to eventually generate both
optimality cuts and feasibility cuts. Perhaps rather contrary to what it may seem at first glance, it has
been noted [5] that restricting P to its extreme rays is not necessarily more efficient; this is in line with our
approach of not focusing on searching extreme rays in (B.1b) but rather using (B.1a).

Let us denote the input of the intersection sub-problem by (r, Z.). Replacing y in (B.1la) with t*r (as
we did when we derived (2.6) in Theorem 1) and 2 with ¢*Z,, the intersection sub-problem requires finding
the minimum ¢* > 0 that satisfies the following:

t* (2 +(Br)'u) >b'u, Vue P. (B.2)

22

First, we can already see that this constraint set can be seen as an extended version of (2.6). Indeed, if

we extend u (resp. b) to u (resp. b) by adding a 0-indexed value %y = 1 (resp. by = 0), the inequality (B.2)
above can be written as t* [2,, (Br)"]|u > b'u. This is exactly a form like (2.6) from Theorem 1, the only

difference being the definition of feasible 1, i.e., we need to say all feasible u = [%ﬂ satisfy g = 1 and

u € P. This shows we are not so far from the setting of Theorem 1.
Secondly, by strictly following Theorem 1, one can find the same cases (i), (ii.a) and (ii.b), as well as the
same solution methods to address them.

(i) As in Theorem 1, this degenerate case arises when there is no t* > 0 that satisfies (B.2). This can only
happen when there is some u* € P’ such that 2, + (Br) 'u* < 0 and b"u* > 0. To detect such cases,
it is enough to maximize an LP very similar to (2.7) from Theorem 1, i.e., it is enough to check if
0<max{b'u: ueP, 2 + (Br)'u<0}.

(ii.a) This case corresponds to 2. + (Br)'u < 0 and bTu = 0 for some u € P, similarly to the same
case in Theorem 1. The only difference is the apparition of the first term Z, indicating the flow
cost. However, we can detect this case with the same approach as in Theorem 1, in particular we
can take u® = arg min {2, + (Br)'u: ue€ P, b"u=0} to distinguish between 2, + (Br) u® = 0
and 2, + (Br) "u’ < 0, corresponding to sub-cases (ii.a.1) and (ii.a.2). An intersection sub-problem
algorithm would then take the same decisions as in Theorem 1. More exactly, if 2, + (Br) u® < 0,
the algorithm stops returning a constraint u’ that separates all (tr,t2,) with ¢ > 0, as in (sub-)case
(ii.a.1). Otherwise, the constraint defined by u® allows all t(r, 2,.) to be feasible V¢ > 0 and we need to
move to case (ii.b) to find stronger constraints.

(ii.b) This is the main (non-degenerate) case in which we need to solve the following linear-fractional
program very similar to (2.8):

t* blu weP, 4+ (Br) u>0 (B.3)
=max{ ————— r , .
a %+ (Br)u , 2 u

As in Theorem 1, this linear-fractional program can be solved by converting it to an LP using the
Charnes-Cooper transformation [3]. More exactly, the transformation

1 1

— e B.4
YT T B)Tw T 5+ (Br)u (B-4)

translates the above linear-fractional program (B.3) to the equivalent pure linear program:

t* =maxb'u
ATa<cs
(Br)'a+%35=1
W>0,5>0

If the optimum of the above (B.3) is achieved by a vertex u® € P, then the intersection algorithm
returns the corresponding optimum ¢* and an optimality cut 2, > (b — By) u°. Otherwise, if the

optimum is achieved by an extreme ray u® of P, then the algorithm returns ¢* = lim % =
a—o0 ~T
(Bbj)if;e and the feasibility cut 0 > (b — By) 'u°. An extreme ray u® is translated by above trans-

formation (B.4) into 5 = 0 and T° = u® - ﬁ, which is actually the limit point of (B.4) when

u® — [00 00 ...00].

23

C Details on Benders reformulation steps and algorithmic aspects

C.1 The step-by-step construction of the Benders reformulation

We here recall the main steps of the Benders decomposition, essentially following the reasoning from [4, §2].
Based on the below reformulation of the initial program (2.1) from Section 2.1, we will dualize the inner LP
of (C.1c).

mind'y + 2 (C.1a)
Dy >e (C.1b)
2:min{ch:By+Ax2b, x>0} (C.1c)

y €LY (C.1d)

Introducing dual variables u in the inner LP (considered with x as decision variables and y as parameters),
the primal-dual linear programming properties lead to

max{(b —By) u: ue P}, (C.2)

2

where

P={u>0:ATu<c} (C.3)

is the Benders sub-problem polytope that does not depend on the current y. The optimal % in (C.2) can
be modelled as a decision variable that is bounded from below by 2 > (b — By) u Yu € P and can be
interpreted as a projected cost (associated to y) to be minimized. We suppose P is always not empty (e.g.,
P surely contains u = 0 if ¢ > 0), because otherwise the primal (C.1c) would be infeasible or unbounded.
As such, P can be described by its (prohibitively-many) vertices and extreme rays. All extreme rays u¢ € P
satisfy 0 > (b—By) Tu® for a feasible y, because otherwise 2 would be unbounded. The above (C.1a)-(C.1d)
can thus be written in the following Benders decomposition form:

mind'y + 2
Dy >e
2> (b—By)'u’, for any vertex u’ € P
0> (b—By) u®, for any extreme ray u® € P
yezZy,zeR
which is exactly (2.2a)-(2.2d) from Section 2.1.

C.2 Practical Cutting-Planes acceleration by avoiding the hardest master ILPs

The most critical computational step of both Benders Cutting-Planes is the iterative resolution of the
(relaxed) master integer LP associated to (2.5a)-(2.5d). While the computational effort of solving this
ILP does depend on the number of generated constraints, experiments suggest that certain relatively small
master ILPs can still require a prohibitively-long computing time. This can occasionally happen in both
Benders Cutting-Planes algorithms, whenever they produce a particularly difficult combination of generated
constraints in the master ILP, so that the Cplex ILP solver can remain blocked virtually indefinitely. To
avoid this, we propose to stop the ILP solver if it exceeds a certain CPU time threshold,'® and let the
Cutting-Planes continue with the best integer solution y,.p+ found by the ILP solver so far, i.e., ¥popt is a
sub-optimal solution of the current relaxed master. However, if the (separation or intersection) sub-problem
separates Ynopt, the Cutting-Plane algorithm can add a new constraint, (re-)optimize the resulting master
ILP and continue as usually. The fact that y,.p,¢ was sub-optimal does not influence the correctness of (the

10We use {%J + 1 seconds for the ILP solver of Cplex 12.6, where |E| is the number of edges of the underlying graph.

24

continuation of) the Cutting-Planes. By adding a new constraint to separate y,opt, the resulting master
ILP can become reasonably-difficult again, “unblocking” the Cutting-Plane process.

If the above y,op: can not be separated, the Benders Cutting-Planes can not stop and report yyop: as
an optimal solution, simply because y,op¢ is by construction sub-optimal for the current relaxed master. For
this case, we propose to multiply the above CPU time threshold by 100 and try again to solve the current
(prohibitively-hard) master ILP. If this new larger time limit is enough to solve the master ILP, the Benders
Cutting-Planes algorithm can continue as usually. Otherwise, the Cutting-Planes algorithm stops and
we consider that it can not solve the instance at issue. Generally speaking, experiments suggest that even if
one multiplied the threshold by 1000, the ILP solver could still fail.

References

[1] G. Baier, T. Erlebach, A. Hall, E. Kohler, P. Kolman, O. Pangrdc, H. Schilling, and M. Skutella.
Length-bounded cuts and flows. ACM Transactions on Algorithms, 7(1):4:1-4:27, 2010.

[2] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
mathematik, 4(1):238-252, 1962.

[3] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval research logistics
quarterly, 9(3-4):181-186, 1962.

[4] A. M. Costa. A survey on benders decomposition applied to fixed-charge network design problems.
Computers & operations research, 32(6):1429-1450, 2005.

[5] A.M. Costa, J.-F. Cordeau, and B. Gendron. Benders, metric and cutset inequalities for multicommod-
ity capacitated network design. Computational Optimization and Applications, 42(3):371-392, 2009.

[6] C. Lee, K. Lee, and S. Park. Benders decomposition approach for the robust network design problem
with flow bifurcations. Networks, 62(1):1-16, 2013.

[7] 1. Ljubié, P. Putz, and J.-J. Salazar-Gonzélez. Exact approaches to the single-source network loading
problem. Networks, 59(1):89-106, 2012.

[8] T. L. Magnanti, P. Mirchandani, and R. Vachani. Modeling and solving the two-facility capacitated
network loading problem. Operations Research, 43(1):142-157, 1995.

[9] T. L. Magnanti and R. T. Wong. Accelerating benders decomposition: Algorithmic enhancement and
model selection criteria. Operations research, 29(3):464-484, 1981.

[10] J. E. Mitchell. Cutting plane methods and subgradient methods. In Tutorials in Operations Research,
pages 34—61. (INFORMS), 2009.

[11] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. In-out separation and column generation stabi-
lization by dual price smoothing. In 12th International Symposium on Experimental Algorithms, pages
354-365. Springer, 2013.

[12] D. Porumbel. Ray projection for optimizing polytopes with prohibitively many constraints in set-
covering column generation. Mathematical Programming, 155(1):147-197, 2016.

[13] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The benders decomposition algorithm: A
literature review. Furopean Journal of Operational Research, 259(3):801 — 817, 2017.

[14] V. Sridhar and J. S. Park. Benders-and-cut algorithm for fixed-charge capacitated network design
problem. European Journal of Operational Research, 125(3):622—-632, 2000.

25

