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Abstract

The bijection between planar graphs and well labeled trees was
published by Cori and Vauquelin in 1981 [5]. It was afterwords used
several times to generate random planar graphs [6]; certain ideas were
used more recently to propose other combinatorial bijections [1, 3,
7, 8]. In this short note, we review in a more intuitive manner the
initial proof and we also provide alternative arguments for an essential
theorem: “the splitting of a map is a map”.

1 Introduction

A map is an embedding of a connected graph into the 2-dimensional sphere.
The enumerative theory of maps has a long history in combinatorics and it
was originally motivated by the four color theorem [2]. This work began
with the pioneering articles of Tutte who provided enumerations for several
families of maps in his ”census” papers in the 60’s [9–12]. Since then, the
theory has made important progress and numerous other enumerations and
bijections have been studied [1, 3, 4, 7, 8]. A particularly original bijection is
the one between planar maps and well labeled trees; it was found by Cori
and Vauquelin [5] in 1981 and it provided inspiration for most of the more
recent bijections.

This one-to-one correspondence between planar maps and well labeled
trees is proved in the following manner: starting with a planar map, Cori
and Vauquelin [5] construct a new map — the splitting of the initial map,
which they prove to be a tree with specific properties. A critical point of the
construction is to show that the splitting of a map is also a map (theorem
2.3 in [5], page 1029). After that, the main result is a consequence of a series
of propositions which follow by checking other map properties such as the
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genus or the number of cycles. We present in this article a completed proof
of this theorem (there was a slight incorrection in the initial version) as well
as alternative proofs for most other propositions.

To make the paper self-contained, we start by defining the basic general
notions. We use the same notations as Cori and Vauquelin [5] in order
to make the analogy easier. The main theorem, with both the initial and
alternative proof, is presented in section 2. Some concluding remarks follow
in the last section.

Let us denote by Zm the set of non zero integers whose absolute value is
at most m. A permutation acting on Zm is a bijective function σ : Zm →
Zm. Very often it is useful to denote it in the cycle form. For example
{(1,−1, 2,−3), (3,−2)} represents a permutation σ : Z3 → Z3 composed of
two cycles: 1

σ→ −1
σ→ 2

σ→ −3
σ→ 1 and 3

σ→ −2
σ→ 3. The conjugate of

permutation σ acting on Zm is the permutation σ̄ such that σ̄(a) = σ(−a)
∀a ∈ Zm.

We say that σ and σ̄ generate a transitive group on Zm if for every
a, b ∈ Zm there exists integers i1, i2, . . . in such that σi1σ̄i2σi3 . . . σin−1σ̄in = b.
For any two such a and b we say that a and b are linked in σ. A map
is a permutation σ acting on Zm such that σ and σ̄ generate a transitive
group on Zm. This transitivity is the combinatorial correspondent of the
map connectivity. In a more intuitive approach, we can say that σ encodes
vertices and σ̄ encodes edges (see the map in fig. 1).

Let σ be a permutation acting on Zm and B be a subset of Zm. We define
the closure σ∗(B) by: σ∗(B) = {a ∈ A : ∃n ∈ N, ∃b ∈ B s. t. a = σn(b)} If
σ∗(B) = B , then B is saturated by σ. The restriction of σ to B is the
permutation σ/B obtained from σ by erasing the elements of Zm − B from
all the cycles of σ. Then, σ/B(x) is the first element of σ(x), σ2(x), σ3(x), . . .
belonging to B.

After defining these notions, the first step toward the well labeled tree
is to construct a sequence of subsets B0, B2, . . . , Bp in the following manner:
B0 = σ̄∗ {1} and for any i ≥ 0:

B2i+1 = σ∗B2i −B2i = {b ∈ σ∗B2i : b /∈ B2i}
B2i = σ̄∗B2i−1 −B2i−1 = {b ∈ σ̄∗B2i−1|b /∈ B2i−1}

We show in Figure 1 an intuitive representation of the way a map splits
into disjoint Bi’s. Given the permutation σ as in this example, one could
automatically compute σ̄, B1, B2, B3, B4:

• σ̄ = {(1, 2, 3, 4− 9)(9)(−4, 5, 6, 7, 8,−5,−3,−2,−1)(8, 10,−10,−7,−6)}

• B0 ={1,2,3,4-9}, B1 ={9,-4,5,-3,-1,-1}, B2 ={6,7,8,-5}, B3 ={-8,-7,-
6,10}, B4 ={-10}
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Figure 1: The splitting of σ = { (1,−4,−9, 9), (−1, 2), (−2, 3), (−3, 4, 5),
(−5, 6, 8), (−6, 7), (−7, 8, 10), (−10) } .

Now we can state the formal definition of the splitting of a map:

σ̂(a) =

{
σ/B2i

(a), if a ∈ B2i

σ̄/B2i+1
(a), if a ∈ B2i+1

For the above example σ, we thus obtain the labeled tree σ̂ = {(1,−9),
(2), (3), (4), (9), (−1,−4, 5,−3,−2), (6,−5),(7), (8), (−8, 10,−7,−6), (−10)}
from Figure 2.

1.1 Useful Lemmas

In order to deal with the main theorem, let us prove three important prop-
erties of the set {B0, B2, . . . , Bp}. The first two correspond to properties 2.1
and 2.2 in the original proof [5, pages 1028–1029]; we also provide alternative
proofs for the non-trivial facts.

Lemma 1 The permutation σ saturates B2i

⋃
B2i+1 and σ̄ saturates B2i+1

⋃
B2i+2.

Proof This is a direct consequence of the definition since we define B2i+1 =
σ∗B2i − B2i and thus B2i

⋃
B2i+1 = σ∗B2i. The second part can be treated

similarly by exchanging σ and σ̄.

Lemma 2 The set {B1, B2, . . . Bp} is a partition of Zm.
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Figure 2: The labeled map σ̂ associated with σ from our example in fig. 1.
It is a tree because the σ is planar.

Proof We suppose that the above set is not a partition. Let Bi and Bj

(with i < j) be two sets containing a common element a such that j is min-
imum with the property that B1, B2, . . . Bj−1 are disjoint. We can consider
j = 2k + 1 as the opposite case j = 2k can be treated similarly by exchang-
ing σ and σ̄. From the definition of Bj, we know that there exists b ∈ Bj−1
such that a and b are in the same cycle of σ. From the property 1 we also
know that σ saturates either Bi

⋃
Bi+1 or Bi

⋃
Bi−1 and thus b is also an

element of Bi−1
⋃
Bi

⋃
Bi+1. Afterwords, from the definition we know that

any two consecutive Bi’s are disjoint and thus i+ 1 is at most j − 1. Practi-
cally this means that b appears twice in B1, B2, . . . Bj−1 (in Bi−1

⋃
Bi

⋃
Bi+1

and also in Bj−1). This contradicts the initially stated fact that the sets
B1, B2, . . . Bj−1 are disjoint.

Lemma 3 If x ∈ Bj, then −x ∈ Bj−1 ∪Bj ∪Bj+1.

Proof We consider j = 2k, the case j = 2k + 1 can be treated similarly by
exchanging σ and σ̄. Let us assume that x ∈ B2k and −x ∈ Bi such that
i ≤ 2k − 2. From lemma 1, σ(x) ∈ B2k ∪ B2k+1; moreover σ̄(−x) belongs to
B2k−3 ∪B2k−2 if i ∈ {2k − 2, 2k − 3} or to other sets which do not intersect
B2k ∪B2k+1 if i ≤ 2k − 4. This is a contradiction because σ̄(−x) = σ(x).

2 Main Theorem and the Completed Proof

The following theorem corresponds to theorem 2.3. in the paper of Cori and
Vauquelin [5, page 1029].
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Theorem 4 The splitting of a map is a map.

Cori and Vauquelin’s proof Since σ̂ is bijective on each Bi, it is also bi-
jective on their union Zm. In order to prove the theorem, we have to prove
that σ̂ and ¯̂σ generate a transitive group on Zm. First, we shall construct for
each a and b satisfying a = σ(b) or a = σ̄(a) a word f of the alphabet {σ̂, ¯̂σ}
such that a = f(b). The final result will then follows from the transitivity of
σ̄ and σ.

To show the existence of the word f for any a = σ(b) and b, they first
treat the case where a ∈ Bn such that Bn+1 = ∅ (see [5], theorem 2.3 at page
1029). This proof1 is the base case of the induction reasoning they perform
later for the general case in which Bn+1 6= ∅. The induction hypothesis is
that the word f exists for all a = σ(b) and b such that a belongs to a set Bj

with j > i = 2k. Their slight incorrection is in the proof of the induction
step when they state that there exists fl such that bl+1 = fl(b) for all l such
that 1 ≤ l ≤ p− 1 (page 1030, ”By induction there exists fl such that. . .”).
This statement is false for l = p − 1 because the equation is equivalent to
bp = fp−1(b). The induction hypothesis assures the existence of a word f
such that a = f(b) only if a = σ(b) ∈ Bj (with j ≥ 2k + 1). This is not
the case for a = bp (bp /∈ Bj with j ≥ 2k + 1) and b and one cannot use the
induction to state a = bp = f(b).

The completed proof Let us first show the existence of the word f of the
alphabet {σ, σ̂} such that −x = f(x) for all x. We start from σ̂n(¯̂σ(x)) =
σ̂n+1(−x) ∀n ≥ 1; moreover there always exists an i such that σi(−x) = −x,
thus σ̂i−1(¯̂σ(x)) = σ̂i−1+1(−x) = −x.

We show the existence of the word f such that y = f(x) for any x and y
such that y = σ(x) (the cases y = σ̄(x) can be treated similarly by exchanging
σ and σ̄). From now on, we say x links to y if and only if there is a word
f of the {σ̂, σ} alphabet such that y = f(x). Unlike in the induction proof,
we prefer to present an new original method that directly analyzes one by
one the four possible cases of x’s and y’s. We show that x links to y in the
following situations:

(a) x ∈ B2k and σ(x) = y ∈ B2k

In this case, the existence of the word f is is a direct consequence of
the definition of σ̂ over B2k. Since σ̂(x) is σ(x) when x, σ(x) ∈ B2k,
then y = σ̂(x) and thus f = σ̂.

1The proof is correct but it only has one incomplete point when they assume the
existence of a word f such that a = f(b) because a = σ̂(−b). However, we will see there
always exists a word f ′ such that −b = f ′(b) for any b.
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(b) x ∈ B2k and σ(x) = y ∈ B2k+1

Since −x ∈ B2k−1 ∪ B2k ∪ B2k+1 (lemma 3) and σ̄(−x) = y, we can
conclude that −x cannot be an element of B2k−1

⋃
B2k because σ̄ sat-

urates this set. Furthermore, we can use the idea of case (a) to prove
that −x, y ∈ B2k+1 are linked in {σ̂, σ}. Since x links to −x, we obtain
that x links to y.

(c) x ∈ B2k+1 and σ(x) = y ∈ B2k

Assuming that not all such x and y are linked, we can consider without
loss of generality that n = 2k + 1 is the maximum element in {n′ ∈
N : ∃xn′ ∈ Bn′ such that σ(xn′) ∈ Bn′−1 is not linked to x′n or σ̄(xn′) ∈
Bn′−1 is not linked to x′n}. If this maximum does not have the form 2k+
1, the case can be treated similarly by finding the same contradiction
on σ̄.

Lets denote by z the last element of B2k in the sequence y, σ(y), σ2(y),
. . . , σi(y) = x. Since σ̂(z) = σ/B2k

(z) = y (because, from the choice
of z, all σ(z), σ2(z), . . . x are in B2k+1), we can directly see that y and
z are linked. Since z and −z are linked, we obtain that y and −z are
linked and we are going to show that −z and x are also linked. Since
σ̄(−z) = σ(z) ∈ B2k+1, and because σ̄ saturates B2k+1 ∪ B2k+2, there
are two possibilities for the provenience of −z:

• −z ∈ B2k+2⇒−z and σ̄(−z) are linked because of the maximality
property of n = 2k + 1

• −z ∈ B2k+1 ⇒ σ̂(−z) = σ̄/B2k+1
(−z) = σ̄(−z) and thus −z and

σ̄(−z) are linked in {σ̂, σ}

To finish, we still need to check that σ̄(−z) = σ(z) and x are linked.
Since all elements of σ(z), σ2(z), . . . σj(z) = x are in B2k+1, it is enough
to prove that ∀t ∈ B2k+1 such that σ(t) ∈ B2k+1, t and σ(t) are linked.
For this, it is enough to show that −t and σ̄(−t) = σ(t) are linked.
Since σ̄(−t) ∈ B2k+1, we can prove that −t and σ̄(−t) are linked by
the same procedure we proved that −z and σ̄(−z) are linked.

(d) x ∈ B2k+1 and σ(x) = y ∈ B2k+1

This is the last possibility. Taking into account that B2k+1

⋃
B2k+2 is

saturated by σ̄ and that σ̄(−x) ∈ B2k+1, we can have either −x ∈ B2k+2

or −x ∈ B2k+1. One might now notice that the case −x, b ∈ B2k+1 is
the dual of (a) and the case −x ∈ B2k+2, σ̄(−x) ∈ B2k+1 is a dual of
(c).
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2.1 Concluding Remarks

The next steps of the proof can be found in [5] and they follow quite naturally.
To prove that the resulting map is a tree, one has to verify that z(¯̂σ) = 1,
i.e. σ̂ has only one cycle. To do this, one uses the fact that a planar map
is defined as a map with genus 1, where the genus is a measure derived
with from z(σ) and z(σ̄). The tree is well labeled if the difference between
the labels on two connected vertices is 1. The well-labeling is based on the
indexes of the Bi’s (see Figure 2 in which the color of a vertex designates a
number from the attached legend), i.e. one proves that any two neighboring
vertices are in consecutive Bi’s.
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