Using an Exact Bi-Objective Decoder in a Memetic Algorithm for Arc-Routing (and Other Decoder-Expressible) Problems

Daniel Porumbel ${ }^{1}$, Igor M. Coelho ${ }^{2}$, El-Ghazali Talbi ${ }^{3}$
${ }^{1}$ CEDRIC CS Laboratory, CNAM, 292 rue Saint Martin, Paris, France
(daniel.porumbel@cnam.fr)
${ }^{2}$ Computing Institute, Universidade Federal Fluminense Av. General Milton Tavares de
Souza - Niteroi/RJ - Brazil - 24210-346
${ }^{3}$ University of Lille and INRIA

Abstract

We address the bi-objective Capacitated Arc Routing Problem (CARP) by considering two levels of solution interpretation: implicit and explicit solutions. An algorithm that translates implicit solutions into explicit solutions is called a decoder. In this work, the decoder takes as input a permutation of the required edges and generates a Pareto frontier of CARP solutions. While bi-objective CARP was our main focus and starting point, we could also use the proposed framework to solve a bi-objective version of the traveling salesman problem by plugging-in a different decoder. Recall that bi-objective CARP asks to service (the demands of) a set of required edges using a fleet of vehicles of limited capacity so as to minimize: (i) the total travelled distance and (ii) the length of the longest route. Any permutation s of the required edges constitutes an implicit CARP solution. The decoder constructs all non-dominated explicit solutions that service the edges in the order indicated by s, i.e., the decoder is an exact algorithm that returns the optimal Pareto frontier subject to the service order s. To achieve competitive CARP results it is also important to reinforce the decoder using a local search operator that acts on explicit routes (and that may change the service order s). For nine instances, the resulting algorithm was even able to find a new total-cost upper bound, improving upon the best solutions reported in the (considerably larger) mono-objective CARP literature. This shows that (some of) the proposed ideas can also be useful in single objective optimization: the second objective can be seen as a guide for the mono-objective search process.

Keywords: combinatorial optimization, bi-objective exact decoder, bi-objective EA, permutation problem

1 Introduction

Let us first introduce the most widespread bi-objective variant of the celebrated Capacitated Arc Routing Problem (CARP). Given a graph $G(V, E)$, the goal is to find a set of feasible routes that service a set of required edges $E_{R} \subseteq E$, under the constraint that the service amount on each route cannot exceed a given (vehicle) capacity. The bi-objective variant was first introduced by Lacomme et al., 2006 and it requires minimizing both the total cost (the total distance travelled by all routes) and the makespan (the length of the longest route). The second objective may offer a higher degree of planning flexibility, e.g., enabling one to reduce working time inequality or comply with legislative shift-time limits. This second objective also measures the total time elapsed from the moment when all vehicles leave the depot until the last vehicle returns; this may be important because the return of the last vehicle might trigger some other events ${ }^{1}$

[^0]We consider two levels of solution interpretations: permutations (of E_{R}) and explicit feasible CARP solutions. We offer the possibility of switching from the former to the latter by applying a one-to-many exact decoder based on dynamic programming. This decoder enables us to reduce the huge CARP search space to a more reasonably-sized search space, namely the set of permutations of E_{R}. Thus, CARP is transformed into a sequencing or permutation problem Campos et al., 2005, Porumbel et al., 2017, van Hoorn, 2016, i.e., a problem for which the candidate solutions are encoded as (sequences or) permutations. One can thus readily use the numerous mutation or crossover operators already developed in the literature of permutation problems. The overall algorithm is based on the following three main components that can be designed and studied separately (in isolation).

1. An exact decoder based on dynamic programming that can turn any given permutation s of E_{R} into a Pareto frontier of explicit CARP solutions that do not dominate one another. These explicit solutions all service the required edges in the order indicated by s (Section 2.1).
2. A Local Search (LS) algorithm that may improve the minimum total cost solution returned by the above decoder. If the solution obtained after this LS services the edges in an order s^{\prime} different from s, we call (again) the decoder on s^{\prime}, but without any LS this second time (Section 2.2).
3. An evolutionary algorithm (EA) framework in which we generalize the non-dominated sorting idea of NSGA2 Deb et al., 2002], so as handle both implicit and explicit solutions. We are in a more complex context than in a pure NSGA2, because an implicit solution is associated to multiple explicit solutions, and so, to multiple points in the objective space (unlike in NSGA2). The description of this EA does not use any particular CARP feature, because all these features are hidden behind the (abstract) decoder. We will rather focus more general concepts, e.g., we will propose techniques to preserve diversity, to control the population dynamics or to encourage young offspring against old individuals (Section 3).

The EA framework from the last above point represents the main algorithmic "backbone" of the overall solution method. The complete algorithm, hereafter referred to as Decoder-EA, is actually constructed by connecting the two other components (points 1 and 2 above) to this EA. One can make Decoder-EA solve a different bi-objective problem, by simply replacing the above decoder with a different one. Based on this idea, we present in Section 5 a Decoder-EA implementation that solves a bi-objective variant of the well known Traveling Salesman Problem (TSP). We did not need to change a single line of code in the software module that implements the EA framework to solve this TSP variant.

If the general mono-objective CARP has attracted the interest of tens if not hundreds of researchers, we are aware of only six papers that address the bi-objective variant considered here. The earliest work appeared in 2006 when Lacomme et al., 2006 presented a genetic algorithm designed by adapting the NSGA2 framework Deb et al., 2002 to CARP. An individual is given by a list of directed required edges that is evaluated using a heuristic called the Ulusoy's giant tour split (see Ulusoy, 1985 or Porumbel et al., 2017, §5.1]). Compared to this early approach, our decoder is (significantly) more complex for two reasons. First, our decoder is exact and not heuristic. Secondly, it does not use directed edges but simple edges, hence reducing the size of the search space size by a 2^{n} factor ${ }^{2}$ In addition, the LS operator is very different and so is the EA implementation. Yet, we share an important conclusion of Lacomme et al., 2006 that the EA "must be hybridized with a local search procedure to be able to compete with state-of-the-art metaheuristics"; Lacomme et al., 2006 present many other general considerations that are relevant in our work, e.g., motivations for using an unlimited fleet (§1), reasons for choosing NSGA2 (§2), or a description of the difficulties raised by the integration of LS (§3). We also refer the reader to Corberán et al., 2021] for an extensive review (that cover many bi-objective aspects) of the main Arc Routing developments produced up to 2021, with over 230 references.

We discuss below in chronological order the remaining papers devoted to bi-objective CARP, even if they generally rely on techniques that are only remotely related to the ones from our work, e.g., they use no

[^1]indirect list or permutation representation, there is no decoding, the LS and the NSGA2 (when present) are applied in a different manner.

- The Decomposition-Based Memetic Algorithm (D-MAENS) by Mei et. al Mei et al., 2011. In this decomposition framework, the objective values (of a solution) can be aggregated into a unique objective value. Using N different vectors of aggregation weights, one obtains $N>2$ mono-objective subproblems (decomposition directions); these sub-problems are associated to N representative solutions that evolve along the search in different sub-populations Mei et al., 2011, §(iv).a]. The bi-objective problem is thus decomposed into N mono-objective sub-problems; each one of them could be addressed by a well-established mono-objective CARP algorithm called MAENS.
- The ϵ-constraint method by Grandinetti et al. Grandinetti et al., 2012. The main idea in this work is to solve a mono-objective ϵ-constrained problem for each objective, i.e., minimize a chosen objective while limiting the value of each other remaining objective to a certain ϵ value. The method proceeds by gradually reducing the ϵ parameter which leads to a sequence of ϵ-constrained problems (§3). Each resulting mono-objective problem is associated to an Integer Linear Program (ILP) that is solved using the commercial Cplex solver. This ILP needs a pool of pre-existing routes that are generated using LS before calling Cplex.
- The Improved D-MAENS (ID-MAENS) by Shang et al Shang et al., 2014. This work takes the above D-MAENS to a higher level by introducing a steady-state replacement strategy and an elitist archive. Regarding the replacement, this new work proposes to replace an existing individual immediately once an offspring solution is generated, which speeds-up the convergence. Concerning the elitist strategy, an archive is introduced to record the solution that has the best value according to each decomposition direction. Recall that a decomposition direction is given by a vector of weights used in the objective aggregation described above (for D-MAENS). This new work also proposed a more dynamic method to construct sub-populations and to associate them to decompositions directions (sub-problems).
- The Improved Route Distance Grouping MAENS (IRDG-MAENS) by Shang et al Shang et al., 2016a. This work improves a mono-objective CARP algorithm called RDG-MAENS Mei et al., 2014 and successfully generalizes it to bi-objective CARP. Both these algorithms use the notions of sub-populations and decomposed sub-problems (as for ID-MAENS); routes and individuals can be distributed to different sub-populations using new, fast and effective techniques.
- The Directed Evolution Immune Clonal Algorithm (DE-ICA) by Shang et al Shang et al., 2016b. This algorithm builds upon the theory of artificial immune systems. The proposed ICA has certain similarities to EAs, because it uses a population (of antibodies) and a notion of reproduction (of the antibodies) or mutation; however, the description of such notions lies beyond the scope of this introduction.

The remaining is organized as follows. Section 2 presents the CARP definition, the proposed bi-objective decoder and the specific LS. Section 3 describes the EA framework in a general decoder-based optimization context only characterized by the existence of a decoder that hides all CARP aspects. Section 4 reports numerical results on CARP. Section 5 presents the application of the proposed framework to a bi-objective TSP variant, including numerical results on this new problem. We conclude in Section 6. A short appendix reports the Pareto frontiers we discovered for a few small instances, including the certified optimal solutions for the smallest one; a second appendix presents a decoder execution example.

2 Bi-objective CARP definition, decoder and local search

The bi-objective CARP is defined on a graph $G=(V, E)$, where V is a set of nodes and E is a set of edges. A subset of edges $E_{R} \subseteq E$ with $\left|E_{R}\right|=n$ represents the required edges that must be serviced (once) using an unlimited fleet of homogeneous vehicles of capacity W. Each edge $\{i, j\} \in E$ has a (traversal) cost $c_{i j}$;
the required edges $\{i, j\} \in E_{R}$ also have a demand $q_{i j}$. A feasible route starts and ends at a special depot node v_{0}; it can not supply an amount of service larger than W. An edge may be traversed multiple times by different routes and an edge traversed without service is called a deadheaded edge.

Figure 1: Two non-dominated solutions for the same instance. Each edge $\{i, j\}$ has a label " $c_{i j}\left(q_{i j}\right)$ ", where $c_{i j}$ is the traversal cost and $q_{i j}$ is the required service (0 for non-required edges). The left solution has two routes of equal cost 400 . The right solution contains a shorter route of cost 100 (only for $\{0,1\}$) and a longer route of cost 600 . The two solutions have objective values $(800,400)$ and resp. $(700,600)$.

Let \mathscr{X} be the set of all explicit CARP feasible solutions, i.e., the explicit search space. The bi-objective CARP asks to find a solution $\mathbf{x} \in \mathscr{X}$ containing a set \mathbf{r} of routes that service all required edges and that minimize: (i) the total cost $C^{\text {tot }}$ of all traversed edges and (ii) the length $C^{\text {max }}$ of the longest route. Technically, we can write:

$$
\begin{align*}
C^{\mathrm{tot}} & =\min _{\mathbf{x} \in \mathscr{X}} C^{\mathrm{tot}}(\mathbf{x}), \text { where } C^{\mathrm{tot}}(\mathbf{x})=\sum_{\mathbf{r} \in \mathbf{x}} \sum_{\{i, j\} \in \mathbf{r}} c_{i j} \tag{1a}\\
C^{\max } & =\min _{\mathbf{x} \in \mathscr{X}} C^{\max }(\mathbf{x}), \text { where } C^{\max }(\mathbf{x})=\max _{\mathbf{r} \in \mathbf{x}} \sum_{\{i, j\} \in \mathbf{r}} c_{i j} \tag{1b}
\end{align*}
$$

To cope with these two conflicting goals, the decision maker may have to choose a compromise solution from a Pareto frontier of solutions that do not dominate one another. Figure 1 provides a simple example of two conflicting solutions for a small graph. An exact decoder applied on input permutation $(\{0,1\},\{2,3\},\{3,4\},\{4,5\})$ would have to return these two Pareto-optimal solutions.

Section 2.1 describes the proposed decoder. While the general idea of transforming ordered lists (of tasks) into routes is relatively popular in general vehicle routing, ${ }^{3}$ this is the first bi-objective CARP decoder that is exact and not heuristic. A second advantage compared to other approaches is using permutations of non-directed edges as input, which reduces the search space size by a factor of 2^{n} compared to more popular "split with flips" decoders that work with directed edges.

Section 2.2 describes the LS algorithm to be executed on the $C^{\text {tot-best solution from the Pareto frontier }}$ returned by the exact decoder. After this LS round, the service order may change; in such a case, one can call again the decoder on the new permutation (the new service order) but without any LS this second time.

2.1 The Dynamic programming exact one-to-many decoder

The decoder described hereafter extends the dynamic programming scheme for mono-objective CARP from Porumbel et al., 2017. In both cases, the input consists of a permutation s of non-directed edges.

[^2]
2.1.1 Notations, definitions and example

Definition 1. Let \mathscr{S} be the encoded search space that contains all permutations of E_{R}. Let \mathscr{X} be the explicit search space. We consider a decoder function $\mathscr{D}: \mathscr{S} \rightarrow 2^{\mathscr{X}}$ that maps any permutation $s \in \mathscr{S}$ to \bar{a} set of explicit solutions from \mathscr{X}.

Given input permutation $s \in \mathscr{S}$, the proposed decoder returns a set $\mathscr{D}(s)$ of explicit solutions that service the edges E_{R} in the order imposed by s and that are Pareto non-dominated: there is no $x, x^{\prime} \in \mathscr{D}(s)$ such that $x \preceq x^{\prime}$, i.e., such that $C^{\mathrm{tot}}(x) \leq C^{\mathrm{tot}}\left(x^{\prime}\right)$ and $C^{\max }(x) \leq C^{\max }\left(x^{\prime}\right)$. The decoder is exact in the sense that the Pareto frontier $\mathscr{D}(s)$ is optimal to the given CARP instance subject to the service order s.

We now need more detailed notations, see also Figure 2 to follow them more easily.
Definition 2. Given permutation $s=\left(e_{1}, e_{2}, \ldots, e_{k}, \ldots, e_{n}\right)$ with $e_{k}=\{i, j\}$, we define the following notations:

- the cost of travelling along $e_{k}=\{i, j\}$ is $c_{k}=c_{i j}$.
- the demand of edge $e_{k}=\{i, j\}$ is q_{k}
- the end points of edge $e_{k}=\{i, j\}$ are denoted by e_{k}^{0} and e_{k}^{1}, such that $e_{k}^{0}=i$ and $e_{k}^{1}=j$.
- len $\left(e_{k}\right)$ is the maximum number of edges that can be serviced from edge e_{k} onwards without exceeding the capacity W, i.e., $\operatorname{len}\left(e_{k}\right)=\max \left\{\ell: q_{k}+q_{k+1}+\cdots+q_{k+\ell-1} \leq W\right\}$.
$-R\left(e_{k}, \ell\right)$ is the minimum cost of a complete route that services ℓ edges (in any sense) starting from e_{k}, i.e., start from the depot, service $e_{k}, e_{k+1}, e_{k+2}, \ldots, e_{k+\ell-1}$ and return to the depot.
- $D^{0}\left(e_{k}, \ell\right)$ and $D^{1}\left(e_{k}, \ell\right)$ represent the minimum cost of a route that services $e_{k}, e_{k+1}, e_{k+2}, \ldots, e_{k+\ell-1}$ (in any sense) and finishes at the end point $e_{k+\ell-1}^{0}$ or resp. $e_{k+\ell-1}^{1}$ of edge $e_{k+\ell-1}$;

Figure 2: A bi-objective CARP instance and the values of the notations from Definition 2. There are 4 required edges in bold, each one having two end vertices (see labels 0 and 1 on each bold edge); we thus have a total of 9 vertices including the depot. We consider each two vertices are linked by a (required or non-required) edge whose traversal cost is given by the Manhattan distance between them.

Let us first focus on Figure 2 to familiarize with the above notations. The incremental calculation of $D^{0}\left(e_{k}, \ell\right), D^{1}\left(e_{k}, \ell\right)$ and $R\left(e_{k}, \ell\right)$ for $k \in[1 . . n]$ and $\ell \in\left[1 . . \operatorname{len}\left(e_{k}\right)\right]$ will naturally give rise to a dynamic
programming scheme. Let us exemplify this calculation for input permutation $s=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ and $k=1$. First, we clearly have len $\left(e_{1}\right)=2$ because $q_{1}+q_{2}=9 \leq W$ and $q_{1}+q_{2}+q_{3}=12>W$ (recall $W=10$). We have to first determine the best routes for $\ell=1$ and then the best routes for $\ell=2$.
1.a) We have $D^{0}\left(e_{1}, 1\right)=4$ because this corresponds to a route that goes from the depot v_{0} to e_{1}^{1} (i.e., end 1 of e_{1}), services e_{1} and stops at e_{1}^{0} (i.e., end 0 of e_{1}), which generates a walk of cost $3+1=4$. An analogous argument is used to calculate $D^{1}\left(e_{1}, 1\right)=2+1=3$.
1.b) We have $R\left(e_{1}, 1\right)=6$ because this corresponds to a route that starts from the depot, travels to either end of e_{1}, services e_{1} and comes back to v_{0}. We actually have $D^{0}\left(e_{1}, 1\right)+2=D^{1}\left(e_{1}, 1\right)+3=6$.
2.a) We now move to $\ell=2$, i.e., to routes servicing two edges.

- To calculate $D^{0}\left(e_{1}, 2\right)$, recall that e_{1} has to be serviced before e_{2} because the given permutation is $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$. One can finish a (partial) trip in e_{2}^{0} either:
(i) by coming from e_{1}^{0} after having serviced e_{1} (i.e., continue the path of $D^{0}\left(e_{1}, 1\right)$), or
(ii) by coming from e_{1}^{1} after having serviced e_{1} (i.e., continue the path of $D^{1}\left(e_{1}, 1\right)$).

In both cases, the route has to first visit e_{2}^{1} before servicing e_{2} to end up in e_{2}^{0}. Thus, the above two choices lead to the formula below, where spath: $V \times V \rightarrow \mathbb{R}$ is a function encoding the shortest path in G (here given by the Manhattan distance).

$$
D^{0}\left(e_{1}, 2\right)=\begin{array}{rr}
\min \left(D^{0}\left(e_{1}, 1\right)+\operatorname{spath}\left(e_{1}^{0}, e_{2}^{1}\right)+c_{2},\right. & =\min (4+8+4, \tag{2}\\
\left.D^{1}\left(e_{1}, 1\right)+\operatorname{spath}\left(e_{1}^{1}, e_{2}^{1}\right)+c_{2}\right) & 3+9+4)
\end{array}
$$

- An analogous argument leads to $D^{1}\left(e_{1}, 2\right)=12$.
2.b) The calculation of $R\left(e_{1}, 2\right)$ uses the values $D^{0}\left(e_{1}, 2\right)$ and $D^{1}\left(e_{1}, 2\right)$ determined above. We can write:

$$
R\left(e_{1}, 2\right)=\begin{array}{rr}
\min \left(D^{0}\left(e_{1}, 2\right)+\operatorname{spath}\left(e_{2}^{0}, v_{0}\right),\right. & =\min (16+4, \tag{3}\\
\left.D^{1}\left(e_{1}, 2\right)+\operatorname{spath}\left(e_{2}^{1}, v_{0}\right)\right) & 12+6),
\end{array}
$$

The above formulae (2)-(3) illustrate the general calculation of $D^{1}\left(e_{1}, \ell\right), D^{2}\left(e_{1}, \ell\right)$ and $R\left(e_{1}, \ell\right)$ from the previously-computed $D^{0}\left(e_{1}, \ell-1\right)$ and $D^{1}\left(e_{1}, \ell-1\right) \forall \ell \in\left[2\right.$..len $\left.\left(e_{1}\right)\right]$. After a few notational translations, we can actually apply the above (2)-(3) to any $\ell \in\left[2 . .1 \mathrm{len}\left(e_{1}\right)\right]$:

$$
\begin{align*}
D^{0}\left(e_{1}, \ell\right) & =\min \left(D^{0}\left(e_{1}, \ell-1\right)+\operatorname{spath}\left(e_{\ell-1}^{0}, e_{\ell}^{1}\right), D^{1}\left(e_{1}, \ell-1\right)+\operatorname{spath}\left(e_{\ell-1}^{1}, e_{\ell}^{1}\right)\right)+c_{\ell} \tag{4a}\\
R\left(e_{1}, \ell\right) & =\min \left(D^{0}\left(e_{1}, \ell\right)+\operatorname{spath}\left(e_{\ell}^{0}, v_{0}\right), D^{1}\left(e_{1}, \ell\right)+\operatorname{spath}\left(e_{\ell}^{1}, v_{0}\right)\right) \tag{4b}
\end{align*}
$$

These two formulae actually constitute the dynamic programming recursion that calculates R and D level by level, by iteratively increasing ℓ. The above calculation of the values $D^{0}\left(e_{1}, \ell\right), D^{1}\left(e_{1}, \ell\right)$ and $R\left(e_{1}, \ell\right)$ for $\ell=1$ and $\ell=2$ is only an example of applying this recursion on ℓ, i.e., only showing how to advance from $\ell=1$ to $\ell=2$. We could not move to $\ell=3$ because $\operatorname{len}\left(e_{1}\right)=2$. The values thus calculated are visible in the first row from the tables D and R in the right part of Figure 2, one may check and verify the numbers in these two tables to gain full familiarity with the recursion.

The above formulae can be used to generate only routes that start by servicing e_{1}. To construct full solutions, we need chain (or put together) more routes that start at different edges e_{k}, for $k \in[1 . . n]$. For instance, a full Pareto-optimal solution for $n=4$ may contain two routes: one of cost $R\left(e_{1}, 1\right)$ that services only one edge and one of cost $R\left(e_{2}, 3\right)$ that services three edges. To compute D and R for $k>1$, it is actually enough to add an offset (of $k-1$) to the subscript of each occurrence of " e " and " c " in (4a)- (4b), see Section 2.1.2 for the exact resulting formulae. There is no connexion between the calculation of D and R for two different values of k.

2.1.2 The complete pseudo-code

The pseudo-code consists of three major steps clearly emphasized in Algorithm 1. The first step simply initializes R, D^{0} and D^{1} as two-dimensional data structures; they are actually implemented as arrays of arrays, e.g., D^{0} is an array with $n=\left|E_{R}\right|$ positions, and, for each $k \in[1 . . n]$, the array $D^{0}[k]$ has len $\left(e_{k}\right)$ elements. The first part of Algorithm 1 provides full details on this initialization.

The second major step actually implements a generalization of 4a) 4b. More exactly, Line 10 is obtained from 4a) by performing the following replacements: $e_{1} \rightarrow e_{k+1}, e_{\ell-1} \rightarrow e_{k+\ell-1}$, and $c_{\ell} \rightarrow c_{k+\ell}$. Line 12 is obtained from 4b) by performing the above replacements and also $e_{\ell} \rightarrow e_{k+\ell}$.

```
Algorithm 1: Dynamic Programming Multi-Objective Decoder
    Input: permutation \(\left(e_{1} \ldots e_{n}\right)\) of the required edge \(E_{R}\)
    // STEP 1: INITIALIZE len, \(R, D^{0}\) AND \(D^{1}\)
    len, \(R, D^{0}, D^{1} \leftarrow\) arrays with \(n\) positions;
    for \(k=1\) to \(n\) do
        \(\operatorname{len}\left(e_{k}\right) \leftarrow \max \left\{\ell: \sum_{i=0}^{\ell-1} q_{k+i} \leq W\right\} \quad / /\) max served edges \(;\)
        \(R\left(e_{k}\right), D^{0}\left(e_{k}\right), D^{1}\left(e_{k}\right) \leftarrow\) arrays with len \(\left(e_{k}\right)\) elements \(\quad / / R, D^{0}\) and \(D^{1}\) become matrices;
    // STEP 2: COMPUTE \(R, D^{0}\) AND \(D^{1}\)
    for \(k=0\) to \(n-1\) do
        \(D^{0}\left(e_{k+1}, 1\right) \leftarrow \operatorname{spath}\left(v_{0}, e_{k+1}^{1}\right)+c_{k+1} \quad / / \operatorname{spath}\left(v_{i}, v_{j}\right)\) is the shortest path from \(v_{i}\) to \(v_{j}, \forall v_{i}, v_{j} \in V\);
        \(D^{1}\left(e_{k+1}, 1\right) \leftarrow \operatorname{spath}\left(v_{0}, e_{k+1}^{0}\right)+c_{k+1} ;\)
        \(R\left(e_{k+1}, 1\right) \leftarrow \min \left\{D^{0}\left(e_{k+1}, 1\right)+\operatorname{spath}\left(e_{k+1}^{0}, v_{0}\right), D^{1}\left(e_{k+1}, 1\right)+\operatorname{spath}\left(e_{k+1}^{1}, v_{0}\right)\right\} ;\)
        for \(\ell=2\) to \(\operatorname{len}\left(e_{k+1}\right)\) do
            \(D^{0}\left(e_{k+1}, \ell\right) \leftarrow \min \left(D^{0}\left(e_{k+1}, \ell-1\right)+\operatorname{spath}\left(e_{k+\ell-1}^{0}, e_{k+\ell}^{1}\right)+c_{k+\ell}\right.\),
                        \(\left.D^{1}\left(e_{k+1}, \ell-1\right)+\operatorname{spath}\left(e_{k+\ell-1}^{1}, e_{k+\ell}^{1}\right)+c_{k+\ell}\right) ; \quad / /\) this implements 4a
            \(D^{1}\left(e_{k+1}, \ell\right) \leftarrow \min \left(D^{0}\left(e_{k+1}, \ell-1\right)+\operatorname{spath}\left(e_{k+\ell-1}^{0}, e_{k+\ell}^{0}\right)+c_{k+\ell}\right.\),
                        \(\left.D^{1}\left(e_{k+1}, \ell-1\right)+\operatorname{spath}\left(e_{k+\ell-1}^{1}, e_{k+\ell}^{0}\right)+c_{k+\ell}\right) ;\)
            \(R\left(e_{k+1}, \ell\right) \leftarrow \min \left(D^{0}\left(e_{k+1}, \ell\right)+\operatorname{spath}\left(e_{k+\ell}^{0}, v_{0}\right), D^{1}\left(e_{k+1}, \ell\right)+\operatorname{spath}\left(e_{k+\ell}^{1}, v_{0}\right)\right) ; \quad / /\) implement 4b)
    // STEP 3: CONSTRUCT NON-DOMINATED SOLUTIONS BY CHAINING INDIVIDUAL ROUTES RECORED IN \(R\)
    sol \(\leftarrow\) array indexed by \(k \in[0 . . n] \quad / / \operatorname{sol}[k]\) is a Pareto set of pairs of objective values \(\left(C^{\text {tot }}, C^{\text {max }}\right)\)
    sol \([0] \leftarrow\{(0,0)\} \quad / / k=0\) means nothing serviced yet; \((0,0)\) means both costs are 0
    for \(k=0\) to \(n-1\) do
        forall \(\left(C^{\text {tot }}, C^{\max }\right) \in \operatorname{sol}[k]\) do
            for \(\ell=1\) to \(\operatorname{len}\left(e_{k+1}\right)\) do
                \(C_{+}^{\text {tot }} \leftarrow C^{\text {tot }}+R\left(e_{k+1}, \ell\right) \quad / /\) add a new route that services \(e_{k+1}, e_{k+2}, \ldots, e_{k+\ell} ;\)
                \(C_{+}^{\max } \leftarrow \max \left(C^{\max }, R\left(e_{k+1}, \ell\right)\right)\);
                if \(\left.\nexists\left(C_{\mathbf{o l d}}^{\mathbf{t o t}}, C_{\mathbf{o l d}}^{\max }\right) \in \operatorname{sol}[k+\ell]\right)\) such that \(\left(C_{\text {old }}^{\text {tot }}, C_{\mathbf{o l d}}^{\max }\right) \prec\left(C_{+}^{\text {tot }}, C_{+}^{\max }\right)\) then
                \(\operatorname{sol}[k+\ell] \leftarrow \operatorname{sol}[k+\ell] \cup\left(C_{+}^{\mathrm{tot}}, C_{+}^{\max }\right) \backslash\left\{\left(C_{\mathrm{old}}^{\mathrm{tot}}, C_{\mathrm{old}}^{\max }\right):\left(C_{+}^{\mathrm{tot}}, C_{+}^{\max }\right) \prec\left(C_{\mathrm{old}}^{\mathrm{tot}}, C_{\mathrm{old}}^{\max }\right)\right\} ;\)
    return \(\operatorname{sol}[n]\)
```

The third major step uses the route costs calculated above (as recorded in R) to incrementally construct full solutions. We use a table of partial solutions sol indexed by $k \in[0 . . n]$ such that sol $[k]$ represents all non-dominated partial solutions that service all edges $e_{1}, e_{2}, \ldots e_{k}$ (or that service nothing if $k=0$). More technically, sol $[k]$ is a Pareto frontier of objective value pairs ($C^{\text {tot }}, C^{\text {max }}$), each pair corresponding to a non-dominated partial solution. The main operation of this last step consists of expanding this set of partial solutions by incrementally inserting new routes: given a solution of sol $[k]$ that services $e_{1}, e_{2}, \ldots e_{k}$ at Line 16 , we use Lines 1819 to insert a new route that services the edges $e_{k+1}, e_{k+2}, \ldots e_{k+\ell}$ and that costs $R\left(e_{k+1}, \ell\right)$. If the resulting solution is not dominated by a solution that already exists in sol $[k+\ell]$ (see the if at Line 20, then this solution is added to sol $[k+\ell]$ at Line 21 . At the same time, Line 21 removes all existing solutions ($C_{\text {old }}^{\text {tot }}, C_{\text {old }}^{\max }$) that are dominated by the new solution. Eventually, the last line returns the Pareto frontier sol $[n]$ which contains all non-dominated solutions that service all clients [1..n].

The complexity of Algorithm 1 (mostly due to Step 3) depends linearly on n (at Line 15), on the maximum size of a Pareto frontier $\max \{|\operatorname{sol}[k]|: k \in[1 . . n]\}$ (at Line 16) and on the maximum length of a route (Line 17). Finally, Appendix B provides an execution example for input permutation $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ and the instance from Figure 2

Theorem 1. Algorithm 1 generates all non-dominated solutions that service the clients in the order indicated by the input permutation (i.e., the decoder is exact).

Proof. We can consider the input permutation is $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$; this does not reduce generality, because all arguments below remain valid up to a reordering of the edges.

We first prove that $D^{0}\left(e_{k}, \ell\right)$ and $D^{1}\left(e_{k}, \ell\right)$ represent (the states associated to) the minimum-cost route that services $e_{k}, e_{k+1}, e_{k+2}, \ldots, e_{k+\ell-1}$ and finishes at the end point $e_{k+\ell-1}^{0}$ or resp., $e_{k+\ell-1}^{1}$ of edge $e_{k+\ell-1}$ $(\forall k \in[1 . . n])$. For $\ell=1$, this is clearly true given how Lines 677 of Algorithm 1 simply compute these minimum-cost routes with only one serviced edge e_{k}. We prove by induction on ℓ that this property remains true for $\ell>1$. What is the shortest path that services $e_{k}, e_{k+1}, \ldots, e_{k+\ell-1}$ and ends up at vertex $e_{k+\ell-1}^{0}$ associated to state $D^{0}\left(e_{k}, \ell\right)$? This vertex $e_{k+\ell-1}^{0}$ has to be reached after servicing the last edge $e_{k+\ell-1}$ coming from its other end vertex $e_{k+\ell-1}^{1}$; and this other end vertex can only be reached by extending a path associated to state $D^{0}\left(e_{k}, \ell-1\right)$ or to state $D^{1}\left(e_{k}, \ell-1\right)$. Both possibilities are covered by the recursion at Line 10, meaning that $D^{0}\left(e_{k}, \ell\right)$ correctly represent the shortest path that services $e_{k}, e_{k+1}, \ldots, e_{k+\ell-1}$ and ends up at $e_{k+\ell-1}^{0}$. An analogous argument can show the same property for $D^{1}\left(e_{k}, \ell\right)$ instead of $D^{0}\left(e_{k}, \ell\right)$.

We now show that $R\left(e_{k}, \ell\right)$ is the minimum-cost complete route that services all edges e_{k}, e_{k+1}, e_{k+2}, $\ldots, e_{k+\ell-1}$ in this order $(\forall k \in[1 . . n])$; since the route is complete in this case, it has to return to the depot in the end. And it can only return to the depot by extending a path associated to $D^{0}\left(e_{k}, \ell\right)$ or $D^{1}\left(e_{k}, \ell\right)$. Both possibilities are covered by Line 12 .

We still have to prove that the last major step of Algorithm 1 generates all non-dominated Pareto optimal solutions. Assume for the sake of contradiction that there is a non-dominated solution that is not covered. The cost of such solution can be written under the form

$$
\begin{equation*}
R\left(e_{1}, \ell_{1}\right)+R\left(e_{1+\ell_{1}}, \ell_{2}\right)+R\left(e_{1+\ell_{1}+\ell_{2}}, \ell_{3}\right)+\cdots+R\left(e_{1+\ell_{1}+\ell_{2}+\cdots+\ell_{m-1}}, \ell_{m}\right) \tag{5}
\end{equation*}
$$

where m is the number of routes in this full non-dominated solution, so that $\ell_{1}+\ell_{2}+\cdots+\ell_{m}=n$ (meaning that these m routes service n edges). Keep in mind that all R values from the above sum are correctly calculated by dynamic programming as described above. And recall that, in Step 3 of Algorithm 1 , $\operatorname{sol}[0]$, sol $[1], \operatorname{sol}[2], \ldots, \operatorname{sol}[n]$ are meant to contain the sets of Pareto-optimal solutions that service the first $0,1,2, \ldots, n$ edges respectively. The hypothesis assumed for the sake of contradiction reduces to the fact that sol $[n]$ does not contain the solution associated to above sum (5).

If we restrict above sum (5) to the first $m^{\prime}<m$ routes, we still obtain a complete non-dominated solution that only services the first $\ell_{1}+\ell_{2}+\cdots+\ell_{m^{\prime}}<n$ edges. Let us now take m^{\prime} to be the smallest value in [1..m] such that sol $\left[\ell_{1}+\ell_{2}+\cdots+\ell_{m^{\prime}}\right]$ does not contain the given optimal solution restricted to the first m^{\prime} routes in (5). Since m^{\prime} is minimal with this property, we can use that sol $\left[\ell_{1}+\ell_{2}+\cdots+\ell_{m^{\prime}-1}\right]$ does
 correctly computed, this optimal solution of $m^{\prime}-1$ routes can naturally extend to the solution of m^{\prime} routes by applying Lines 1819 for $k=\ell_{1}+\ell_{2}+\cdots+\ell_{m^{\prime}-1}$. Thus, there is no way Algorithm 1 could miss the solution of m^{\prime} routes, which is a contradiction. The hypothesis assumed for the sake of contradiction that there is a full optimal solution not covered by Algorithm 1 has to be false.

Finally, the fact that sol $[n]$ contains only non-dominated solutions simply comes from the fact that $\operatorname{sol}[0]$, $\operatorname{sol}[1], \ldots \operatorname{sol}[n]$ represent by definition (and are implemented to record) Pareto frontiers of nondominated solutions only. Combining this with the previous paragraph, sol $[n]$ has to contain exactly the list of non-dominated solutions of the given CARP instance subject to the service order imposed by the input permutation.

2.2 The Local Search phase

We consider the first objective $C^{\text {tot }}$ to be more important than $C^{\text {max }}$, and so, we here propose a Local Search (LS) algorithm that attempts to improve the $C^{\text {tot }}$-best solution returned by the decoder (from Section 2.1).

2.2.1 The neighborhood

We use two neighborhood relations associated to two operators (moves): route rotation and (unequal) block swap. All these moves can be executed in constant time but the number of potential positions on which they can be applied can be quadratic with regards to n.

Route rotation is a simple operator that acts on individual routes. Each route \mathbf{r} is interpreted as a closed walk $v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots v_{|\mathbf{r}|} \rightarrow v_{0}$. Using a similar approach as in Ulusoy, 1985, §3.3], one can re-locate the depot v_{0} and place it before any index $i \in[2 . .|\mathbf{r}|]$ to obtain a new route $v_{0} \rightarrow v_{i} \rightarrow v_{i+1} \rightarrow$ $\ldots v_{|\mathbf{r}|} \rightarrow v_{1} \rightarrow v_{2} \cdots \rightarrow v_{i-1} \rightarrow v_{0}$. The cost variation resulting from this operation can be computed in constant time, because it only requires determining the cost of disconnecting and "re-linking" the connexion points $v_{0}, v_{1}, v_{i-1}, v_{i}$ and v_{r}. When taking all routes into account, this operator can be applied on $O(n)$ positions.

Block swap is an operator that simply swaps two route blocks of arbitrary lengths; these blocks may belong to the same route or to different routes. Let us focus on the following two routes, using notation " \rightsquigarrow " to indicate a shortest path linking two vertices (with no service) and " \rightarrow " to indicate a serviced edge.

$$
\begin{aligned}
& -v_{0} \ldots \rightsquigarrow \underset{\text { edge 1 }}{u_{1} \rightarrow v_{1}} \rightsquigarrow \underset{\text { edge 2 }}{u_{2} \rightarrow v_{2}} \rightsquigarrow \underset{\text { edge } 3}{u_{3} \rightarrow v_{3}} \rightsquigarrow \ldots v_{0} \\
& -v_{0} \ldots \rightsquigarrow \overline{\text { edge }} 1_{\bar{u}_{1} \rightarrow \bar{v}_{1}}^{>}{\underset{\text { edge } 2}{\bar{u}_{2} \rightarrow \bar{v}_{2}} \rightsquigarrow \ldots v_{0}}_{\underbrace{}_{\text {en }}}
\end{aligned}
$$

A block swap may simply take a block $u_{i+1} \rightarrow$ $v_{i+1} \rightsquigarrow u_{i+2} \rightarrow v_{i+2} \ldots \rightsquigarrow u_{i+\delta} \rightarrow v_{i+\delta}$ of the first route and swap it with a block $\bar{u}_{j+1} \rightarrow$ $\bar{v}_{j+1} \rightsquigarrow \bar{u}_{j+2} \rightarrow \bar{v}_{j+2} \ldots \rightsquigarrow \bar{u}_{j+\bar{\delta}} \rightarrow \bar{v}_{j+\bar{\delta}}$ of the second route. Notice that in the above example we have $\delta=3$ and $\bar{\delta}=2$ (and $i=j=0$). For $\delta=\bar{\delta}=1$, this is simply equivalent to swapping two required edges. One may also reverse one of the blocks or both of them when this improves the total cost. For any given i, j, δ and $\bar{\delta}$, the objective function variation can be calculated in constant time, because one only has to evaluate the cost evolution resulting from disconnecting the two blocks at their end points and re-connecting them at their new places. The capacity constraint can also be checked in constant time. The number of potential i, j, δ and $\bar{\delta}$ values on which this operator can be applied belongs to $O\left(n^{2} \delta_{\max }^{2}\right)$, where $\delta_{\text {max }}$ is the maximum size of an existing block (we use $\delta_{\max }=50$ in our experiments).

Figure 3: Block swap operator example. The red block (2 required edges) and the blue block (3 required edges) from the two routes at left are swapped from one route to another. We obtain the two routes at right, after having reconnected the two blocks to the edges emerging from the depot. Both resulting routes will pass through the top-left vertex and they are linked there as shown in the right figure.

The implementation of the above block swap operator was the most difficult programming task in the whole project; it is significantly more complex than implementing a route rotation or a block swap with
$\delta=\bar{\delta}$. Handling the right data structures to record routes of evolving length may be an elaborate task; an array-type data structure is not enough for this. However, preliminary experiments show that the effort pays off; this is a very aggressive tool for finding high-quality solutions. We tested several other neighborhoods before restricting to the presented ones, see also Section 4.2 for numerical tests on a block swap neighborhood with $\delta=\bar{\delta}$. We do not think we could have ever improved upon the best $C^{\text {tot }}$ upper bound reported in the mono-objective literature without swapping blocks of arbitrary lengths as described above.

2.2.2 Complete specification of the LS algorithm

The LS algorithm consists of the following two stages described below in more detail.
strictly descent loop This first phase applies moves that strictly decrease the total cost, so as to search for local optima in the basin of attraction of the input solution (returned by the decoder).
unequal block swapping Perform iters_ls $=5+\left\lfloor\frac{n}{8}\right\rfloor$ iterations that swap unequal blocks, allowing side steps.

Stage 1 starts with the following operation: go through all pairs of edges and execute any edge swap (i.e., a block swap with $\delta=\bar{\delta}=1$) that strictly improves the total cost. This operation is repeated as long as there exists at least a swap that strictly improves the total cost, a bit like in a bubble search algorithm. One then performs all route rotations that lead to a better solution. The whole procedure in this stage is repeated as long as the solution reported in the end is strictly better than the starting solution.

Stage 2 executes iters_ls iterations of the following procedure: scan all pairs of blocks and perform all swaps that do not increase the $C^{\text {tot }}$ cost. Recall it is also possible to reverse one of the blocks (or even both) when this improves the cost $\left.\right|^{4}$ Neutral steps are thus accepted for the first time, which may lead the LS to solutions outside the basin of attraction of the starting solution. If at some iteration all possible block swaps would strictly increase the cost, we consider that the search is (almost) stuck in a local optimum. This calls for a small perturbation: go through all pairs of edges and swap them with a probability of 0.1, which amounts to eventually dislocating around 10% of the edges. This stage is not used for the very small instances $(n<50)$.

3 The decoder-based EA framework in the implicit space

We here introduce a bi-objective EA in a decoder-based optimization framework, only characterized by the existence of an (exact) decoder that hides all problem-specific (CARP) features. A particular aspect in this context it that one has to associate multiple pairs of objective values to each genotype solution, i.e., there are multiple 2D points in the objective space for each implicit solution. This brings certain challenges comparing to a standard bi-objective EA in which each genotype solution is associated to a unique point in the objective space. We will pay particular attention to two components that are very relevant in biobjective optimization Talbi, 2009: (1) assigning fitness and ranks to (genotype) solutions and (2) keeping the diversity high at all levels to prevent a limited amount of gene patterns from monopolizing the population over too many generations.

Section 3.1 below addresses the first component: the fitness (and rank) assignment. Its goal is to compare and rank a set of genotype solutions (individuals) with conflicting objective values. The resulting ranking can be used for multiple purposes: to decide what individuals to accept in the population, what individuals need to be replaced and when to apply mutations. In our case, we will generalize the non-dominated sorting mechanism of NSGA, organizing the individuals into a hierarchy of fronts of different ranks.

[^3]
3.1 Ranking implicit solutions using an extended non-dominated sorting

Recalling Definition 1, we consider a decoder function \mathscr{D} that maps an implicit (genotype) solution $s \in \mathscr{S}$ to a set of decoded complete solutions $\mathscr{D}(s)$ from the explicit space \mathscr{X}. We have to design a method for ranking the implicit solutions of a population $P_{\mathscr{S}}$ based on the corresponding explicit solutions from \mathscr{X} and their objective values. A bird's-eye view of this process is exemplified in the right figure. Considering a small population $P_{\mathscr{S}}$ with $\left|P_{\mathscr{S}}\right|=2$, the genotype solutions $s, s^{\prime} \in \mathscr{S}$ are decoded into sets $\mathscr{D}(s)$ and $\mathscr{D}\left(s^{\prime}\right)$. After calculating all objective values of all explicit solutions from these two sets, one has to assign ranks to s and s^{\prime}, i.e., to decide which one is preferable.

We propose the following (fitness) evaluation approach. Given a population $P_{\mathscr{S}} \subset \mathscr{S}$, we first decode all elements of $P_{\mathscr{S}}$ and then compute their objective values. We thus obtain a number of 2-dimensional (2D) points in the objective space that all emerge from $P_{\mathscr{S}}$. These 2D points are then partitioned into a hierarchy of Pareto frontiers of different ranks (levels of (non-)domination) as in a pure NSGA2. More exactly, the front of rank 1 contains all 2D points that are completely non-dominated in the objective space. Then, the front of rank $k=2,3, \ldots$ contains all 2 D points that are dominated only by 2 D points of better rank (lower than k). We then define the (top) rank $\operatorname{rank}_{\mathrm{top}}(s)$ of a given $s \in P_{\mathscr{S}}$ as the minimum (best) rank value of a 2 D point (in the objective space) that emerged from s.

Remark 1. A second evaluation step is often needed, whenever one needs to distinguish between implicit solutions that have the same (top) rank. For each $s \in P_{\mathscr{S}}$, the top-rank size size top (s) is defined as the number of $2 D$ points of rank rank $_{\text {top }}(s)$ that originate from s. This quality measure will be used in Section 3.4 (point 1.(b)) to perform a roulette wheel survival selection based on the idea that higher quality implicit solutions generate more top-rank 2D points.

Figure 4 gives an example of the above evaluation process on a small population $P_{\mathscr{S}}=\left\{s, s^{\prime}, s^{\prime \prime}\right\}$. Notice that an implicit solution is always evaluated with regards to the whole population to which it belongs. Even if $s^{\prime \prime}$ is preferable to s in the given population, this is no longer true if we remove s^{\prime} from $P_{\mathscr{S}}$ because the 2D points a and b would become non-dominated in the objective space.

3.2 The general design and overall pseudo-code

As hinted above, the non-domination sorting is an important concept used in NSGA2 Deb et al., 2002 to organize the population into a hierarchy of fronts (sets) such that all solutions from a given front F_{k} dominate all solutions of inferior rank (from fronts F_{k+1}, F_{k+2}, \ldots); the top-right part of Figure 4 gives an example showing how a rank-1 front $\{c, d, f\}$ dominates a rank-2 front $\{a, b, e\}$. While this non-domination sorting is performed in the objective space, recall we extended it in Section 3.1 to evaluate solutions from the implicit space. The non-domination sorting idea is actually the only major NSGA2 feature that we use (and extend) in our work. For instance, unlike other CARP algorithms Lacomme et al., 2006, we do not resort to the crowding distance metric which is used in NSGA2 to induce a preference for more isolated solutions along the Pareto frontier. In our case, whenever we have to distinguish between two solutions s and s^{\prime} that belong to the same front (in the sense that $\operatorname{rank}_{\mathrm{top}}(s)=\operatorname{rank}_{\mathrm{top}}\left(s^{\prime}\right)$), we compare $\operatorname{size}_{\mathrm{top}}(s)$ and $\operatorname{size}_{\text {top }}\left(s^{\prime}\right)$ as indicated in Remark 1 above.

Algorithm 2 presents the overall pseudo-code of the proposed Decoder-EA. At iteration it $=1$, it starts with a genotype population $P_{\mathscr{g}}^{1}$ of pop $_{\text {size }}$ random implicit solutions which are all decoded (Line 2 into an explicit population $P_{\mathscr{X}}^{1}$. The outer while loop performs the following. First, it generates an offspring population $Q_{\mathscr{g}}^{\text {it }}$ of pop size implicit solutions by crossover at Line 5 . The next line decodes these implicit solutions into explicit solutions followed by the LS call at Line 7 Recall (Section 2.2) that the LS may

Figure 4: Illustration of our extended non-dominated sorting. The implicit solutions from population $P_{\mathscr{S}}$ are decoded into explicit solutions (solid arrows) which are then evaluated in the objective space (dashed arrows). The larger arrows illustrate the calculation of $\operatorname{rank}_{\mathrm{top}}(s)$ and $\operatorname{size}_{\mathrm{top}}(s)$ for all $s \in P_{\mathscr{S}}$.

```
Algorithm 2: Decoder-EA
    \(P_{\mathscr{L}}^{1} \leftarrow\) RandomPop();
    \(P_{\mathscr{X}}^{1} \leftarrow \operatorname{Decode}\left(P_{\mathscr{S}}^{1}\right) ; \quad / /\) each explicit solution has a label pointing to the implicit solution that generated it
    it \(\leftarrow 1\);
    while stopping criterion not met do
        \(Q_{\mathscr{S}}^{\mathrm{it}} \leftarrow \operatorname{Crossover}\left(P_{\mathscr{S}}^{\mathrm{it}}\right)\);
        \(Q_{\mathscr{X}}^{\mathrm{it}} \leftarrow\) Decode \(\left(Q_{\mathscr{Y}}^{\mathrm{it}}\right)\);
        \(Q_{\mathscr{X}}^{\mathrm{it}}, Q_{\mathscr{S}}^{\mathrm{it}} \leftarrow\) LocalSearch \(\left(Q_{\mathscr{X}}^{\mathrm{it}}\right)\);
        updateFrontBestSols \(\left(Q_{\mathscr{C}}^{\mathrm{it}}\right)\); // the best non-dominated solutions ever generated
        \(P_{\mathscr{S}}^{\mathrm{it}+1}, P_{\mathscr{X}}^{\mathrm{it}+1} \leftarrow\{ \} ;\)
        rank \(\leftarrow 1\);
        while \(\left|P_{\varphi}^{\text {it }+1}\right|<\) pop \(_{\text {size }}\) do
            \(F_{\mathscr{S}} \leftarrow \operatorname{getFront}\left(P_{\mathscr{S}}^{\mathrm{it}}, Q_{\mathscr{S}}^{\mathrm{it}}, P_{\mathscr{X}}^{\mathrm{it}}, Q_{\mathscr{X}}^{\mathrm{it}}\right.\), rank \() ; \quad / /\) get only the implicit solutions for the current rank
            \(P_{\mathscr{S}}^{\mathrm{it}+1} \leftarrow P_{\mathscr{S}}^{\mathrm{it}+1} \cup\left\{F_{\mathscr{S}}\right\}\);
            \(P_{\mathscr{X}}^{i t+1} \leftarrow P_{\mathscr{X}}^{\mathrm{it}+1} \bigcup\) explicitSolutions \(\left(F_{\mathscr{S}}\right) ; \quad / /\) add the explicit solutions from \(P_{\mathscr{X}}^{i t}\) associated to \(F_{\mathscr{S}}\)
            rank \(\leftarrow \operatorname{rank}+1\);
        it \(\leftarrow\) it +1 ;
    return the Pareto optimal solutions constructed along the iterations via Line 8
```

change the implicit solution on which it is applied; this update is back propagated and may change Q_{g}^{it}. Line 8 checks if the Pareto frontier of the best objective values ever generated may be enriched by some new offspring solution; this frontier will be returned by the last line of the algorithm.

The core of the overall algorithm is the inner while loop that constructs the next-generation populations $P_{\mathscr{G}}^{\mathrm{it}+1}$ and $P_{\mathscr{X}}^{\mathrm{it+1}}$. This construction uses the extended non-dominated sorting presented in Section 3.1. More exactly, the repeated call to getFront (...) at Line 12 retrieves one by one a sequence of fronts of implicit solutions that have an increasingly weaker rank; these fronts are iteratively added to the next-generation
populations using Lines 13 14. If the size of the current front is larger than the number of remaining places in the new population $\left(\right.$ i.e., pop $_{\text {size }}-\left|P_{\mathscr{g}}^{\mathrm{it+1}}\right|$), then getFront (...) may actually return a reduced front. This may only happen at the last iteration of the inner while loop. Although all solutions s from this last front have the same $\operatorname{rank}_{\text {top }}(s)$ value, they can be distinguished using their different size ${ }_{\text {top }}(s)$ values; we use a roulette wheel selection to decide which solutions may survive (see point 1.(b) in Section 3.4 below).

As a side note, Algorithm 2 has to continuously maintain a link between the explicit solutions $P_{\mathscr{X}}^{\text {it }}$ and the implicit solutions P_{g}^{it}. All routines that work with explicit solutions (e.g., see the LocalSearch and getFront calls) have to be able to access the implicit solution associated to each explicit solution.

3.3 The crossover and the parent selection

After trying multiple ideas ${ }^{5}$ we decided to only use the very simple one-point permutation crossover. This crossover simply takes the first $\left\lfloor\frac{n}{2}\right\rfloor$ positions of the first parent permutation and directly passes them to the offspring; we say $\left\lfloor\frac{n}{2}\right\rfloor$ is the split point. The remaining elements are inherited from the second parent in the order in which they appeared there. For example, the crossover of $[1,2,3,4,5,6]$ and $[6,4,3,2,1,5]$ would result in $[1,2,3,6,4,5]$. We mention a small adaptation that is specific to Arc-Routing. After the decoder and the LS phase, we can easily identify the routes of the $C^{\text {tot }}$-best decoded solution and "pay attention" not to break such a route, especially if it is not very short. More exactly, if such a route covers an interval of indexes $\left[n / 2-\delta_{1}, n / 2+\delta_{2}\right.$] with $\delta_{1}+\delta_{2}>5$, then the split point becomes $n / 2+\delta_{2}$ instead of $n / 2$.

This permutation produced the
explicit solution of minimum total
cost (over the whole population).
This explicit solution has two
routes servicing edges $\{6,5,3,4\}$
and $\{1,2\}$. Thus, the parents will
not be split into two equal halfs
$(3+3)$, but in a $4+2$ manner.

Figure 5: Example showing how the crossover would be applied on a population of size pop $_{\text {size }}=5$. The first parent is indicated by solid arrows; the second one by dashed arrows. Each offspring inherits the first 4 elements from the first parent (the left legend explains the choice of the value 4 in this simplified setting); the remaining elements are inherited from the second parent in the order in which they appeared there.

The parent selection is performed as follows. Let $C_{\min }^{\text {tot }}(s)$ be the $C^{\text {tot }}$-best objective value of an explicit solution decoded from s, for any $s \in P_{\mathscr{g}}^{\mathrm{it}}$. Let $C_{\text {worst }}^{\mathrm{tot}}$ be the maximum value of $C_{\min }^{\mathrm{tot}}(s)$ over all $s \in P_{\mathscr{L}}^{\mathrm{it}}$, i.e., $C_{\text {worst }}^{\mathrm{tot}}=\max \left\{C_{\min }^{\mathrm{tot}}(s): s \in P_{g}^{\mathrm{itt}}\right\}$. We would like to favor solutions s with a small $C_{\min }^{\mathrm{tot}}(s)$ value, i.e., s should be preferable to s^{\prime} if $C_{\min }^{\mathrm{tot}}(s)<C_{\min }^{\mathrm{tot}}\left(s^{\prime}\right)$. We thus propose a parent selection based on a roulette wheel procedure that assigns to each $s \in P_{\mathscr{L}}^{\mathrm{it}}$ a probability value proportional to $\left(C_{\mathrm{worst}}^{\mathrm{tot}}-C_{\mathrm{min}}^{\mathrm{tot}}(s)\right)^{2}$. Notice that the solution s that has the worst $C_{\min }^{\text {tot }}(s)$ value (i.e., $\left.C_{\min }^{\mathrm{tot}}(s)=C_{\mathrm{worst}}^{\mathrm{tot}}\right)$ has zero chances of being selected.

3.4 Improving the population dynamics to avoid premature convergence

The above Algorithm 2 is actually the most general pseudo-code that can capture the main ideas of the overall method. To make Decoder-EA reach its full potential, one has to study (and improve) the general dynamics of the population, i.e., to understand in more detail how it evolves over the generations. One can gain insight into such (sometimes tricky) aspects only after covering the previous more general algorithmic descriptions. This confirms that the devil is in the details: the current section comes last but it nevertheless involves important or non-standard (research) material. Without this material, we avow that our very first implementation of Algorithm 2 (with some naive calibration) was particularly prone to premature

[^4]convergence, i.e., all individuals could become almost identical in less than 100 iterations (generations). We tested many ideas to overcome such drawbacks; we finally implemented only the most effective ones that we present below.

1. To maintain a high-quality population in the long run, one has to be very careful in deciding what individuals may survive from one generation to the next; this has an important impact on selecting the gene patterns that survive over (many) generations. This (survival) selection is actually implemented inside the repeated call to getFront (. . .) in the inner while loop of Algorithm 2 , This getFront (. .) function first retrieves all individuals for the current rank and then it filters them by applying the following principles:
(a) First and foremost, we need a protection against premature convergence, because otherwise a few high-quality individual refined over multiple generations could completely "shadow" all new offspring, i.e., a few old individuals may achieve a quality level that is hardly ever reached by new individuals (which barely survive such selective pressure). To implement this protection, we never allow more than 30% of the current implicit population $P_{\mathscr{S}}$ to survive to the next generation; as such, at least 70% of the genetic material of each population has to come from recent offspring. Using pop size $=10$, we actually only allow the best 3 individuals to survive. Furthermore, Decoder-EA also checks that the surviving individuals are not always the same, which may happen if a few individuals reach such a high level of quality that no other individuals can compare to them. After five generations in which the surviving individuals are exactly the same, we select one of them to be artificially replaced (outlived) by a different random solution from the population. We can say that we implemented a policy that encourages young individuals instead of allowing a few old individuals to dominate the genetic material in the long run.
(b) If the number of remaining positions in the new population (i.e., pop $_{\text {size }}-\left|P_{g}^{i t+1}\right|$) becomes smaller than the number of individuals of rank rank, these individuals can not all survive. Recalling Remark 1 from Section 3.1, we formally say that all these individuals (solutions) s have same top-rank value $\operatorname{rank}_{\mathrm{top}}(s)=$ rank, but they may have different top-rank sizes $\operatorname{size}_{\mathrm{top}}(s)$. In this case, getFront (...) performs a selection by applying a roulette wheel procedure in which the survival probability of each considered solution s is proportional to $\left(\operatorname{size}_{\text {top }}(s)\right)^{2}$.
2. We also need a (re-)diversification operation that we use after many generations with no progress. Decoder-EA can detect such an undesirable state quite easily by monitoring the evolution of the Pareto frontier of the best objective values ever discovered. Recall that, at each generation, Line 8 attempts to improve this Pareto frontier by trying to insert the objective values of the new offspring. After 2000 generations with no new insertion at Line 8, Decoder-EA performs a (re-)diversification operation, so as to try to make the population escape from the basin of attraction of the current best implicit solutions. We first mark all implicit solutions $s \in P_{g}^{i t}$ such that the $C^{\text {tot }}$-best cost of an explicit solution decoded from s is within 110% of the $C^{\text {tot }}$-best cost ever reported since the last re-diversification. We then eliminate (replace with random solutions) the following: (i) all marked implicit solutions s, and (ii) all other solutions $\bar{s} \in P_{\mathscr{S}}^{\mathrm{it}}$ that are very close to a marked implicit solution $s \square^{6}$
3. Finally, we need to monitor the potential appearance of duplicated individuals. Each time a new individual is generated (by crossover followed by LS), we check if the current population does not already contain an identical individual. We allow an individual to be duplicated once; this may be acceptable because it may lead the population towards a stronger basin of attraction where more highquality gene patterns may be found. But if we detect that the last generated individual already exists at least twice in the population, we apply a perturbation before inserting it T^{7}
[^5]
4 Numerical Results on Arc-Routing

We now perform an evaluation of Decoder-EA over all CARP instances that we are aware of. They originate from six different benchmark sets, distinguished by their different prefix: gdb, kshs, val, egl, C-F or g. The average value of $n=\left|E_{R}\right|$ is around 80 ; there are 17 instances with $n>100$ and 10 with $n>300$. All these instances are publicly available on-line at www.uv.es/~belengue/carp.html at https://logistik.bwl. uni-mainz.de/forschung/benchmarks/ or at cedric.cnam.fr/~porumbed/carpbest/. We present below their characteristics in greater detail.
gdb These 23 instances have between 7 and 27 vertices and a number of edges $n \in[11,55]$ all required. In fact, there is only one instance with $n=11$, the rest having $n \geq 19$.
kshs These 6 small instances have between 6 and 10 vertices and exactly $n=15$ edges, all required.
val These 34 moderate-size instances have between 24 and 50 vertices and they have a number edges $n \in[34,97]$, all required.
egl These 24 larger instances were generated in connexion to a winter gritting application in Lancashire in the 1990s. Half of them have 77 vertices and half of them have 140 vertices; 18 instances have non-required edges. The number of required edges n ranges from 51 to 190 .

C-F This is a large set of 100 instances that have between 26 and 97 vertices and the number of required edges n ranges from 28 to 121; non-required edges are present in all instances.
g This set contain 10 very large instances, all of them with 255 vertices. There are five $g 1$ instances with $n=347$ and with 28 non-required edges; a second sub-set g2 has $n=375$ required edges and zero non-required edges. These 10 instances are also referred to as egl-large.

The code source was implemented in C++ and compiled by g++ -03 under OpenSuse 15.1 Linux (kernel version 5.4.14-9). All reported CPU times have been obtained on an Intel Xeon Gold 5218 processor clocked at 2.30 GHz .

4.1 Complete results over 100, 1000 and 10000 iterations on all instances

We generally allow max_iters $=10000$ to solve each instance. For each run, we will actually present the results reported by Decoder-EA after 100, 1000 and 10000 iterations, roughly corresponding to a short, medium and resp. long term evaluation. In fact, the maximum number of iterations max_iters $=10000$ can even be increased (a bit) in some exceptional cases. Following an idea from Porumbel et al., 2017, if Decoder-EA discovers a new non-dominated solution during the last 10% iterations (e.g., after iteration 9000), the value of max_iters is increased by 10% (i.e., first from 10000 to 11000 , than to 12100 , etc). We never allow the number of iterations to exceed 15000 using this mechanism.

Table 1 reports the results obtained by applying the following protocol on each instance: execute Decoder-EA ten times, rank the ten results (as described just next) and finally report the run of median rank. The ranks of the ten considered runs are defined by sorting the reported results according the left-most solution (the one of minimum $C^{\text {tot }}$ value) of the Pareto returned in the end. Two runs that report the same left-most solution in the end are considered to have an equal (equivalent) rank. The rank in Column 7 is obtained from this sorting. The most frequent rank is $1-10 / 10$ and it corresponds to a case in which all runs report equivalent results at the end of all allowed iterations. A rank of 3-5/10 indicates a tie for positions three through five. We say that all such runs have a median rank, because they cover the 5 th place.

The columns of Table 1 are organized as follows.

- The first two columns report the instance name and the number of required edges $n=\left|E_{R}\right|$.

Section 2.2.2 If this still leads to a solution that already exists in the population, we repeat the perturbation by increasing the probability to 20%, than to $40 \%, 80 \%$ and eventually we generate a random individual if necessary.

- Columns 3 through 7 describe the results a full run at the end of all allowed iterations. Column 3 and 4 indicate the left-most and resp right-most solution of the final Pareto frontier in the format " $C^{\text {tot }} / C^{\text {max }}$ ". Column 5 represents the total CPU time in seconds. Column 6 reports a hyper-volume indicator ${ }^{8}$ Column 7 is the rank of the reported run with regards to the ten runs, as described above.
- Columns 8-9 indicate the left-most and resp right-most solution of the final Pareto frontier obtained after 1000 iterations.
- Columns 10-11 report the same results as in Columns 8-9, but obtained after only 100 iterations.
- The last column reports the best leftmost ($C^{\text {tot }}$-best) solution ever discovered by any of the ten runs. When (a cell in) this column is empty, this means that the best discovered solution is the one from the reported run in Column 3.

These results in Table 1 are rather self-explanatory. Notice that Column 7 frequently reports a rank of " $1-10 / 10$ " which indicates that all ten runs returned the same left-most solution at the end of all allowed iterations. Such instances are not very sensitive to many changes in the design of Decoder-EA. The final Decoder-EA variant described throughout this paper was designed by performing various performance tests on more critical (or variation-inducing) instances; we will focus on such instances in Sections $4.2,4.3$.

Remark 2. Whenever a value is marked in boldface in the last column of Tabl 1 , this indicates we improved upon the best known $C^{\text {tot }}$ upper bound ever reported in the (much) larger mono-objective CARP literature. We here report the previous and the new best-known upper bounds for the concerned nine instances:

Instance	Previous best upper bound	New upper bound	Instance	Previous best upper bound	New upper bound
egl-s2-A	9884	9875	egl-s2-B	13099	13065
egl-s4-B	16260	16198			
g1-A	998777	995012	g1-C	1241762	1240426
g1-D	1371443	1370958	g1-E	1512584	1512391
g2-C	1341519	1340303	g2-D	1481181	1480726

The previous best-known upper bound for the first above instance (9884 for egl-s2-A) was discovered in Santos et al., 2010. For the remaining instances, the best-known upper bounds were retrieved from (Table IX of) [Mei et al., 2014], where the authors stated that their bounds improved upon the previous bestknown solutions. All these top results seem consistent when comparing to the results of the four heuristics (or resp. eight in the case of egl-s2-A, elg-s2-B and elg-s4-B) reported at https://logistik. bwl. uni-mainz. de/forschung/benchmarks/. All our new best solutions are publicly available on-line at cedric. cnam. fr/~porumbed/carpbest//for any further improvement or research use.

Besides these heuristic results, we could also use the decoder to exactly determine the optimal solutions for the smallest instance gdb19 with $n=11$. For this value of n, we simply called the decoder on all 11 ! permutations, i.e., we evaluated the whole search space. The solutions of the optimal Pareto frontier are: $(83,17),(71,19),(63,20)$ and $(55,21)$, see also the figures in Appendix A. The total computation time was about 2 hours. Had we used a more classical "split with flips" decoder, the search space size would have been $2^{11}=2048$ times larger, easily leading to a thousand-fold increase of the computation time. This may explain why we are the first to report the exact optimal Pareto frontier for a well-acknowledged instance.

[^6]Table 1: Detailed results over all instances

Instance	n	10000 iterations					1000 iterations		100 iterations		best left sol ten runs
		left	right	time[s]	hyper-vol	rank	left	right	left	right	
gdb01	22	316/74	337/63	25	451	1-10/10	316/74	337/63	316/74	337/63	/
gdb02	26	339/69	395/59	42	954	1-10/10	339/70	395/59	339/73	413/59	1
gdb03	22	275/65	339/59	29	688	1-10/10	275/65	339/59	275/65	346/59	1
gdb04	19	287/74	350/64	18	768	1-10/10	287/74	350/64	287/74	350/64	1
gdb05	26	377/78	447/64	35	1278	1-10/10	377/78	447/64	377/83	447/64	1
gdb06	22	298/75	351/64	27	760	1-10/10	298/75	351/64	298/75	351/64	/
gdb07	22	325/68	415/57	24	1095	1-10/10	325/68	415/57	325/69	415/57	1
gdb08	46	348/48	396/38	126	754	1-6/10	353/45	406/38	358/44	426/38	1
gdb09	51	303/43	333/37	357	339	1-10/10	303/49	335/37	306/43	335/37	/
gdb10	25	275/70	410/39	49	4272	1-10/10	275/71	410/39	275/76	410/39	/
gdb11	45	395/82	585/43	445	7767	1-10/10	395/87	585/43	399/93	591/43	/
gdb12	23	458/97	547/93	19	768	1-10/10	458/97	557/93	458/97	583/93	/
gdb13	28	544/128	544/128	27	196	2-10/10	544/128	544/128	544/128	544/128	536/140
gdb14	21	100/21	136/15	25	272	1-10/10	100/21	136/15	100/21	136/15	1
gdb15	21	58/15	68/8	29	78	1-10/10	58/15	68/8	58/16	70/8	1
gdb16	28	127/27	151/14	47	382	1-10/10	127/29	151/14	129/24	157/14	127/26
gdb17	28	91/14	101/9	49	68	1-7/10	91/14	103/9	91/15	103/9	/
gdb18	36	164/33	232/19	135	948	1-6/10	164/34	232/19	164/34	250/19	1
gdb19	11	55/21	63/17	6	40	1-10/10	55/21	63/17	55/21	63/17	1
gdb20	22	121/34	131/20	26	224	1-10/10	121/36	131/20	123/26	133/20	1
gdb21	33	156/28	194/15	73	570	1-8/10	156/29	194/15	158/27	198/15	1
gdb22	44	200/28	240/12	138	747	1-6/10	200/30	242/12	202/28	244/12	1
gdb23	55	235/25	279/13	520	627	2-7/10	235/28	281/13	235/28	287/13	233/26
kshs1	15	14661/4117	16825/3528	10	1716726	1-10/10	14661/4117	16825/3528	14661/4117	16825/3528	1
kshs2	15	9863/2646	13601/2109	11	1919208	1-10/10	9863/2646	13601/2109	9863/2646	13601/2109	1
kshs3	15	9320/2640	9666/2084	10	395567	1-10/10	9320/2640	9666/2084	9320/2670	9666/2084	1
kshs4	15	11498/3349	12964/2713	12	1007131	1-10/10	11498/3349	12964/2713	11498/3349	12964/2713	1
kshs5	15	10957/4195	15857/2865	14	6980854	1-10/10	10957/4195	15857/2865	10957/4746	15857/2865	1
kshs6	15	10197/4032	11177/3472	13	851510	1-10/10	10197/4032	11177/3472	10197/4032	11177/3472	1
val1A	39	173/58	216/40	276	865	1-10/10	173/58	216/40	173/61	230/40	1
val1B	39	173/60	216/40	194	929	5-7/10	173/59	216/40	179/52	216/40	173/59
val1C	39	245/41	248/40	84	61	1-10/10	245/41	248/40	245/42	248/40	1
val2A	34	227/114	395/71	224	6431	1-10/10	227/114	395/71	227/114	397/71	1
val2B	34	259/108	395/71	157	5338	1-10/10	259/108	401/71	260/101	407/71	1
val2C	34	457/71	457/71	54	92	1-10/10	457/71	457/71	462/71	462/71	1
val3A	35	81/41	106/27	252	375	1-10/10	81/41	114/27	81/41	120/27	1
val3B	35	87/32	106/27	130	109	1-10/10	87/32	106/27	87/32	106/27	1
val3C	35	138/27	138/27	52	14	1-10/10	138/27	138/27	138/27	138/27	1
val4A	69	400/134	514/80	7839	7493	1-10/10	400/134	578/80	400/134	578/80	1
val4B	69	412/104	530/80	3424	3126	1-10/10	412/106	562/80	412/108	573/80	1
val4C	69	428/99	496/80	1992	2224	1-10/10	428/99	534/80	428/100	555/80	1
val4D	69	530/82	538/80	1075	234	1-10/10	530/83	542/80	530/85	578/80	1
val5A	65	423/141	715/72	6981	20759	1-10/10	423/141	722/72	423/142	785/72	1
val5B	65	446/112	718/72	4258	10933	1-10/10	446/113	762/72	446/115	774/72	1

Table 1: Detailed results over all instances (continued)

Instance	n	10000 iterations					1000 iterations		100 iterations		best left sol ten runs
		left	right	time[s]	hyper-vol	rank	left	right	left	right	
val5C	65	474/95	725/72	2321	6094	1-10/10	474/97	737/72	474/99	774/72	/
val5D	65	575/90	697/72	995	3268	2-5/10	578/89	705/72	581/84	717/72	575/83
val6A	50	223/75	309/45	1717	2350	1-10/10	223/75	309/45	223/75	311/45	/
val6B	50	233/68	307/45	948	1856	1-10/10	233/68	315/45	233/68	319/45	/
val6C	50	317/54	323/45	297	242	1-10/10	317/55	329/45	317/55	343/45	1
val7A	66	279/85	385/39	4020	5443	1-10/10	279/85	391/39	279/85	401/39	/
val7B	66	283/58	385/39	2703	1890	1-10/10	283/58	385/39	283/61	403/39	/
val7C	66	334/50	387/39	946	839	1-10/10	334/50	405/39	334/50	411/39	1
val8A	63	386/129	635/67	4252	15741	1-10/10	386/129	657/67	386/129	695/67	1
val8B	63	395/99	623/67	4123	7401	1-5/10	395/101	655/67	395/105	680/67	/
val8C	63	521/85	635/67	849	2790	3-5/10	527/81	645/67	527/81	671/67	521/77
val9A	92	323/108	459/44	26676	9421	1-10/10	323/109	459/44	323/114	480/44	/
val9B	92	326/82	454/44	17292	5090	1-10/10	326/84	471/44	326/86	484/44	/
val9C	92	332/67	457/44	9374	2923	1-5/10	332/68	470/44	332/70	494/44	/
val9D	92	391/50	423/44	3361	306	1-10/10	391/51	439/44	393/52	455/44	391/49
val10A	97	428/143	742/47	37684	31348	1-10/10	428/143	781/47	428/145	787/47	/
val10B	97	436/109	751/47	24660	18955	1-10/10	436/110	783/47	436/111	789/47	1
val10C	97	446/90	755/47	14046	12663	1-10/10	446/91	768/47	446/95	790/47	/
val10D	97	526/64	751/47	4882	4310	1-10/10	526/74	769/47	528/69	772/47	526/63
egl-e1-A	51	3548/943	3889/820	633	77319	1-10/10	3548/943	4159/820	3548/943	4159/820	1
egl-e1-B	51	4498/899	4540/820	436	31161	1-10/10	4525/839	4615/820	4525/839	4973/820	1
egl-e1-C	51	5595/836	5659/820	345	19328	1-10/10	5595/836	5699/820	5595/836	5719/820	1
egl-e2-A	72	5018/953	6164/820	1525	225869	1-10/10	5018/953	6360/820	5018/953	6424/820	/
egl-e2-B	72	6321/870	7140/820	1410	105197	1-10/10	6344/871	7369/820	6352/871	7456/820	6317/878
egl-e2-C	72	8335/854	8583/820	846	45858	1-10/10	8354/854	8763/820	8354/854	8884/820	/
egl-e3-A	87	5898/929	7981/820	4385	317300	1-10/10	5898/929	8183/820	5898/929	8409/820	/
egl-e3-B	87	7777/872	9289/820	1754	149063	5-10/10	7777/872	9416/820	7801/872	9895/820	7775/872
egl-e3-C	87	10292/927	10495/820	1087	129013	1-6/10	10292/927	10746/820	10361/927	11222/820	/
egl-e4-A	98	6461/929	8079/820	3732	257491	1-10/10	6464/929	8597/820	6476/929	8597/820	/
egl-e4-B	98	9005/914	10126/820	2415	190411	5-6/10	9041/946	10264/820	9078/930	10633/820	8999/914
egl-e4-C	98	11614/872	11626/820	1541	56500	1-10/10	11624/872	12074/820	11688/872	12313/820	11594/872
egl-s1-A	75	5018/1023	7761/912	2248	395446	1-10/10	5018/1023	7849/912	5050/1023	7946/912	/
egl-s1-B	75	6388/984	8379/912	2567	233879	1-10/10	6435/984	8455/912	6435/984	8759/912	/
egl-s1-C	75	8518/1018	9571/912	863	235424	1-10/10	8518/1018	9824/912	8518/1018	10154/912	1
egl-s2-A	147	9915/1084	13017/979	13544	479242	4-6/10	10055/1075	13550/979	10055/1075	13715/979	9875/1083
egl-s2-B	147	13162/1060	15167/979	7893	327341	2-10/10	13283/1060	15468/979	13290/1060	15940/979	13065/1060
egl-s2-C	147	16547/1040	17549/979	3887	202535	5/10	16611/1040	17698/979	16633/1040	17780/979	16425/1040
egl-s3-A	159	10244/1099	13745/979	30651	621389	5/10	10314/1099	13747/979	10356/1192	13783/979	10233/1099
egl-s3-B	159	13704/1060	15768/979	11079	354833	5/10	13780/1060	15919/979	13822/1060	16088/979	13682/1060
egl-s3-C	159	17228/1040	18462/979	8319	208331	5/10	17341/1040	18472/979	17555/1040	18472/979	17223/1040
egl-s4-A	190	12351/1103	12793/1027	21318	129756	5/10	12442/1060	13017/1027	12476/1120	13464/1027	12315/1080
egl-s4-B	190	16323/1027	16322/1027	18055	42484	5/10	16430/1027	16430/1027	16430/1027	16430/1027	16198/1027
egl-s4-C	190	20648/1035	20696/1027	8826	62716	4-6/10	20725/1035	20731/1027	20890/1027	20890/1027	20614/1037
C01	79	4150/610	4230/585	1920	14752	1-10/10	4195/600	4230/585	4215/630	4240/585	/

Table 1: Detailed results over all instances (continued)

Table 1: Detailed results over all instances (continued)

Table 1: Detailed results over all instances (continued)

Instance	n	10000 iterations					1000 iterations		100 iterations		best left sol ten runs
		left	right	time[s]	hyper-vol	rank	left	right	left	right	
F15	107	3560/825	4040/640	22403	143851	1-10/10	3560/830	4160/640	3560/845	4190/640	,
F16	54	2725/855	3495/630	1295	161810	1-10/10	2725/855	3495/630	2725/855	3515/630	1
F17	36	2055/825	4305/540	224	630432	1-10/10	2055/825	4325/540	2055/825	4405/540	1
F18	88	3075/825	4095/580	15324	259175	1-10/10	3075/825	4235/580	3075/830	4385/580	1
F19	66	2525/875	4125/530	6327	514673	1-10/10	2525/875	4130/530	2525/875	4205/530	1
F20	63	2445/760	3125/455	6513	241343	1-10/10	2445/770	3160/455	2445/805	3165/455	1
F21	72	2930/820	4670/570	4442	424018	1-10/10	2930/825	4680/570	2930/835	4850/570	/
F22	44	2075/790	3155/555	375	263275	1-10/10	2075/790	3235/555	2075/790	3235/555	1
F23	89	3005/820	4430/535	13843	424144	1-7/10	3010/820	4540/535	3010/820	4585/535	1
F24	86	3210/885	4355/580	10228	362225	1-10/10	3210/890	4550/580	3210/980	4550/580	1
F25	28	1390/695	2090/485	145	137350	1-10/10	1390/695	2120/485	1390/695	2165/485	1
g1-A	347	996314/79057	1106365/64602	247663	2772320599	4-5/10	1001014/7905	09683/64602	1007721/7905	27740/64602	995012/79057
g1-B	347	1119244/69401	1234420/64602	177761	1315176672	5/10	1127502/7366	39506/64602	1128250/682	50141/64602	1118030/69401
g1-C	347	1247389/67327	1319112/64602	179723	790716736	5/10	1248841/6732	22350/64602	1253038/7043	22350/64602	1240426/65050
g1-D	347	1378623/69858	1461910/64602	142378	1263989332	5/10	1378623/6985	82185/64602	1384613/6985	88186/64602	1370958/69858
g1-E	347	1517332/65050	1581206/64602	105685	500386883	5/10	1523702/6505	84236/64602	1541154/6505	05028/64602	1512391/65050
g2-A	375	1099540/77143	1210964/64602	408421	2682206278	5/10	1106295/6985	21964/64602	1108890/7019	22205/64602	1097390/68655
g2-B	375	1212862/69576	1280285/64602	298460	1065013036	5/10	1222303/6985	88482/64602	1225003/6890	97422/64602	1209590/65050
g2-C	375	1342654/69858	1408032/64602	251254	1151418644	5/10	1342654/6985	14252/64602	1350437/6985	16940/64602	1340303/65050
g2-D	375	1483181/65050	1547055/64602	197390	494065575	5/10	1488894/6505	52768/64602	1496833/6505	60707/64602	1480726/65050
g2-E	375	1627294/65050	1687426/64602	157700	508708208	5/10	1629065/6505	92939/64602	1642751/6600	08399/64602	1621535/65050

4.2 The impact of three main components of Decoder-EA

Many (meta-)heuristic algorithms are designed by putting together a number of different components and Decoder-EA is no exception. A legitimate question might be asked: can certain of these components be disabled (or designed in a very different way) without substantially weakening the overall algorithm? To gain insight into this, we here compare the standard Decoder-EA to three other Decoder-EA variants obtained by performing the following changes:
A. Swap only blocks of equal length in the LS, i.e., fix $\delta=\bar{\delta}$ in the neighborhood definition from Section 2.2.1. The resulting Decoder-EA variant is considerably easier to implement, because it is enough to record all routes using fixed-length array-like neighborhood data structures.
B. Perform a random survival selection instead of discriminating the implicit solutions using the nondominated sorting from Section 3.1, and the roulette wheel from point 1.(b) of Section 3.4. We still keep the limitation from point 1.(a) of Section 3.4 i.e., at maximum 30% of the current population (of implicit solutions) can survive to the next generation.
C. Perform a random parent selection instead of the roulette wheel from Section 3.3.

We selected the 5 instances for which Decoder-EA exhibits the most pronounced variation in performance when we change different parts of it. The results on many other instances are not not very sensible to (the considered) algorithm changes. To ensure fair comparative conditions, we do not impose a maximum number of iterations but a CPU time limit, i.e., 200 seconds for gdb08, 800 seconds for val5d and val8c, 400 for egl-e1-C and 7000 for egl-s2-C.

Table 2 presents the comparison between the above Decoder-EA variants over 40 runs. For each variant, we reported the left-most solution (in the format " $C^{\text {tot }} / C^{\text {max }}$ ") for the best, the $10^{\text {th }}$, the $20^{\text {th }}$, the $30^{\text {th }}$ and the worst run out of 40 (Column 2). The ranking criterion is the first objective ($C^{\text {tot }}$) breaking ties using the makespan. For the best and the worst run we also indicate the number of runs that tie for this position, e.g., " $3 \times 348 / 44$ " means that 3 runs reached the same best objective values $348 / 44$. The last five rows report the best rightmost solution ever reached in 40 runs. This table demonstrates that:
A. The use of unequal block swaps is clearly very useful for Decoder-EA, because the solution from Column 3 (standard Decoder-EA) is strictly better than the one from Column 4 (no unequal swaps) on roughly three quarters of the rows.
B. The non-dominated ranking used by the standard Decoder-EA to perform the survival selection is also very useful. The solution from Column 3 is strictly better than the one from Column 5 (random survival selection) for roughly half of the rows. The reverse happens much more rarely, only in 3 rows out of 25 . The last five rows of Table 2 also show that using a random replacement selection degrades the quality of the best rightmost solution on all five instances. Preliminary experiments suggest that this may also degrade (the hyper-volume of) the optimal Pareto frontiers returned in the end.
C. Except for egl-e1-C, the comparison with the Decoder-EA variant from Column 6 (random parent selection) shows that is generally important to use the parent selection included by default in Decoder-EA (Section 3.3). Interestingly, a random parent selection may sometimes improve the quality of the best rightmost solution (see last five rows). This may come from the fact that the parent selection from Section 3.3 imposes a selective pressure that only relies on the first $C^{\text {tot }}$ criterion while ignoring the second one.

If we did not include in Table 2 an algorithm version with no Local Search at all, it is because such a Decoder-EA variant would report very low quality results. Preliminary experiments clearly show that such an algorithm variant can not compete with the ones considered in this section. It may have difficulties to reach even the worst solution returned (in the end) by any algorithm from Table 2 .

Instance	Rank	Standard Decoder-EA	Use only equal block swaps in LS	Random survival selection	Random parent selection
$\begin{aligned} & \infty \\ & 0 \\ & \stackrel{0}{0} \end{aligned}$	best	$3 \times 348 / 44$	$4 \times 348 / 44$	$3 \times 348 / 44$	$5 \times 348 / 44$
	$10^{\text {th }}$	348/51	348/48	348/48	348/62
	$20^{\text {th }}$	350/44	350/44	350/44	350/44
	$30^{\text {th }}$	350/44	350/44	350/44	350/44
	worst	$1 \times 352 / 44$	$2 \times 350 / 50$	$1 \times 350 / 46$	$1 \times 353 / 44$
$\begin{aligned} & \text { O } \\ & \text { N } \\ & \end{aligned}$	best	$8 \times 575 / 83$	$2 \times 577 / 83$	$1 \times 575 / 83$	$3 \times 575 / 90$
	$10^{\text {th }}$	577/82	581/80	577/83	577/83
	$20^{\text {th }}$	577/83	583/83	577/84	578/83
	$30^{\text {th }}$	577/83	585/80	578/82	579/83
	worst	$3 \times 579 / 83$	$1 \times 586 / 79$	$1 \times 581 / 81$	$1 \times 581 / 82$
$\begin{aligned} & 0 \\ & \infty \\ & \sim \\ & \nabla \end{aligned}$	best	$2 \times 521 / 77$	$3 \times 521 / 83$	$1 \times 521 / 80$	$1 \times 521 / 85$
	$10^{\text {th }}$	521/83	525/77	523/80	525/80
	$20^{\text {th }}$	523/77	527/76	525/79	527/77
	$30^{\text {th }}$	523/79	527/79	$527 / 77$	527/79
	worst	$1 \times 525 / 79$	$1 \times 531 / 77$	$1 \times 527 / 81$	$1 \times 529 / 78$
$\begin{aligned} & 0 \\ & 1 \\ & \frac{1}{0} \\ & 1 \\ & 1 \\ & 00 \\ & 0 \end{aligned}$	best	$38 \times 5595 / 836$	$7 \times 5595 / 836$	$35 \times 5595 / 836$	$39 \times 5595 / 836$
	$10^{\text {th }}$	5595/836	5615/859	5595/836	5595/836
	$20^{\text {th }}$	5595/836	5615/859	5595/836	5595/836
	$30^{\text {th }}$	5595/836	5625/839	5595/836	5595/836
	worst	$1 \times 5615 / 859$	$1 \times 5675 / 836$	$5 \times 5613 / 859$	$1 \times 5613 / 859$
$\begin{gathered} 0 \\ 1 \\ V_{0} \\ 1 \\ \vdots \\ 00 \\ 0 \end{gathered}$	best	$3 \times 16425 / 1040$	$1 \times 16551 / 1040$	$4 \times 16425 / 1040$	$1 \times 16496 / 1040$
	$10^{\text {th }}$	16430/1040	16613/1040	16431/1040	16609/1040
	$20^{\text {th }}$	16442/1040	16648/1040	16451/1040	16618/1040
	$30^{\text {th }}$	16479/1040	16696/1040	16538/1040	16625/1040
	worst	$1 \times 16619 / 1040$	$1 \times 16789 / 994$	$1 \times 16669 / 1040$	$1 \times 16672 / 1040$
gdb08		388/38	$26 \times 396 / 38$	$25 \times 396 / 38$	394/38
val5D		689/72	671/72	689/72	683/72
val8C		$2 \times 621 / 67$	$2 \times 627 / 67$	$3 \times 627 / 67$	$2 \times 627 / 67$
egl-e1-C		$7 \times 5659 / 820$	$2 \times 5677 / 820$	$4 \times 5659 / 820$	$30 \times 5659 / 820$
egl-s2-C		17046/979	17075/979	17058/979	16976/979

Table 2: Comparison of the standard Decoder-EA with three different variants obtained by changing certain components.

Finally, it is worth mentioning that we also launched more massive runs on $\mathrm{g} 1-\mathrm{B}$ and egl-s2-B because we had access to a more powerful cluster towards the end of the project ${ }^{9}$ Despite the fact that we launched hundreds of runs in parallel, the best we were able to achieve was to improve the best solution of $\mathrm{g} 1-\mathrm{B}$ from $1118030 / 69401$ to $1117796 / 68328$ and that of egl-s2-B from $13065 / 1060$ to $13058 / 1060$. This suggest that performing 100 runs instead of 10 runs does not necessarily lead to revolutionary better solutions.

4.3 Comparison with existing literature on the most critical instances

We here compare the results of the standard Decoder-EA to the best-known results from the bi-objective CARP literature. Specifically, we will refer to the following algorithms already discussed in the introduction:

1. the Multi-Objective Genetic Algorithm (MOGA) Lacomme et al., 2006;
[^7]| | Decoder-EA | | MOGA | | D-MAENS | | ϵ-constraint | | ID-MAENS | | IRDG-MAENS | | DE-ICA | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance | best $_{1}$ | best $_{2}$ | best_{1} | best_{2} |
| $\mathrm{gdb08}^{\text {a }}$ | 348 | 38 | 350 | 38 | 348 | 38 | 348 | 38 | 350 | | 348 | 44 | | |
| gdb09 ${ }^{\text {a }}$ | 303 | 37 | 309 | 37 | 304 | 37 | 303 | 37 | 303 | | 303 | 43 | | |
| gdb13 | 536 | 128 | 544 | 128 | 536 | 128 | 536 | 128 | 536 | | 536 | 128 | | |
| gdb23 | 233 | 13 | 235 | 20 | 233 | 20 | 233 | 25 | 233 | | 233 | 22 | | |
| egl-e1-B | 4498 | 820 | 4525 | 820 | 4525 | 820 | 4498 | 820 | 4525 | | 4525 | 836 | 4525 | |
| egl-e1-C | 5595 | 820 | 5687 | 820 | 5595 | 820 | 5595 | 820 | 5595 | | 5595 | 838 | 5595 | |
| egl-e2-B | 6317 | 820 | 6411 | 820 | 6347 | 820 | 6317 | 820 | 6340 | | 6317 | 852 | 6321 | |
| egl-e2-C | 8335 | 820 | 8440 | 820 | 8339 | 820 | 8335 | 820 | 8414 | | 8343 | 854 | 8335 | |
| egl-e3-A | 5898 | 820 | 5956 | 820 | 5926 | 820 | 5898 | 820 | 5898 | | 5898 | 916 | 5898 | |
| egl-e3-B | 7775 | 820 | 7911 | 820 | 7801 | 820 | 7777 | 820 | 7789 | | 7801 | 872 | 7787 | |
| egl-e3-C | 10292 | 820 | 10349 | 820 | 10340 | 820 | 10305 | 929 | 10307 | | 10305 | 864 | 10311 | |
| egl-e4-A | 6461 | 820 | 6548 | 820 | 6476 | 820 | 6456 | 820 | 6472 | | 6464 | 914 | 6473 | |
| egl-e4-B | 8999 | 820 | 9116 | 820 | 9069 | 820 | 9000 | 820 | 9004 | | 9037 | 843 | 9031 | |
| egl-e4-C | 11594 | 820 | 11802 | 820 | 11774 | 820 | 11601 | 820 | 11618 | | 11618 | 820 | 11634 | |
| egl-s1-A | 5018 | 912 | 5102 | 924 | 5068 | 912 | 5018 | 1023 | 5018 | | 5018 | 1032 | 5018 | |
| egl-s1-B | 6388 | 912 | 6500 | 912 | 6435 | 912 | 6388 | 984 | 6422 | | 6422 | 981 | 6435 | |
| egl-s1-C | 8518 | 912 | 8694 | 912 | 8518 | 912 | 8518 | 946 | 8518 | | 8518 | 966 | 8518 | |
| egl-s2-A | 9875 | 979 | 10207 | 979 | 10117 | 979 | 9956 | 1051 | 10122 | | 10122 | 1023 | 10040 | |
| egl-s2-B | $\underline{13065}$ | 979 | 13548 | 979 | 13459 | 979 | 13165 | 1060 | 13345 | | 13331 | 1040 | 13283 | |
| egl-s2-C | 16425 | 979 | 16932 | 979 | 16832 | 979 | 16524 | 979 | 16682 | | 16674 | 1040 | 16691 | |
| egl-s3-A | 10233 | 979 | 10456 | 979 | 10469 | 979 | 10260 | 1051 | 10347 | | 10436 | 1053 | 10402 | |
| egl-s3-B | 13682 | 979 | 14004 | 979 | 14082 | 979 | 13807 | 979 | 13918 | | 14020 | 998 | 13841 | |
| egl-s3-C | 17223 | 979 | 17825 | 979 | 17650 | 979 | 17234 | 979 | 17363 | | 17342 | 1040 | 17324 | |
| egl-s4-A | 12315 | 1027 | 12730 | 1027 | 12602 | 1027 | | 1040 | 12442 | | 12654 | 994 | 12422 | |
| egl-s4-B | 16198 | 1027 | 16792 | 1027 | 16686 | 1027 | 16442 | 1027 | 16443 | | 16600 | 1023 | 16430 | |
| egl-s4-C | 20614 | 1027 | 21309 | 1027 | 21213 | 1027 | 20591 | 1034 | 21195 | | 20933 | 1027 | 20964 | |
| val03A | 81 | 27 | 81 | 31 | 81 | 27 | 81 | 34 | 81 | | 82 | 39 | | |
| val04D | 530 | 80 | 539 | 80 | 536 | 80 | 530 | 82 | 536 | | 536 | 88 | | |
| val05D | 575 | 72 | 595 | 72 | 595 | 72 | | | 586 | | 579 | 81 | | |
| val08C | 521 | 67 | 545 | 67 | 532 | 67 | 521 | 67 | 523 | | 527 | 78 | | |
| val09A | 323 | 44 | 326 | 68 | 324 | 47 | 323 | 97 | 323 | | 325 | 107 | | |
| val09D | 391 | 44 | 399 | 44 | 392 | 44 | 391 | 49 | 391 | | 391 | 51 | | |
| val10A | 428 | 47 | 428 | 91 | 428 | 62 | 428 | 125 | 429 | | 430 | 139 | | |
| val10B | 436 | 47 | 436 | 77 | 436 | 60 | 436 | 98 | 437 | | 437 | 97 | | |
| val10C | 446 | 47 | 448 | 66 | 446 | 58 | 446 | 79 | 446 | | 447 | 39 | | |
| val10D | 526 | 47 | 537 | 54 | 533 | 51 | 528 | 54 | 533 | | 535 | 60 | | |
| g1-A | 995012 | 64002 | | | | | | | | | 1027498 | 65367 | 1012078 | |
| g1-B | 1118030 | 64002 | | | | | | | | | 1174216 | 65752 | 1138229 | |
| g1-C | 1240426 | 64002 | | | | | | | | | 1289544 | 63833 | 1258065 | |
| g1-D | 1370958 | 64002 | | | | | | | | | 1441236 | 64473 | 1426809 | |
| g1-E | $\underline{1512391}$ | 64002 | | | | | | | | | 1587913 | 63365 | 1584395 | |
| g2-A | 1097390 | 64002 | | | | | | | | | 1137134 | 65050 | 1125827 | |
| g2-B | 1209590 | 64002 | | | | | | | | | 1256059 | 67738 | 1240357 | |
| g2-C | 1340303 | 64002 | | | | | | | | | 1428880 | 67296 | 1424978 | |
| g2-D | 1480726 | 64002 | | | | | | | | | 1568942 | 64602 | 1535056 | |
| g2-E | 1621535 | 64002 | | | | | | | | | 1687900 | 64602 | 1679487 | |

Table 3: Decoder-EA compared to six other algorithms (in chronological order) on the selected critical instances. We omit the Beullens instances (C01-F25) because no cited paper provides full results on them. ${ }^{b}$ An underlined best $_{1}$ value in Column 2 signals that the corresponding solution improves upon the best $C^{\text {tot }}$ upper bound ever reported before in the (considerably) larger mono-objective CARP literature (as described in Remark 2, p. 16).

[^8]2. the Decomposition-Based Memetic Algorithm (D-MAENS) Mei et al., 2011;
3. The ϵ-constraint method Grandinetti et al., 2012;
4. The Improved D-MAENS (ID-MAENS) Shang et al., 2014;
5. The IRDG-MAENS algorithm [Shang et al., 2016a;
6. The Directed Evolution Immune Clonal Algorithm (DE-ICA) Shang et al., 2016b.

We restrict to a set of (very) critical instances on which one can observe a higher variation in the performance of the compared algorithms. Recall from (Column 7 of) Table 1 that, on many instances, all ten Decoder-EA runs may report the same solutions in the end. On such instances, most algorithms from the literature also report the same $C^{\text {tot }}$-best and $C^{\text {max }}$-best solutions.

Table 3 compares the best solutions reported by Decoder-EA to the one reported by the above algorithms; this is a simple comparison for indicative purposes only, because the experimental conditions and the running times of these algorithms can be very different. The columns best 1_{1} and best ${ }_{2}$ simply provide the $C^{\text {tot }}$-best and (resp.) the $C^{\text {max }}$-best solution (ever) reported by each of the seven considered algorithms. For Decoder-EA, the contents of the columns best ${ }_{1}$ and best $_{2}$ were simply imported from (Columns 3-4 or Column 12) of Table 1. A best t_{1} value in italics (in Column 2) indicates that Decoder-EA reached the best ($C^{\text {tot }}$) upper bound ever reported in the bi-objective CARP literature. A best t_{1} value in both italics and boldface signals that corresponding solution strictly dominates all solutions reported by the other bi-objective algorithms shown here. An underlined best t_{1} value in italics and boldface indicates that Decoder-EA discovered an $C^{\text {tot }}$ upper bound that has never been reported before in the (considerably) larger mono-objective CARP literature (as described in Remark 2, p. 16).

5 Exploring a Traveling Salesman Problem bi-objective variant

We here study the application of the decoder-based framework from Section 3 on a different problem. Most algorithmic descriptions from Sections $3.1,3.2$ may actually apply to a new problem (most often without changing a word) by simply plugging-in a different decoder.

We consider the well-known Traveling Salesman Problem (TSP), but let us formulate it a manner that better fits the given CARP instances. As thus, the n required edges E_{R} become the vertices of a directed graph G_{TSP}. In the new TSP problem, we ask to traverse each edge $e=\left\{v_{a}, v_{b}\right\} \in E_{R}$ (i.e., each TSP vertex) along the direction $v_{a} \rightarrow v_{b}$, where $v_{a}<v_{b}$. We say that v_{a} is the low end of e and that v_{b} is the high end of e. The salesman has to first visit the low end and then the high end; all required edges E_{R} have to be travelled this way. The TSP length of an $\operatorname{arc}\left(e, e^{\prime}\right)$ of G_{TSP} is simply given by the shortest path (in G) between the high end of e and the low end of e^{\prime}. This means that after finishing travelling e at its high end, the salesman has to move to the low end of the next required edge (G_{TSP} vertex). The most straightforward mono-objective goal is to find the minimum cost tour in the directed graph G_{TSP}; the resulting problem can be easily reduced to TSP and vice-versa.

We next propose the bi-objective variant. First, let us assign a weight (price) to each vertex $e \in E_{R}$; this price is simply given by the demand q_{e} of e in the considered CARP instance ${ }^{10}$ Secondly, we allow the feasible tours to skip visiting a vertex by paying the associated price as penalty; this way, the number of vertices visited by a feasible tour becomes $\left|E_{R}\right|-1$. Finally, a candidate solution is defined by a permutation of E_{R} and a skipped edge $e \in E_{R}$. We ask to minimize the following objective functions:
obj1 the length of the tour that visits all TSP vertices except the chosen skipped $e \in E_{R}$ in the order indicated by the permutation
obj2 the price (penalty) q_{e} associated to the chosen e.

[^9]The decoder is significantly simpler than the arc-routing one. Given a permutation of E_{R} as input, it is enough to scan all elements e of this permutation one by one and to calculate the above objective values for for each skipped edge e. Since the permutation has $n=\left|E_{R}\right|$ elements, this may generate up to n explicit solutions per permutation. In practice, however, most of these n solutions may be dominated; the decoder filters them and may eventually return a Pareto frontier with (far) less non-dominated solutions, in many cases only a few. Figure 6 below illustrates two tours that could be determined by our decoder on a simple instance.

Figure 6: Two TSP tours for the same instance (originally used for Arc-Routing). Each edge has a label " $c_{i j}\left(q_{i j}\right)$ ", where $c_{i j}$ is the traversal cost and $q_{i j}$ is the demand. The left solution skips edge $\{0,1\}$ with a demand of 2 , and so, obj $=2$; its obj1 value is the total cost $120+140+200+50+10=520$. The right solution skips edge $\{2,3\}$ with a demand of 4 , and so, obj2 $2=4$; its obj1 value is the total cost $40+100+200+50+10=400$. Considering input permutation permutation $(\{0,1\},\{2,3\},\{3,4\},\{4,5\})$, our decoder may determine (among others) these two solutions with objective values (520,2) and resp. (400, 4) (and notice all edges $e=\left\{v_{a}, v_{b}\right\}$ are traversed in the sense $v_{a} \rightarrow v_{b}$ with $v_{a}<v_{b}$).

Table 4 presents the results of Decoder-EA on the gdb instances. Let us mention that we did not change a single line of code in the C++ software module that implements the EA component; we only needed to link it to a separately compiled file (tsp_decoder.cpp) that implements the decoder. Table 4 reports the instance in Column 1, the number of vertices of $G_{\text {TSP }}$ (equal to $n=\left|E_{R}\right|$) in Column 2, the leftmost solution in Column 3, the rightmost solution in Column 4 and the CPU time in seconds in Column 5. The stopping condition for the results in Columns 3-5 is to reach 100.000 iterations. The last two columns also report the leftmost and rightmost solutions reached after 1.000 iterations (usually calculated in a time of milliseconds).

Table 4: Results of Decoder-EA on the proposed TSP bi-objective variant

Instance	$n=\left\|E_{R}\right\|$	100000 iterations			1000 iterations	
		left	right	time[s]	left	right
gdb01	22	371/1	371/1	4	412/1	412/1
gdb02	26	439/1	439/1	5	462/1	462/1
gdb03	22	377/1	377/1	4	409/1	409/1
gdb04	19	363/1	363/1	4	377/1	377/1
gdb05	26	506/1	506/1	5	542/1	542/1
gdb06	22	369/1	369/1	4	396/1	396/1
gdb07	22	377/1	377/1	4	406/1	406/1
gdb08	46	531/9	543/1	18	570/4	591/1
gdb09	51	480/6	493/1	13	480/6	493/1
gdb10	25	384/2	391/1	6	405/2	411/1
gdb11	45	685/6	704/1	16	743/6	752/1
gdb12	23	558/3	578/1	9	598/16	622/1
gdb13	28	563/8	639/2	12	575/8	655/2
		tinued	n next	page		

Table 4: Detailed TSP results over all egl instances (continued)

		100000 iterations			1000 iterations	
Instance	$n=\left\|E_{R}\right\|$	left	right	time[s]	left	right
gdb14	21	$131 / 5$	$142 / 1$	10	$136 / 5$	$145 / 1$
gdb15	21	$68 / 7$	$74 / 2$	14	$70 / 5$	$76 / 2$
gdb16	28	$145 / 2$	$147 / 1$	10	$154 / 7$	$155 / 1$
gdb17	28	$102 / 8$	$109 / 2$	20	$106 / 8$	$115 / 2$
gdb18	36	$218 / 8$	$221 / 1$	11	$227 / 3$	$230 / 1$
gdb19	11	$55 / 5$	$63 / 1$	8	$55 / 5$	$63 / 1$
gdb20	22	$145 / 1$	$145 / 1$	7	$149 / 4$	$151 / 1$
gdb21	33	$197 / 2$	$199 / 1$	10	$207 / 2$	$208 / 1$
gdb22	44	$234 / 8$	$236 / 1$	12	$240 / 8$	$243 / 1$
gdb23	55	$292 / 5$	$294 / 1$	13	$306 / 4$	$309 / 1$

Future work may focus on problems that are not naturally expressed as permutation problems. In fact, any problem for which we can establish an order of the decision variables can be seen as a sequencing or permutation problem Campos et al., 2005, Porumbel et al., 2017, van Hoorn, 2016. If one can encode a candidate solution as an order of the decision variables, a decoder can assign values to these variables in the considered order.

To discuss only one example, consider the graph coloring problem. Graph coloring is usually seen as a partition problem in the sense that the candidate solutions represent partitions of the vertex set. But we could also interpret it as a permutation problem: consider an order of the vertices and color them step by step in this order by choosing, for each vertex, a color that minimizes the number of edges with their end vertices of the same color. Actually, there already exists a well-known coloring heuristic (DSatur) that uses such an order in a similar manner and that could (be extended to) be used as a decoder inside Decoder-EA.

6 Conclusions

We proposed a bi-objective Evolutionary Algorithm (EA) framework to which we plugged in an exact decoder to solve the bi-objective Capacitated Arc Routing Problem (CARP). Although we were initially motivated only by CARP, the proposed EA framework can be seen as an algorithmic "backbone" to which one can also attach a different decoder to solve a different problem. We could this way also solve a bi-objective variant of the Traveling Salesman Problem (TSP), without changing a single line of code in the EA software module. For both problems, the role of the decoder is to turn an implicit solution (permutation) into a Pareto frontier of non-dominated explicit solutions. The CARP decoder is significantly more complex than the TSP one because it integrates a dynamic programming scheme.

The decoder enabled us to decompose the problem, shifting the focus from the given problem to the space of implicit solutions. The EA framework could thus be designed (Section 3) without taking into account any particular CARP feature. This framework builds upon the non-dominated sorting concept of NSGA2; we could not directly use NSGA2 because the (fitness) evaluation of the implicit solutions is more complex than in NSGA2. This is due to the fact that each implicit solution is associated to a set of 2D points in the objective space and not to a unique point as in NSGA2. The proposed EA incorporates multiple mechanisms to maintain diversity and to encourage young individuals (recent offspring); we noticed there is a serious need to prevent older individuals from monopolizing the genetic material in the population.

Yet, we do not think that working only in the (more abstract) permutation space is enough to obtain the most competitive results. Recall that the final full algorithm was able to improve upon the best-known total-cost upper bound for nine instances, with regards to the (larger) mono-objective CARP literature. To achieve this, we had to reinforce the exact decoder using a CARP-specific Local Search (LS). More exactly, the explicit solution of minimum total-cost returned by the decoder is improved using an LS operator that manipulates explicit routes. Since the decoder is exact subject to the service order indicated by the input permutation (Theorem 11), the LS can only find better solutions by changing the input permutation. We
can thus see the LS as a (mutation) operator that moves from one permutation to the other in the encoded space, with no negative interaction between the LS and the decoder.

References

[Campos et al., 2005] Campos, V., Laguna, M., and Martí, R. (2005). Context-independent scatter and tabu search for permutation problems. INFORMS Journal on Computing, 17(1):111-122.
[Corberán et al., 2021] Corberán, Á., Eglese, R., Hasle, G., Plana, I., and Sanchis, J. M. (2021). Arc routing problems: A review of the past, present, and future. Networks, 77(1):88-115.
[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2):182-197.
[Grandinetti et al., 2012] Grandinetti, L., Guerriero, F., Laganà, D., and Pisacane, O. (2012). An optimization-based heuristic for the multi-objective undirected capacitated arc routing problem. Computers \& Operations Research, 39(10):2300-2309.
[Lacomme et al., 2006] Lacomme, P., Prins, C., and Sevaux, M. (2006). A genetic algorithm for a bi-objective capacitated arc routing problem. Computers \& Operations Research, 33(12):3473-3493.
[Mei et al., 2014] Mei, Y., Li, X., and Yao, X. (2014). Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems. IEEE Transactions on Evolutionary Computation, 18(3):435-449.
[Mei et al., 2011] Mei, Y., Tang, K., and Yao, X. (2011). Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem. IEEE Transactions on Evolutionary Computation, 15(2):151-165.
[Porumbel et al., 2017] Porumbel, D., Hsu, T., Allaoui, H., and Goncalves, G. (2017). Arc-routing via column generation and iterated local search in a permutation set-covering framework. European Journal of Operational Research, 256:349-367.
[Prins et al., 2014] Prins, C., Lacomme, P., and Prodhon, C. (2014). Order-first split-second methods for vehicle routing problems: A review. Transportation Research Part C: Emerging Technologies, 40:179-200.
[Santos et al., 2010] Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2010). An improved ant colony optimization based algorithm for the capacitated arc routing problem. Transportation Research Part B: Methodological, 44(2):246-266.
[Shang et al., 2016a] Shang, R., Dai, K., Jiao, L., and Stolkin, R. (2016a). Improved memetic algorithm based on route distance grouping for multiobjective large scale capacitated arc routing problems. IEEE transactions on cybernetics, 46(4):1000-1013.
[Shang et al., 2016b] Shang, R., Du, B., Ma, H., Jiao, L., Xue, Y., and Stolkin, R. (2016b). Immune clonal algorithm based on directed evolution for multi-objective capacitated arc routing problem. Applied soft computing, 49:748758.
[Shang et al., 2014] Shang, R., Wang, J., Jiao, L., and Wang, Y. (2014). An improved decomposition-based memetic algorithm for multi-objective capacitated arc routing problem. Appl. Soft Comput., 19:343-361.
[Talbi, 2009] Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. Wiley Publishing.
[Ulusoy, 1985] Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European Journal of Operational Research, 22(3):329-337.
[van Hoorn, 2016] van Hoorn, J. (2016). Dynamic Programming for Routing and Scheduling: Optimizing Sequences of Decisions. PhD thesis, Vrije Universiteit Amsterdam.

A The best Pareto frontiers obtained on the smallest instances

Here, we graphically depict the best Pareto frontiers reported by Decoder-EA on all instances with $n=\left|E_{R}\right| \leq 21$. For the smallest graph (gdb19) with $n=11$, we could even calculate the optimal Pareto frontier by running the decoder on all n ! permutations.

B A decoder execution example

We here follow the construction of the (partial) solutions sol $[k]$ step by step for each $k \in[0 . . n]$ in Algorithm 1 . The full solutions servicing all clients are constructed in the last step when $k=n$, i.e., the final sol $[n]$ contains the Pareto frontier to be eventually returned.

The (partial) solutions determined at Step 3 of Algorithm 1 (p. 7) are generated as follows:

- Solution $1(k=0)$ represents a null artificial solution initialized at Line 14 . The for loop at line 17 extends this solution by inserting all feasible routes starting at $e_{k+1}=e_{1}$. There are two such routes: $\left(e_{1}\right)$ and $\left(e_{1}, e_{2}\right)$ which generate transitions to Solutions 2 and 3 .
- Solution $2(k=1)$ is expanded with all the routes starting at $e_{k+1}=e_{2}$, i.e., all the routes recorded in $R\left(e_{k+1}, \ell\right)$ for all $\ell \in$ [1..len $\left(e_{k+1}\right)$], see lines 18 19. This leads to Solutions 4, 6 and 8, i.e., all solutions with two routes, the first of which is $\left(e_{1}\right)$.
- Solution $3(k=2)$ is extended to Solutions 5 and 9. But Solution 5 is discarded at Line 20 because it is dominated by the alreadycomputed Solution 6.
- Solution $4(k=2)$ leads to Solutions 7 and 12;
- Solution 5 was discarded above;
- Solution $6(k=3)$ and resp. Solution $7(k=3)$ generate Solutions 10 and resp. 11, both dominated by existing Solution 12 .

solution ID	$C^{\text {max }}$-ordered routes in sol $[k]$ in the form: $\left(C^{\text {tot }}, C^{\text {max }}\right)$	k	fleet size
1	¢:(0,0)	0	0
2	$\{\underbrace{\left\{\left(e_{1}\right)\right\}}_{6}\}:(6,6)$	1	1
3	$\begin{aligned} & \{\underbrace{\left(e_{1}, e_{2}\right)}_{18}\}:(18,18) \\ & \{\left(e_{6}\right), \underbrace{18}_{14} \\ & \left.\left(e_{2}\right)\right\}:(20,14) \end{aligned}$	2	1 2
5 6	$\begin{aligned} & \{\underbrace{\left\{\left(e_{1}, e_{2}\right),\right.}_{18}, e_{8}^{\left(e_{3}\right)}\}:(26,18)^{*} \\ & \{\left(e_{1}\right), \underbrace{\left(e_{2}, e_{3}\right)}\}:(22,16) \\ & \{\left(e_{6}\right),\left(e_{14}\right), \underbrace{\left.\left(e_{3}\right)\right\}}_{8}\}:(28,14) \end{aligned}$	3	2 2 3
8 9	$\begin{aligned} & \{\left(e_{6}\right), \underbrace{20},\left(e_{2}, e_{3}, e_{4}\right)\}:(26,20) \\ & \left\{\left(e_{1}, e_{2}\right),\left(e_{3}, e_{4}\right)\right\}:(30,18) \end{aligned}$		2 2
10	$\{(\underbrace{}_{6}), \underbrace{18}_{16}), \underbrace{\left(e_{2}, e_{3}\right)}_{10}\}:(32,16)^{*}$	4	3
11	$\{\left(e_{1}\right),\left(e_{2}\right),(e^{\left(e_{3}\right)}, \underbrace{\left(e_{4}\right)}\}:(38,14)^{*}$		4
12	$\{\underbrace{6}_{6} e_{14}^{1}), \underbrace{\left(e_{2}\right)}_{14}, \underbrace{8}_{12},\left(e_{3}, e_{4}\right)\}:(32,14)$		3

* indicates a dominated solution (never returned).

Table 5: Final solutions sol $[k]$ for $k \in[0 . . n]$. Algorithm 1 constructs this table and returns the non-marked (non-dominated) solutions listed for $k=4$, i.e., $\{(26,20),(30,18),(32,14)\}$.

[^0]: ${ }^{1}$ We can cite Lacomme et al., 2006 for an example: "in Troyes (France), all trucks leave the depot at 6am and [the whole] waste collection must be completed as soon as possible to assign the crews to other tasks, e.g. sorting the waste at a recycling facility."

[^1]: ${ }^{2}$ This 2^{n} reduction enabled us to even compute the optimal solution (the certified-optimal Pareto frontier) for the smallest instance with $n=11$. We simply executed the decoder on each of the 11 ! permutations that cover the whole implicit space for this instance. (see Appendix A). Without the 2^{n} factor reduction, the search space would have been $2^{11}=2048$ times larger!

[^2]: ${ }^{3}$ See Porumbel et al., 2017, §5.1] or the review Prins et al., 2014. As mentioned in the introduction, a variant of Ulusoy's split was already used in Lacomme et al., 2006, § 2.2.1] to transform ordered lists into explicit CARP solutions. Such decoders usually return a unique solution obtained by optimizing a mono-objective criterion and they are often inexact in a bi-objective context.

[^3]: ${ }^{4}$ To reduce the running time, we make an exception: after swapping a block $[a, b]$ (i.e., servicing all edges from index a to index b) with some block $[\bar{a}, \bar{b}]$, we do not allow the block $[a, b]$ to be swapped again with a block with $\bar{b}-\bar{a}$ edges or less.

[^4]: ${ }^{5}$ We did implement and try the following: a 2-point crossover, the "alternating edges" crossover, a grouping crossover popular in graph coloring. All these crossovers produced worse results; we think this is due to their stronger disruptive behaviour, i.e., they can break too many links between consecutive edges constructed by previous evolution.

[^5]: ${ }^{6}$ By "very close", we mean that the distance between s and \bar{s} is less than $\frac{n}{10}$. The distance between two permutations is here given by the number of consecutive edges from the first permutation that do not arise in the second one. For example, consider permutations $[1,2,3,4,5]$ and $[5,3,4,1,2]$. The consecutive edges in the first permutation are: $(1,2),(2,3),(3,4),(4$, $5)$ and $(5,1)$. Two of these pairs arise as consecutive edges in the second permutations, i.e., $(3,4)$ and $(1,2)$. The remaining three pairs do not arise in the second permutation, hence the distance between the two permutations is 3 .
 ${ }^{7}$ This perturbation scans all pairs of edges and swaps them with a 10% probability, followed by applying the LS from

[^6]: ${ }^{8}$ It was calculated with regards to the following reference point: $\left(1.05 \cdot C_{\text {left }}^{\mathrm{tot}}+1,1.05 \cdot C_{\text {right }}^{\mathrm{max}}+1\right)$, where $C_{\text {left }}^{\mathrm{tot}}$ is the $C^{\text {tot }}$ cost of the solution from Column 3 and $C_{\text {right }}^{\max }$ is the $C^{\max }$ cost (makespan) of the solution from Column 4.

[^7]: ${ }^{9}$ We thank the director of the CRIStAL laboratory [more details after potential publication].

[^8]: ${ }^{a}$ In certain papers, gdb8 and gdb9 are called gdb10, resp gdb11; actually, all instances gdb x above with $x \geq 8$ are called gdb $x+2$.
 ${ }^{b}$ IRDG-Maens provides only statistical/simulation information and DE-ICA only reports results for 16 instances out of 100 .

[^9]: ${ }^{10}$ One may use a price given by the edge length and we can obtain a very similar problem.

