
Using an Exact Bi-Objective Decoder in a Memetic Algorithm for

Arc-Routing (and Other Decoder-Expressible) Problems

Daniel Porumbel1, Igor M. Coelho2, El-Ghazali Talbi3

1 CEDRIC CS Laboratory, CNAM, 292 rue Saint Martin, Paris, France
(daniel.porumbel@cnam.fr)

2 Computing Institute, Universidade Federal Fluminense Av. General Milton Tavares de
Souza - Niteroi/RJ - Brazil - 24210-346

3 University of Lille and INRIA

Abstract

We address the bi-objective Capacitated Arc Routing Problem (CARP) by considering two levels of
solution interpretation: implicit and explicit solutions. An algorithm that translates implicit solutions
into explicit solutions is called a decoder. In this work, the decoder takes as input a permutation of the
required edges and generates a Pareto frontier of CARP solutions. While bi-objective CARP was our
main focus and starting point, we could also use the proposed framework to solve a bi-objective version
of the traveling salesman problem by plugging-in a different decoder. Recall that bi-objective CARP asks
to service (the demands of) a set of required edges using a fleet of vehicles of limited capacity so as to
minimize: (i) the total travelled distance and (ii) the length of the longest route. Any permutation s of the
required edges constitutes an implicit CARP solution. The decoder constructs all non-dominated explicit
solutions that service the edges in the order indicated by s, i.e., the decoder is an exact algorithm that
returns the optimal Pareto frontier subject to the service order s. To achieve competitive CARP results
it is also important to reinforce the decoder using a local search operator that acts on explicit routes (and
that may change the service order s). For nine instances, the resulting algorithm was even able to find
a new total-cost upper bound, improving upon the best solutions reported in the (considerably larger)
mono-objective CARP literature. This shows that (some of) the proposed ideas can also be useful in
single objective optimization: the second objective can be seen as a guide for the mono-objective search
process.

Keywords: combinatorial optimization, bi-objective exact decoder, bi-objective EA, permutation problem

1 Introduction

Let us first introduce the most widespread bi-objective variant of the celebrated Capacitated Arc Routing
Problem (CARP). Given a graph G(V,E), the goal is to find a set of feasible routes that service a set of
required edges ER ⊆ E, under the constraint that the service amount on each route cannot exceed a given
(vehicle) capacity. The bi-objective variant was first introduced by [Lacomme et al., 2006] and it requires
minimizing both the total cost (the total distance travelled by all routes) and the makespan (the length of
the longest route). The second objective may offer a higher degree of planning flexibility, e.g., enabling one
to reduce working time inequality or comply with legislative shift-time limits. This second objective also
measures the total time elapsed from the moment when all vehicles leave the depot until the last vehicle
returns; this may be important because the return of the last vehicle might trigger some other events.1

1We can cite [Lacomme et al., 2006] for an example: “in Troyes (France), all trucks leave the depot at 6am and [the whole]
waste collection must be completed as soon as possible to assign the crews to other tasks, e.g. sorting the waste at a recycling
facility.”

1

We consider two levels of solution interpretations: permutations (of ER) and explicit feasible CARP
solutions. We offer the possibility of switching from the former to the latter by applying a one-to-many
exact decoder based on dynamic programming. This decoder enables us to reduce the huge CARP search
space to a more reasonably-sized search space, namely the set of permutations of ER. Thus, CARP is
transformed into a sequencing or permutation problem [Campos et al., 2005, Porumbel et al., 2017, van
Hoorn, 2016], i.e., a problem for which the candidate solutions are encoded as (sequences or) permutations.
One can thus readily use the numerous mutation or crossover operators already developed in the literature
of permutation problems. The overall algorithm is based on the following three main components that can
be designed and studied separately (in isolation).

1. An exact decoder based on dynamic programming that can turn any given permutation s of ER into a
Pareto frontier of explicit CARP solutions that do not dominate one another. These explicit solutions
all service the required edges in the order indicated by s (Section 2.1).

2. A Local Search (LS) algorithm that may improve the minimum total cost solution returned by the
above decoder. If the solution obtained after this LS services the edges in an order s′ different from s,
we call (again) the decoder on s′, but without any LS this second time (Section 2.2).

3. An evolutionary algorithm (EA) framework in which we generalize the non-dominated sorting idea of
NSGA2 [Deb et al., 2002], so as handle both implicit and explicit solutions. We are in a more complex
context than in a pure NSGA2, because an implicit solution is associated to multiple explicit solutions,
and so, to multiple points in the objective space (unlike in NSGA2). The description of this EA does not
use any particular CARP feature, because all these features are hidden behind the (abstract) decoder.
We will rather focus more general concepts, e.g., we will propose techniques to preserve diversity, to
control the population dynamics or to encourage young offspring against old individuals (Section 3).

The EA framework from the last above point represents the main algorithmic “backbone” of the overall
solution method. The complete algorithm, hereafter referred to as Decoder-EA, is actually constructed by
connecting the two other components (points 1 and 2 above) to this EA. One can make Decoder-EA solve
a different bi-objective problem, by simply replacing the above decoder with a different one. Based on this
idea, we present in Section 5 a Decoder-EA implementation that solves a bi-objective variant of the well
known Traveling Salesman Problem (TSP). We did not need to change a single line of code in the software
module that implements the EA framework to solve this TSP variant.

If the general mono-objective CARP has attracted the interest of tens if not hundreds of researchers,
we are aware of only six papers that address the bi-objective variant considered here. The earliest work
appeared in 2006 when [Lacomme et al., 2006] presented a genetic algorithm designed by adapting the
NSGA2 framework [Deb et al., 2002] to CARP. An individual is given by a list of directed required edges
that is evaluated using a heuristic called the Ulusoy’s giant tour split (see [Ulusoy, 1985] or [Porumbel
et al., 2017, §5.1]). Compared to this early approach, our decoder is (significantly) more complex for two
reasons. First, our decoder is exact and not heuristic. Secondly, it does not use directed edges but simple
edges, hence reducing the size of the search space size by a 2n factor.2 In addition, the LS operator is very
different and so is the EA implementation. Yet, we share an important conclusion of [Lacomme et al., 2006]
that the EA “must be hybridized with a local search procedure to be able to compete with state-of-the-art
metaheuristics”; [Lacomme et al., 2006] present many other general considerations that are relevant in our
work, e.g., motivations for using an unlimited fleet (§1), reasons for choosing NSGA2 (§2), or a description
of the difficulties raised by the integration of LS (§3). We also refer the reader to [Corberán et al., 2021] for
an extensive review (that cover many bi-objective aspects) of the main Arc Routing developments produced
up to 2021, with over 230 references.

We discuss below in chronological order the remaining papers devoted to bi-objective CARP, even if they
generally rely on techniques that are only remotely related to the ones from our work, e.g., they use no

2This 2n reduction enabled us to even compute the optimal solution (the certified-optimal Pareto frontier) for the smallest
instance with n = 11. We simply executed the decoder on each of the 11! permutations that cover the whole implicit space for
this instance. (see Appendix A). Without the 2n factor reduction, the search space would have been 211 = 2048 times larger!

2

indirect list or permutation representation, there is no decoding, the LS and the NSGA2 (when present) are
applied in a different manner.

– The Decomposition-Based Memetic Algorithm (D-MAENS) by Mei et. al [Mei et al., 2011]. In this
decomposition framework, the objective values (of a solution) can be aggregated into a unique objective
value. Using N different vectors of aggregation weights, one obtains N > 2 mono-objective sub-
problems (decomposition directions); these sub-problems are associated to N representative solutions
that evolve along the search in different sub-populations [Mei et al., 2011, §(iv).a]. The bi-objective
problem is thus decomposed into N mono-objective sub-problems; each one of them could be addressed
by a well-established mono-objective CARP algorithm called MAENS.

– The ε-constraint method by Grandinetti et al. [Grandinetti et al., 2012]. The main idea in this work
is to solve a mono-objective ε−constrained problem for each objective, i.e., minimize a chosen objective
while limiting the value of each other remaining objective to a certain ε value. The method proceeds
by gradually reducing the ε parameter which leads to a sequence of ε-constrained problems (§ 3). Each
resulting mono-objective problem is associated to an Integer Linear Program (ILP) that is solved using
the commercial Cplex solver. This ILP needs a pool of pre-existing routes that are generated using LS
before calling Cplex.

– The Improved D-MAENS (ID-MAENS) by Shang et al [Shang et al., 2014]. This work takes the above
D-MAENS to a higher level by introducing a steady-state replacement strategy and an elitist archive.
Regarding the replacement, this new work proposes to replace an existing individual immediately once
an offspring solution is generated, which speeds-up the convergence. Concerning the elitist strategy,
an archive is introduced to record the solution that has the best value according to each decomposition
direction. Recall that a decomposition direction is given by a vector of weights used in the objective
aggregation described above (for D-MAENS). This new work also proposed a more dynamic method
to construct sub-populations and to associate them to decompositions directions (sub-problems).

– The Improved Route Distance Grouping MAENS (IRDG-MAENS) by Shang et al [Shang et al., 2016a].
This work improves a mono-objective CARP algorithm called RDG-MAENS [Mei et al., 2014] and suc-
cessfully generalizes it to bi-objective CARP. Both these algorithms use the notions of sub-populations
and decomposed sub-problems (as for ID-MAENS); routes and individuals can be distributed to dif-
ferent sub-populations using new, fast and effective techniques.

– The Directed Evolution Immune Clonal Algorithm (DE-ICA) by Shang et al [Shang et al., 2016b].
This algorithm builds upon the theory of artificial immune systems. The proposed ICA has certain
similarities to EAs, because it uses a population (of antibodies) and a notion of reproduction (of
the antibodies) or mutation; however, the description of such notions lies beyond the scope of this
introduction.

The remaining is organized as follows. Section 2 presents the CARP definition, the proposed bi-objective
decoder and the specific LS. Section 3 describes the EA framework in a general decoder-based optimization
context only characterized by the existence of a decoder that hides all CARP aspects. Section 4 reports
numerical results on CARP. Section 5 presents the application of the proposed framework to a bi-objective
TSP variant, including numerical results on this new problem. We conclude in Section 6. A short appendix
reports the Pareto frontiers we discovered for a few small instances, including the certified optimal solutions
for the smallest one; a second appendix presents a decoder execution example.

2 Bi-objective CARP definition, decoder and local search

The bi-objective CARP is defined on a graph G = (V,E), where V is a set of nodes and E is a set of edges.
A subset of edges ER ⊆ E with |ER| = n represents the required edges that must be serviced (once) using
an unlimited fleet of homogeneous vehicles of capacity W . Each edge {i, j} ∈ E has a (traversal) cost cij ;

3

the required edges {i, j} ∈ ER also have a demand qij . A feasible route starts and ends at a special depot
node v0; it can not supply an amount of service larger than W . An edge may be traversed multiple times
by different routes and an edge traversed without service is called a deadheaded edge.

5
0
 (3

)

50 (0)

10 (0)

1
0
0
 (

0
)

220

1

 (depot)

W=10

0

5
0
 (3

)

50 (0)

10 (0)

10
0

(0
)

220

14
0

(4
)

1

14
0

(4
)

non-required
edge

c (0)

required edgec (q)

 (depot)
0

Figure 1: Two non-dominated solutions for the same instance. Each edge {i, j} has a label “cij (qij)”, where
cij is the traversal cost and qij is the required service (0 for non-required edges). The left solution has two
routes of equal cost 400. The right solution contains a shorter route of cost 100 (only for {0, 1}) and a longer
route of cost 600. The two solutions have objective values (800, 400) and resp. (700, 600).

Let X be the set of all explicit CARP feasible solutions, i.e., the explicit search space. The bi-objective
CARP asks to find a solution x ∈ X containing a set r of routes that service all required edges and
that minimize: (i) the total cost Ctot of all traversed edges and (ii) the length Cmax of the longest route.
Technically, we can write:

Ctot = min
x∈X

Ctot(x), where Ctot
(
x
)

=
∑
r∈x

∑
{i,j}∈ r

cij (1a)

Cmax = min
x∈X

Cmax(x), where Cmax
(
x
)

= max
r∈x

∑
{i,j}∈r

cij (1b)

To cope with these two conflicting goals, the decision maker may have to choose a compromise solu-
tion from a Pareto frontier of solutions that do not dominate one another. Figure 1 provides a simple
example of two conflicting solutions for a small graph. An exact decoder applied on input permutation
({0, 1}, {2, 3}, {3, 4}, {4, 5}) would have to return these two Pareto-optimal solutions.

Section 2.1 describes the proposed decoder. While the general idea of transforming ordered lists (of tasks)
into routes is relatively popular in general vehicle routing, 3 this is the first bi-objective CARP decoder that
is exact and not heuristic. A second advantage compared to other approaches is using permutations of
non-directed edges as input, which reduces the search space size by a factor of 2n compared to more popular
“split with flips” decoders that work with directed edges.

Section 2.2 describes the LS algorithm to be executed on the Ctot-best solution from the Pareto frontier
returned by the exact decoder. After this LS round, the service order may change; in such a case, one can
call again the decoder on the new permutation (the new service order) but without any LS this second time.

2.1 The Dynamic programming exact one-to-many decoder

The decoder described hereafter extends the dynamic programming scheme for mono-objective CARP
from [Porumbel et al., 2017]. In both cases, the input consists of a permutation s of non-directed edges.

3See [Porumbel et al., 2017, §5.1] or the review [Prins et al., 2014]. As mentioned in the introduction, a variant of Ulusoy’s
split was already used in [Lacomme et al., 2006, § 2.2.1] to transform ordered lists into explicit CARP solutions. Such decoders
usually return a unique solution obtained by optimizing a mono-objective criterion and they are often inexact in a bi-objective
context.

4

2.1.1 Notations, definitions and example

Definition 1. Let S be the encoded search space that contains all permutations of ER. Let X be the explicit
search space. We consider a decoder function D : S → 2X that maps any permutation s ∈ S to a set of
explicit solutions from X .

Given input permutation s ∈ S , the proposed decoder returns a set D(s) of explicit solutions that service
the edges ER in the order imposed by s and that are Pareto non–dominated: there is no x, x′ ∈ D(s) such
that x � x′, i.e., such that Ctot(x) ≤ Ctot(x′) and Cmax(x) ≤ Cmax(x′). The decoder is exact in the sense
that the Pareto frontier D(s) is optimal to the given CARP instance subject to the service order s.

We now need more detailed notations, see also Figure 2 to follow them more easily.

Definition 2. Given permutation s = (e1, e2, . . . , ek, . . . , en) with ek = {i, j}, we define the following nota-
tions:

– the cost of travelling along ek = {i, j} is ck = cij.

– the demand of edge ek = {i, j} is qk

– the end points of edge ek = {i, j} are denoted by e0k and e1k, such that e0k = i and e1k = j.

– len(ek) is the maximum number of edges that can be serviced from edge ek onwards without exceeding
the capacity W , i.e., len(ek) = max {` : qk + qk+1 + · · ·+ qk+`−1 ≤W}.

– R(ek, `) is the minimum cost of a complete route that services ` edges (in any sense) starting from ek,
i.e., start from the depot, service ek, ek+1, ek+2, . . . , ek+`−1 and return to the depot.

– D0(ek, `) and D1(ek, `) represent the minimum cost of a route that services ek, ek+1, ek+2, . . . , ek+`−1
(in any sense) and finishes at the end point e0k+`−1 or resp. e1k+`−1 of edge ek+`−1;

0 1

Depot v0

0

1

0

1

0 1

q4 = 2

e4
e1 q1 = 4

e3 q3 = 3

q2 = 5

e2

W = 10

ek len(ek)

e1 2
e2 3
e3 2
e4 1

ek
ek+`−1

e1 e2 e3 e4
e1 6 18
e2 14 16 20
e3 8 12
e4 10

R(ek, `)
for k ∈ [1..4] and
` ∈ [1..len(ek)]

ek
ek+`−1

e1 e2 e3 e4
e1 (4, 3) (16, 12)
e2 (10, 8) (15, 13) (16, 15)
e3 (5, 5) (8, 7)
e4 (6, 5)(

D0(ek, `), D
1(ek, `)

)
for k ∈ [1..4] and ` ∈ [1..len(ek)].

Figure 2: A bi-objective CARP instance and the values of the notations from Definition 2. There are 4
required edges in bold, each one having two end vertices (see labels 0 and 1 on each bold edge); we thus
have a total of 9 vertices including the depot. We consider each two vertices are linked by a (required or
non-required) edge whose traversal cost is given by the Manhattan distance between them.

Let us first focus on Figure 2 to familiarize with the above notations. The incremental calculation of
D0(ek, `), D

1(ek, `) and R(ek, `) for k ∈ [1..n] and ` ∈ [1..len(ek)] will naturally give rise to a dynamic

5

programming scheme. Let us exemplify this calculation for input permutation s = (e1, e2, e3, e4) and k = 1.
First, we clearly have len(e1) = 2 because q1 + q2 = 9 ≤W and q1 + q2 + q3 = 12 > W (recall W = 10). We
have to first determine the best routes for ` = 1 and then the best routes for ` = 2.

1.a) We have D0(e1, 1) = 4 because this corresponds to a route that goes from the depot v0 to e11 (i.e., end
1 of e1), services e1 and stops at e01 (i.e., end 0 of e1), which generates a walk of cost 3 + 1 = 4. An
analogous argument is used to calculate D1(e1, 1) = 2 + 1 = 3.

1.b) We have R(e1, 1) = 6 because this corresponds to a route that starts from the depot, travels to either
end of e1, services e1 and comes back to v0. We actually have D0(e1, 1) + 2 = D1(e1, 1) + 3 = 6.

2.a) We now move to ` = 2, i.e., to routes servicing two edges.

– To calculate D0(e1, 2), recall that e1 has to be serviced before e2 because the given permutation is
(e1, e2, e3, e4). One can finish a (partial) trip in e02 either:

(i) by coming from e01 after having serviced e1 (i.e., continue the path of D0(e1, 1)), or

(ii) by coming from e11 after having serviced e1 (i.e., continue the path of D1(e1, 1)).

In both cases, the route has to first visit e12 before servicing e2 to end up in e02. Thus, the above
two choices lead to the formula below, where spath:V × V → R is a function encoding the shortest
path in G (here given by the Manhattan distance).

D0(e1, 2) =
min

(
D0(e1, 1) + spath(e01, e

1
2) + c2, = min(4 + 8 + 4,

= 16
D1(e1, 1) + spath(e11, e

1
2) + c2

)
3 + 9 + 4)

(2)

– An analogous argument leads to D1(e1, 2) = 12.

2.b) The calculation of R(e1, 2) uses the values D0(e1, 2) and D1(e1, 2) determined above. We can write:

R(e1, 2) =
min

(
D0(e1, 2) + spath(e02, v0), = min(16 + 4,

= 18
D1(e1, 2) + spath(e12, v0)

)
12 + 6),

(3)

The above formulae (2)–(3) illustrate the general calculation of D1(e1, `), D
2(e1, `) and R(e1, `) from the

previously-computed D0(e1, `− 1) and D1(e1, `− 1) ∀ ` ∈ [2..len(e1)]. After a few notational translations,
we can actually apply the above (2)-(3) to any ` ∈ [2..len(e1)]:

D0(e1, `) = min
(
D0(e1, `− 1) + spath(e0`−1, e

1
`), D

1(e1, `− 1) + spath(e1`−1, e
1
`)
)

+ c` (4a)

R(e1, `) = min
(
D0(e1, `) + spath(e0` , v0), D1(e1, `) + spath(e1` , v0)

)
(4b)

These two formulae actually constitute the dynamic programming recursion that calculates R and D level
by level, by iteratively increasing `. The above calculation of the values D0(e1, `), D

1(e1, `) and R(e1, `) for
` = 1 and ` = 2 is only an example of applying this recursion on `, i.e., only showing how to advance from
` = 1 to ` = 2. We could not move to ` = 3 because len(e1) = 2. The values thus calculated are visible in
the first row from the tables D and R in the right part of Figure 2; one may check and verify the numbers
in these two tables to gain full familiarity with the recursion.

The above formulae can be used to generate only routes that start by servicing e1. To construct full
solutions, we need chain (or put together) more routes that start at different edges ek, for k ∈ [1..n]. For
instance, a full Pareto-optimal solution for n = 4 may contain two routes: one of cost R(e1, 1) that services
only one edge and one of cost R(e2, 3) that services three edges. To compute D and R for k > 1, it is
actually enough to add an offset (of k − 1) to the subscript of each occurrence of “e” and “c” in (4a)-(4b),
see Section 2.1.2 for the exact resulting formulae. There is no connexion between the calculation of D and
R for two different values of k.

6

2.1.2 The complete pseudo-code

The pseudo-code consists of three major steps clearly emphasized in Algorithm 1. The first step simply
initializes R, D0 and D1 as two-dimensional data structures; they are actually implemented as arrays of
arrays, e.g., D0 is an array with n = |ER| positions, and, for each k ∈ [1..n], the array D0[k] has len(ek)
elements. The first part of Algorithm 1 provides full details on this initialization.

The second major step actually implements a generalization of (4a)-(4b). More exactly, Line 10 is
obtained from (4a) by performing the following replacements: e1 → ek+1, e`−1 → ek+`−1, and c` → ck+`.
Line 12 is obtained from (4b) by performing the above replacements and also e` → ek+`.

Algorithm 1: Dynamic Programming Multi-Objective Decoder

Input: permutation (e1 . . . en) of the required edge ER

// STEP 1: INITIALIZE len, R, D0 AND D1

1 len, R,D0, D1 ← arrays with n positions;
2 for k = 1 to n do

3 len(ek)← max{` :
∑`−1

i=0 qk+i ≤W} // max served edges;
4 R(ek), D0(ek), D1(ek)← arrays with len(ek) elements // R, D0 and D1 become matrices;

// STEP 2: COMPUTE R, D0 AND D1

5 for k = 0 to n− 1 do
6 D0(ek+1, 1)← spath(v0, e

1
k+1) + ck+1 // spath(vi, vj) is the shortest path from vi to vj, ∀vi, vj ∈ V ;

7 D1(ek+1, 1)← spath(v0, e
0
k+1) + ck+1 ;

8 R (ek+1, 1)← min{D0(ek+1, 1) + spath(e0k+1, v0), D1(ek+1, 1) + spath(e1k+1, v0)};
9 for ` = 2 to len(ek+1) do

10 D0(ek+1, `)← min(D0(ek+1, `− 1) +spath(e0k+`−1, e
1
k+`) + ck+`,

D1(ek+1, `− 1) + spath(e1k+`−1, e1k+`) + ck+`); // this implements (4a)
11 D1(ek+1, `)← min(D0(ek+1, `− 1) +spath(e0k+`−1, e

0
k+`) + ck+`,

D1(ek+1, `− 1) + spath(e1k+`−1, e0k+`) + ck+`);
12 R(ek+1, `)← min(D0(ek+1, `) +spath(e0k+`, v0), D1(ek+1, `) +spath(e1k+`, v0)); // implement (4b)

// STEP 3: CONSTRUCT NON-DOMINATED SOLUTIONS BY CHAINING INDIVIDUAL ROUTES RECORED IN R
13 sol← array indexed by k ∈ [0..n] // sol[k] is a Pareto set of pairs of objective values (Ctot, Cmax)
14 sol[0]← {(0, 0)} // k = 0 means nothing serviced yet; (0, 0) means both costs are 0
15 for k = 0 to n− 1 do
16 forall (Ctot, Cmax) ∈ sol[k] do
17 for ` = 1 to len(ek+1) do
18 Ctot

+ ← Ctot + R(ek+1, `) // add a new route that services ek+1, ek+2, . . . , ek+`;
19 Cmax

+ ← max
(
Cmax, R(ek+1, `)

)
;

20 if 6 ∃ (Ctot
old, C

max
old) ∈ sol[k + `]) such that (Ctot

old, C
max
old) ≺ (Ctot

+ , Cmax
+) then

21 sol[k + `]← sol[k + `] ∪ (Ctot
+ , Cmax

+) \{(Ctot
old, C

max
old) : (Ctot

+ , Cmax
+) ≺ (Ctot

old, C
max
old)} ;

22 return sol[n]

The third major step uses the route costs calculated above (as recorded in R) to incrementally construct
full solutions. We use a table of partial solutions sol indexed by k ∈ [0..n] such that sol[k] represents
all non-dominated partial solutions that service all edges e1, e2, . . . ek (or that service nothing if k = 0).
More technically, sol[k] is a Pareto frontier of objective value pairs (Ctot, Cmax), each pair corresponding
to a non-dominated partial solution. The main operation of this last step consists of expanding this set of
partial solutions by incrementally inserting new routes: given a solution of sol[k] that services e1, e2, . . . ek
at Line 16, we use Lines 18-19 to insert a new route that services the edges ek+1, ek+2, . . . ek+` and that
costs R(ek+1, `). If the resulting solution is not dominated by a solution that already exists in sol[k+ `] (see
the if at Line 20), then this solution is added to sol[k + `] at Line 21. At the same time, Line 21 removes
all existing solutions (Ctot

old, C
max
old) that are dominated by the new solution. Eventually, the last line returns

the Pareto frontier sol[n] which contains all non-dominated solutions that service all clients [1..n].

7

The complexity of Algorithm 1 (mostly due to Step 3) depends linearly on n (at Line 15), on the
maximum size of a Pareto frontier max{|sol[k]| : k ∈ [1..n]} (at Line 16) and on the maximum length of
a route (Line 17). Finally, Appendix B provides an execution example for input permutation (e1, e2, e3, e4)
and the instance from Figure 2.

Theorem 1. Algorithm 1 generates all non-dominated solutions that service the clients in the order indicated
by the input permutation (i.e., the decoder is exact).

Proof. We can consider the input permutation is (e1, e2, . . . , en); this does not reduce generality, because all
arguments below remain valid up to a reordering of the edges.

We first prove that D0(ek, `) and D1(ek, `) represent (the states associated to) the minimum-cost route
that services ek, ek+1, ek+2, . . . , ek+`−1 and finishes at the end point e0k+`−1 or resp., e1k+`−1 of edge ek+`−1
(∀k ∈ [1..n]). For ` = 1, this is clearly true given how Lines 6–7 of Algorithm 1 simply compute these
minimum-cost routes with only one serviced edge ek. We prove by induction on ` that this property remains
true for ` > 1. What is the shortest path that services ek, ek+1, . . . , ek+`−1 and ends up at vertex e0k+`−1
associated to state D0(ek, `) ? This vertex e0k+`−1 has to be reached after servicing the last edge ek+`−1
coming from its other end vertex e1k+`−1; and this other end vertex can only be reached by extending a path
associated to state D0(ek, `− 1) or to state D1(ek, `− 1). Both possibilities are covered by the recursion at
Line 10, meaning that D0(ek, `) correctly represent the shortest path that services ek, ek+1, . . . , ek+`−1 and
ends up at e0k+`−1. An analogous argument can show the same property for D1(ek, `) instead of D0(ek, `).

We now show that R(ek, `) is the minimum-cost complete route that services all edges ek, ek+1, ek+2,
. . . , ek+`−1 in this order (∀k ∈ [1..n]); since the route is complete in this case, it has to return to the depot
in the end. And it can only return to the depot by extending a path associated to D0(ek, `) or D1(ek, `).
Both possibilities are covered by Line 12.

We still have to prove that the last major step of Algorithm 1 generates all non-dominated Pareto optimal
solutions. Assume for the sake of contradiction that there is a non-dominated solution that is not covered.
The cost of such solution can be written under the form

R(e1, `1) +R(e1+`1 , `2) +R(e1+`1+`2 , `3) + · · ·+R(e1+`1+`2+···+`m−1
, `m), (5)

where m is the number of routes in this full non-dominated solution, so that `1 + `2 + · · · + `m = n
(meaning that these m routes service n edges). Keep in mind that all R values from the above sum are
correctly calculated by dynamic programming as described above. And recall that, in Step 3 of Algorithm 1,
sol[0], sol[1], sol[2], . . . , sol[n] are meant to contain the sets of Pareto-optimal solutions that service the
first 0, 1, 2, . . . , n edges respectively. The hypothesis assumed for the sake of contradiction reduces to the
fact that sol[n] does not contain the solution associated to above sum (5).

If we restrict above sum (5) to the first m′ < m routes, we still obtain a complete non-dominated solution
that only services the first `1 + `2 + · · · + `m′ < n edges. Let us now take m′ to be the smallest value in
[1..m] such that sol[`1 + `2 + · · · + `m′] does not contain the given optimal solution restricted to the first
m′ routes in (5). Since m′ is minimal with this property, we can use that sol[`1 + `2 + · · · + `m′−1] does
contain the given optimal solution restricted to the first m′−1 routes. But since R(e1+`1+`2+···+`m′−1

, `m′) is
correctly computed, this optimal solution of m′ − 1 routes can naturally extend to the solution of m′ routes
by applying Lines 18-19 for k = `1 + `2 + · · · + `m′−1. Thus, there is no way Algorithm 1 could miss the
solution of m′ routes, which is a contradiction. The hypothesis assumed for the sake of contradiction that
there is a full optimal solution not covered by Algorithm 1 has to be false.

Finally, the fact that sol[n] contains only non-dominated solutions simply comes from the fact that
sol[0], sol[1], . . . sol[n] represent by definition (and are implemented to record) Pareto frontiers of non-
dominated solutions only. Combining this with the previous paragraph, sol[n] has to contain exactly the list
of non-dominated solutions of the given CARP instance subject to the service order imposed by the input
permutation.

8

2.2 The Local Search phase

We consider the first objective Ctot to be more important than Cmax, and so, we here propose a Local Search
(LS) algorithm that attempts to improve the Ctot–best solution returned by the decoder (from Section 2.1).

2.2.1 The neighborhood

We use two neighborhood relations associated to two operators (moves): route rotation and (unequal) block
swap. All these moves can be executed in constant time but the number of potential positions on which they
can be applied can be quadratic with regards to n.

Route rotation is a simple operator that acts on individual routes. Each route r is interpreted as a
closed walk v0 → v1 → v2 → . . . v|r| → v0. Using a similar approach as in [Ulusoy, 1985, §3.3], one can
re-locate the depot v0 and place it before any index i ∈ [2..|r|] to obtain a new route v0 → vi → vi+1 →
. . . v|r| → v1 → v2 · · · → vi−1 → v0. The cost variation resulting from this operation can be computed in
constant time, because it only requires determining the cost of disconnecting and “re-linking” the connexion
points v0, v1, vi−1, vi and vr. When taking all routes into account, this operator can be applied on O(n)
positions.

Block swap is an operator that simply swaps
two route blocks of arbitrary lengths; these blocks
may belong to the same route or to different routes.
Let us focus on the following two routes, using no-
tation “ ” to indicate a shortest path linking two
vertices (with no service) and “→” to indicate a
serviced edge.

– v0 . . . u1 → v1
edge 1

 u2 → v2
edge 2

 u3 → v3
edge 3

 . . . v0

– v0 . . . u1 → v1
edge 1

 u2 → v2
edge 2

 . . . v0

A block swap may simply take a block ui+1 →
vi+1 ui+2 → vi+2 . . . ui+δ → vi+δ of the
first route and swap it with a block uj+1 →
vj+1 uj+2 → vj+2 . . . uj+δ → vj+δ of the sec-
ond route. Notice that in the above example we
have δ = 3 and δ = 2 (and i = j = 0). For
δ = δ = 1, this is simply equivalent to swapping
two required edges. One may also reverse one of
the blocks or both of them when this improves the
total cost. For any given i, j, δ and δ̄, the ob-
jective function variation can be calculated in con-
stant time, because one only has to evaluate the
cost evolution resulting from disconnecting the two
blocks at their end points and re-connecting them
at their new places. The capacity constraint can
also be checked in constant time. The number of
potential i, j, δ and δ̄ values on which this operator
can be applied belongs to O(n2δ2max), where δmax
is the maximum size of an existing block (we use
δmax = 50 in our experiments).

required edge
non-required edge

depotdepot

Figure 3: Block swap operator example. The red
block (2 required edges) and the blue block (3 re-
quired edges) from the two routes at left are swapped
from one route to another. We obtain the two routes
at right, after having reconnected the two blocks to
the edges emerging from the depot. Both resulting
routes will pass through the top-left vertex and they
are linked there as shown in the right figure.

The implementation of the above block swap operator was the most difficult programming task in the
whole project; it is significantly more complex than implementing a route rotation or a block swap with

9

δ = δ. Handling the right data structures to record routes of evolving length may be an elaborate task; an
array-type data structure is not enough for this. However, preliminary experiments show that the effort pays
off; this is a very aggressive tool for finding high-quality solutions. We tested several other neighborhoods
before restricting to the presented ones, see also Section 4.2 for numerical tests on a block swap neighborhood
with δ = δ. We do not think we could have ever improved upon the best Ctot upper bound reported in the
mono-objective literature without swapping blocks of arbitrary lengths as described above.

2.2.2 Complete specification of the LS algorithm

The LS algorithm consists of the following two stages described below in more detail.

strictly descent loop This first phase applies moves that strictly decrease the total cost, so as to search
for local optima in the basin of attraction of the input solution (returned by the decoder).

unequal block swapping Perform iters ls= 5 +
⌊
n
8

⌋
iterations that swap unequal blocks, allowing side

steps.

Stage 1 starts with the following operation: go through all pairs of edges and execute any edge swap
(i.e., a block swap with δ = δ = 1) that strictly improves the total cost. This operation is repeated as long
as there exists at least a swap that strictly improves the total cost, a bit like in a bubble search algorithm.
One then performs all route rotations that lead to a better solution. The whole procedure in this stage is
repeated as long as the solution reported in the end is strictly better than the starting solution.

Stage 2 executes iters ls iterations of the following procedure: scan all pairs of blocks and perform all
swaps that do not increase the Ctot cost. Recall it is also possible to reverse one of the blocks (or even both)
when this improves the cost.4 Neutral steps are thus accepted for the first time, which may lead the LS
to solutions outside the basin of attraction of the starting solution. If at some iteration all possible block
swaps would strictly increase the cost, we consider that the search is (almost) stuck in a local optimum.
This calls for a small perturbation: go through all pairs of edges and swap them with a probability of 0.1,
which amounts to eventually dislocating around 10% of the edges. This stage is not used for the very small
instances (n < 50).

3 The decoder-based EA framework in the implicit space

We here introduce a bi-objective EA in a decoder-based optimization framework, only characterized by the
existence of an (exact) decoder that hides all problem-specific (CARP) features. A particular aspect in
this context it that one has to associate multiple pairs of objective values to each genotype solution, i.e.,
there are multiple 2D points in the objective space for each implicit solution. This brings certain challenges
comparing to a standard bi-objective EA in which each genotype solution is associated to a unique point
in the objective space. We will pay particular attention to two components that are very relevant in bi-
objective optimization [Talbi, 2009]: (1) assigning fitness and ranks to (genotype) solutions and (2) keeping
the diversity high at all levels to prevent a limited amount of gene patterns from monopolizing the population
over too many generations.

Section 3.1 below addresses the first component: the fitness (and rank) assignment. Its goal is to compare
and rank a set of genotype solutions (individuals) with conflicting objective values. The resulting ranking
can be used for multiple purposes: to decide what individuals to accept in the population, what individuals
need to be replaced and when to apply mutations. In our case, we will generalize the non-dominated sorting
mechanism of NSGA, organizing the individuals into a hierarchy of fronts of different ranks.

4To reduce the running time, we make an exception: after swapping a block [a, b] (i.e., servicing all edges from index a to
index b) with some block [a, b], we do not allow the block [a, b] to be swapped again with a block with b− a edges or less.

10

3.1 Ranking implicit solutions using an extended non-dominated sorting

Recalling Definition 1, we consider a decoder function
D that maps an implicit (genotype) solution s ∈ S to
a set of decoded complete solutions D(s) from the ex-
plicit space X . We have to design a method for rank-
ing the implicit solutions of a population PS based on
the corresponding explicit solutions from X and their
objective values. A bird’s-eye view of this process is
exemplified in the right figure. Considering a small
population PS with |PS | = 2, the genotype solutions
s, s′ ∈ S are decoded into sets D(s) and D(s′). After
calculating all objective values of all explicit solutions
from these two sets, one has to assign ranks to s and
s′, i.e., to decide which one is preferable.

s′s

encoded space S

Decoded space X

x1, x2, . . . xk1

D(s)

x′1, x
′
2, . . . x

′
k2

D(s′)

d
ec

o
d
er

ra
nk

/fi
tn

es
s

as
sig

ne
m

nt

rank/fitness

assignem
nt

d
eco

d
er

PS

We propose the following (fitness) evaluation approach. Given a population PS ⊂ S , we first decode all
elements of PS and then compute their objective values. We thus obtain a number of 2-dimensional (2D)
points in the objective space that all emerge from PS . These 2D points are then partitioned into a hierarchy
of Pareto frontiers of different ranks (levels of (non-)domination) as in a pure NSGA2. More exactly, the
front of rank 1 contains all 2D points that are completely non-dominated in the objective space. Then, the
front of rank k = 2, 3, . . . contains all 2D points that are dominated only by 2D points of better rank (lower
than k). We then define the (top) rank ranktop(s) of a given s ∈ PS as the minimum (best) rank value of a
2D point (in the objective space) that emerged from s.

Remark 1. A second evaluation step is often needed, whenever one needs to distinguish between implicit
solutions that have the same (top) rank. For each s ∈ PS , the top-rank size sizetop(s) is defined as
the number of 2D points of rank ranktop(s) that originate from s. This quality measure will be used in
Section 3.4 (point 1.(b)) to perform a roulette wheel survival selection based on the idea that higher quality
implicit solutions generate more top-rank 2D points.

Figure 4 gives an example of the above evaluation process on a small population PS = {s, s′, s′′}. Notice
that an implicit solution is always evaluated with regards to the whole population to which it belongs. Even
if s′′ is preferable to s in the given population, this is no longer true if we remove s′ from PS because the
2D points a and b would become non-dominated in the objective space.

3.2 The general design and overall pseudo-code

As hinted above, the non-domination sorting is an important concept used in NSGA2 [Deb et al., 2002]
to organize the population into a hierarchy of fronts (sets) such that all solutions from a given front Fk
dominate all solutions of inferior rank (from fronts Fk+1, Fk+2, . . .); the top-right part of Figure 4 gives an
example showing how a rank–1 front {c, d, f} dominates a rank–2 front {a, b, e}. While this non-domination
sorting is performed in the objective space, recall we extended it in Section 3.1 to evaluate solutions from
the implicit space. The non-domination sorting idea is actually the only major NSGA2 feature that we use
(and extend) in our work. For instance, unlike other CARP algorithms [Lacomme et al., 2006], we do not
resort to the crowding distance metric which is used in NSGA2 to induce a preference for more isolated
solutions along the Pareto frontier. In our case, whenever we have to distinguish between two solutions s
and s′ that belong to the same front (in the sense that ranktop(s) = ranktop(s

′)), we compare sizetop(s)
and sizetop(s

′) as indicated in Remark 1 above.
Algorithm 2 presents the overall pseudo-code of the proposed Decoder-EA. At iteration it = 1, it starts

with a genotype population P 1
S

of popsize random implicit solutions which are all decoded (Line 2) into
an explicit population P 1

X . The outer while loop performs the following. First, it generates an offspring
population Qit

S
of popsize implicit solutions by crossover at Line 5. The next line decodes these implicit

solutions into explicit solutions followed by the LS call at Line 7. Recall (Section 2.2) that the LS may

11

obj1

obj2 a = (1, 5)
S X

PS

s

s′
D(s′)

x′2

x′3

D(s)
x1

x2

x′1

b = (2, 4)

c = (1, 3)

d = (1.5, 2.5)

f = (3, 1)

Rank above pairs of objective
values (2D points): rank-1
front {c, d, f} dominates
rank-2 front {a, b, e}.

ranktop(s) = 2: the top rank of a 2D point
emerging from s is 2 in the objective space;
ranktop(s

′) = 1, ranktop(s
′′) = 1

sizetop(s
′) = 2 = [{c, d}|

sizetop(s) = 2 = |{a, b}|

s′′

D(s′′)

x′′

how many top–rank 2D
points emerge from each
implicit solution?

sizetop(s
′′) = 1 = |{f}|

e = (3, 2)

Figure 4: Illustration of our extended non-dominated sorting. The implicit solutions from population PS

are decoded into explicit solutions (solid arrows) which are then evaluated in the objective space (dashed
arrows). The larger arrows illustrate the calculation of ranktop(s) and sizetop(s) for all s ∈ PS .

Algorithm 2: Decoder-EA

1 P 1
S ← RandomPop();

2 P 1
X ← Decode(P 1

S); // each explicit solution has a label pointing to the implicit solution that generated it
3 it← 1;
4 while stopping criterion not met do
5 Qit

S ← Crossover(P it
S);

6 Qit
X ← Decode (Qit

S);
7 Qit

X , Qit
S ← LocalSearch (Qit

X);
8 updateFrontBestSols(Qit

X); // the best non-dominated solutions ever generated

9 P it+1
S

, P it+1
X ← {};

10 rank← 1;

11 while |P it+1
S
| < popsize do

12 FS ←getFront(P it
S ,Qit

S ,P it
X ,Qit

X , rank); // get only the implicit solutions for the current rank

13 P it+1
S

← P it+1
S

⋃{
FS

}
;

14 P it+1
X ← P it+1

X

⋃
explicitSolutions(FS); // add the explicit solutions from P it

X associated to FS

15 rank← rank + 1;

16 it← it + 1;

17 return the Pareto optimal solutions constructed along the iterations via Line 8

change the implicit solution on which it is applied; this update is back propagated and may change Qit
S

.
Line 8 checks if the Pareto frontier of the best objective values ever generated may be enriched by some new
offspring solution; this frontier will be returned by the last line of the algorithm.

The core of the overall algorithm is the inner while loop that constructs the next-generation populations
P it+1

S
and P it+1

X . This construction uses the extended non-dominated sorting presented in Section 3.1. More
exactly, the repeated call to getFront(...) at Line 12 retrieves one by one a sequence of fronts of implicit
solutions that have an increasingly weaker rank; these fronts are iteratively added to the next-generation

12

populations using Lines 13-14. If the size of the current front is larger than the number of remaining places
in the new population (i.e., popsize −

∣∣P it+1
S

∣∣), then getFront(...) may actually return a reduced front.
This may only happen at the last iteration of the inner while loop. Although all solutions s from this last
front have the same ranktop(s) value, they can be distinguished using their different sizetop(s) values; we
use a roulette wheel selection to decide which solutions may survive (see point 1.(b) in Section 3.4 below).

As a side note, Algorithm 2 has to continuously maintain a link between the explicit solutions P it
X and

the implicit solutions P it
S

. All routines that work with explicit solutions (e.g., see the LocalSearch and
getFront calls) have to be able to access the implicit solution associated to each explicit solution.

3.3 The crossover and the parent selection

After trying multiple ideas5 we decided to only use the very simple one–point permutation crossover. This
crossover simply takes the first bn2 c positions of the first parent permutation and directly passes them to the
offspring; we say bn2 c is the split point. The remaining elements are inherited from the second parent in the
order in which they appeared there. For example, the crossover of [1, 2, 3, 4, 5, 6] and [6, 4, 3, 2, 1, 5] would
result in [1, 2, 3, 6, 4, 5]. We mention a small adaptation that is specific to Arc-Routing. After the decoder
and the LS phase, we can easily identify the routes of the Ctot–best decoded solution and “pay attention”
not to break such a route, especially if it is not very short. More exactly, if such a route covers an interval
of indexes [n/2− δ1, n/2 + δ2] with δ1 + δ2 > 5, then the split point becomes n/2 + δ2 instead of n/2.

1 2 3 4 5 6 6 5 3 4 1 2 6 4 5 2 3 1 1 6 3 5 4 2 6 4 3 2 5 1

This permutation produced the
explicit solution of minimum total
cost (over the whole population).
This explicit solution has two
routes servicing edges {6,5,3,4}
and {1,2}. Thus, the parents will
not be split into two equal halfs
(3+3), but in a 4+2 manner.

Encoded population (5 permutations)

Offspring population (5 permutations)

These arrows are
an example of
parent selection

1 2 3 4 6 5 6 5 3 4 2 1 1 2 3 4 6 5 6 5 3 4 1 2 6 5 3 4 2 1

Figure 5: Example showing how the crossover would be applied on a population of size popsize = 5. The
first parent is indicated by solid arrows; the second one by dashed arrows. Each offspring inherits the first
4 elements from the first parent (the left legend explains the choice of the value 4 in this simplified setting);
the remaining elements are inherited from the second parent in the order in which they appeared there.

The parent selection is performed as follows. Let Ctot
min(s) be the Ctot–best objective value of an explicit

solution decoded from s, for any s ∈ P it
S

. Let Ctot
worst be the maximum value of Ctot

min(s) over all s ∈ P it
S

,

i.e., Ctot
worst = max

{
Ctot

min(s) : s ∈ P it
S

}
. We would like to favor solutions s with a small Ctot

min(s) value, i.e., s
should be preferable to s′ if Ctot

min(s) < Ctot
min(s′). We thus propose a parent selection based on a roulette wheel

procedure that assigns to each s ∈ P it
S

a probability value proportional to
(
Ctot

worst − Ctot
min(s)

)2
. Notice that

the solution s that has the worst Ctot
min(s) value (i.e., Ctot

min(s) = Ctot
worst) has zero chances of being selected.

3.4 Improving the population dynamics to avoid premature convergence

The above Algorithm 2 is actually the most general pseudo-code that can capture the main ideas of the
overall method. To make Decoder-EA reach its full potential, one has to study (and improve) the general
dynamics of the population, i.e., to understand in more detail how it evolves over the generations. One can
gain insight into such (sometimes tricky) aspects only after covering the previous more general algorithmic
descriptions. This confirms that the devil is in the details: the current section comes last but it nevertheless
involves important or non-standard (research) material. Without this material, we avow that our very
first implementation of Algorithm 2 (with some naive calibration) was particularly prone to premature

5We did implement and try the following: a 2-point crossover, the “alternating edges” crossover, a grouping crossover popular
in graph coloring. All these crossovers produced worse results; we think this is due to their stronger disruptive behaviour, i.e.,
they can break too many links between consecutive edges constructed by previous evolution.

13

convergence, i.e., all individuals could become almost identical in less than 100 iterations (generations). We
tested many ideas to overcome such drawbacks; we finally implemented only the most effective ones that we
present below.

1. To maintain a high-quality population in the long run, one has to be very careful in deciding what
individuals may survive from one generation to the next; this has an important impact on selecting the
gene patterns that survive over (many) generations. This (survival) selection is actually implemented
inside the repeated call to getFront(...) in the inner while loop of Algorithm 2. This getFront(...)
function first retrieves all individuals for the current rank and then it filters them by applying the
following principles:

(a) First and foremost, we need a protection against premature convergence, because otherwise a
few high-quality individual refined over multiple generations could completely “shadow” all new
offspring, i.e., a few old individuals may achieve a quality level that is hardly ever reached by
new individuals (which barely survive such selective pressure). To implement this protection,
we never allow more than 30% of the current implicit population PS to survive to the next
generation; as such, at least 70% of the genetic material of each population has to come from
recent offspring. Using popsize = 10, we actually only allow the best 3 individuals to survive.
Furthermore, Decoder-EA also checks that the surviving individuals are not always the same,
which may happen if a few individuals reach such a high level of quality that no other individuals
can compare to them. After five generations in which the surviving individuals are exactly the
same, we select one of them to be artificially replaced (outlived) by a different random solution
from the population. We can say that we implemented a policy that encourages young individuals
instead of allowing a few old individuals to dominate the genetic material in the long run.

(b) If the number of remaining positions in the new population (i.e., popsize −
∣∣P it+1

S

∣∣) becomes
smaller than the number of individuals of rank rank, these individuals can not all survive. Re-
calling Remark 1 from Section 3.1, we formally say that all these individuals (solutions) s have
same top-rank value ranktop(s) = rank, but they may have different top-rank sizes sizetop(s). In
this case, getFront(...) performs a selection by applying a roulette wheel procedure in which

the survival probability of each considered solution s is proportional to
(
sizetop(s)

)2
.

2. We also need a (re-)diversification operation that we use after many generations with no progress.
Decoder-EA can detect such an undesirable state quite easily by monitoring the evolution of the Pareto
frontier of the best objective values ever discovered. Recall that, at each generation, Line 8 attempts
to improve this Pareto frontier by trying to insert the objective values of the new offspring. After 2000
generations with no new insertion at Line 8, Decoder-EA performs a (re-)diversification operation, so as
to try to make the population escape from the basin of attraction of the current best implicit solutions.
We first mark all implicit solutions s ∈ P it

S
such that the Ctot–best cost of an explicit solution decoded

from s is within 110% of the Ctot–best cost ever reported since the last re-diversification. We then
eliminate (replace with random solutions) the following: (i) all marked implicit solutions s, and (ii) all
other solutions s ∈ P it

S that are very close to a marked implicit solution s.6

3. Finally, we need to monitor the potential appearance of duplicated individuals. Each time a new
individual is generated (by crossover followed by LS), we check if the current population does not
already contain an identical individual. We allow an individual to be duplicated once; this may be
acceptable because it may lead the population towards a stronger basin of attraction where more high-
quality gene patterns may be found. But if we detect that the last generated individual already exists
at least twice in the population, we apply a perturbation before inserting it.7

6 By “very close”, we mean that the distance between s and s is less than n
10

. The distance between two permutations is
here given by the number of consecutive edges from the first permutation that do not arise in the second one. For example,
consider permutations [1, 2, 3, 4, 5] and [5, 3, 4, 1, 2]. The consecutive edges in the first permutation are: (1,2), (2,3), (3, 4), (4,
5) and (5,1). Two of these pairs arise as consecutive edges in the second permutations, i.e., (3, 4) and (1,2). The remaining
three pairs do not arise in the second permutation, hence the distance between the two permutations is 3.

7This perturbation scans all pairs of edges and swaps them with a 10% probability, followed by applying the LS from

14

4 Numerical Results on Arc-Routing

We now perform an evaluation of Decoder-EA over all CARP instances that we are aware of. They originate
from six different benchmark sets, distinguished by their different prefix: gdb, kshs, val, egl, C–F or g. The
average value of n = |ER| is around 80; there are 17 instances with n > 100 and 10 with n > 300. All these
instances are publicly available on-line at www.uv.es/~belengue/carp.html, at https://logistik.bwl.

uni-mainz.de/forschung/benchmarks/ or at cedric.cnam.fr/~porumbed/carpbest/. We present below
their characteristics in greater detail.

gdb These 23 instances have between 7 and 27 vertices and a number of edges n ∈ [11, 55] all required. In
fact, there is only one instance with n = 11, the rest having n ≥ 19.

kshs These 6 small instances have between 6 and 10 vertices and exactly n = 15 edges, all required.

val These 34 moderate-size instances have between 24 and 50 vertices and they have a number edges
n ∈ [34, 97], all required.

egl These 24 larger instances were generated in connexion to a winter gritting application in Lancashire
in the 1990s. Half of them have 77 vertices and half of them have 140 vertices; 18 instances have
non-required edges. The number of required edges n ranges from 51 to 190.

C–F This is a large set of 100 instances that have between 26 and 97 vertices and the number of required
edges n ranges from 28 to 121; non-required edges are present in all instances.

g This set contain 10 very large instances, all of them with 255 vertices. There are five g1 instances with
n = 347 and with 28 non-required edges; a second sub-set g2 has n = 375 required edges and zero
non-required edges. These 10 instances are also referred to as egl-large.

The code source was implemented in C++ and compiled by g++ -O3 under OpenSuse 15.1 Linux (kernel
version 5.4.14-9). All reported CPU times have been obtained on an Intel Xeon Gold 5218 processor clocked
at 2.30GHz.

4.1 Complete results over 100, 1000 and 10000 iterations on all instances

We generally allow max iters = 10000 to solve each instance. For each run, we will actually present the
results reported by Decoder-EA after 100, 1000 and 10000 iterations, roughly corresponding to a short,
medium and resp. long term evaluation. In fact, the maximum number of iterations max iters = 10000
can even be increased (a bit) in some exceptional cases. Following an idea from [Porumbel et al., 2017],
if Decoder-EA discovers a new non-dominated solution during the last 10% iterations (e.g., after iteration
9000), the value of max iters is increased by 10% (i.e., first from 10000 to 11000, than to 12100, etc). We
never allow the number of iterations to exceed 15000 using this mechanism.

Table 1 reports the results obtained by applying the following protocol on each instance: execute
Decoder-EA ten times, rank the ten results (as described just next) and finally report the run of median

rank. The ranks of the ten considered runs are defined by sorting the reported results according the left-most
solution (the one of minimum Ctot value) of the Pareto returned in the end. Two runs that report the same
left-most solution in the end are considered to have an equal (equivalent) rank. The rank in Column 7 is
obtained from this sorting. The most frequent rank is 1-10/10 and it corresponds to a case in which all runs
report equivalent results at the end of all allowed iterations. A rank of 3-5/10 indicates a tie for positions
three through five. We say that all such runs have a median rank, because they cover the 5th place.

The columns of Table 1 are organized as follows.

– The first two columns report the instance name and the number of required edges n = |ER|.

Section 2.2.2. If this still leads to a solution that already exists in the population, we repeat the perturbation by increasing the
probability to 20%, than to 40%, 80% and eventually we generate a random individual if necessary.

15

www.uv.es/~belengue/carp.html
https://logistik.bwl.uni-mainz.de/forschung/benchmarks/
https://logistik.bwl.uni-mainz.de/forschung/benchmarks/
cedric.cnam.fr/~porumbed/carpbest/

– Columns 3 through 7 describe the results a full run at the end of all allowed iterations. Column 3
and 4 indicate the left-most and resp right-most solution of the final Pareto frontier in the format
“Ctot/Cmax”. Column 5 represents the total CPU time in seconds. Column 6 reports a hyper-volume
indicator.8 Column 7 is the rank of the reported run with regards to the ten runs, as described above.

– Columns 8–9 indicate the left-most and resp right-most solution of the final Pareto frontier obtained
after 1000 iterations.

– Columns 10–11 report the same results as in Columns 8-9, but obtained after only 100 iterations.

– The last column reports the best leftmost (Ctot-best) solution ever discovered by any of the ten runs.
When (a cell in) this column is empty, this means that the best discovered solution is the one from the
reported run in Column 3.

These results in Table 1 are rather self-explanatory. Notice that Column 7 frequently reports a rank of
“1-10/10” which indicates that all ten runs returned the same left-most solution at the end of all allowed
iterations. Such instances are not very sensitive to many changes in the design of Decoder-EA. The final
Decoder-EA variant described throughout this paper was designed by performing various performance tests
on more critical (or variation-inducing) instances; we will focus on such instances in Sections 4.2–4.3.

Remark 2. Whenever a value is marked in boldface in the last column of Table1, this indicates we improved
upon the best known Ctot upper bound ever reported in the (much) larger mono-objective CARP literature.
We here report the previous and the new best-known upper bounds for the concerned nine instances:

Instance
Previous best New

Instance
Previous best New

upper bound upper bound upper bound upper bound
egl-s2-A 9884 9875 egl-s2-B 13099 13065
egl-s4-B 16260 16198
g1-A 998777 995012 g1-C 1241762 1240426
g1-D 1371443 1370958 g1-E 1512584 1512391
g2-C 1341519 1340303 g2-D 1481181 1480726

The previous best-known upper bound for the first above instance (9884 for egl-s2-A) was discovered in [San-
tos et al., 2010]. For the remaining instances, the best-known upper bounds were retrieved from (Table
IX of) [Mei et al., 2014], where the authors stated that their bounds improved upon the previous best-
known solutions. All these top results seem consistent when comparing to the results of the four heuris-
tics (or resp. eight in the case of egl-s2-A, elg-s2-B and elg-s4-B) reported at https: // logistik.

bwl. uni-mainz. de/ forschung/ benchmarks/ . All our new best solutions are publicly available on-line at
cedric. cnam. fr/ ~ porumbed/ carpbest/ for any further improvement or research use.

Besides these heuristic results, we could also use the decoder to exactly determine the optimal solutions
for the smallest instance gdb19 with n = 11. For this value of n, we simply called the decoder on all 11!
permutations, i.e., we evaluated the whole search space. The solutions of the optimal Pareto frontier are:
(83, 17), (71, 19), (63, 20) and (55, 21), see also the figures in Appendix A. The total computation time was
about 2 hours. Had we used a more classical “split with flips” decoder, the search space size would have
been 211 = 2048 times larger, easily leading to a thousand-fold increase of the computation time. This may
explain why we are the first to report the exact optimal Pareto frontier for a well-acknowledged instance.

8It was calculated with regards to the following reference point: (1.05 · Ctot
left + 1, 1.05 · Cmax

right + 1), where Ctot
left is the Ctot

cost of the solution from Column 3 and Cmax
right is the Cmax cost (makespan) of the solution from Column 4.

16

https://logistik.bwl.uni-mainz.de/forschung/benchmarks/
https://logistik.bwl.uni-mainz.de/forschung/benchmarks/
cedric.cnam.fr/~porumbed/carpbest/

Table 1: Detailed results over all instances

10000 iterations 1000 iterations 100 iterations best left sol
Instance n left right time[s] hyper-vol rank left right left right ten runs
gdb01 22 316/74 337/63 25 451 1-10/10 316/74 337/63 316/74 337/63 /
gdb02 26 339/69 395/59 42 954 1-10/10 339/70 395/59 339/73 413/59 /
gdb03 22 275/65 339/59 29 688 1-10/10 275/65 339/59 275/65 346/59 /
gdb04 19 287/74 350/64 18 768 1-10/10 287/74 350/64 287/74 350/64 /
gdb05 26 377/78 447/64 35 1278 1-10/10 377/78 447/64 377/83 447/64 /
gdb06 22 298/75 351/64 27 760 1-10/10 298/75 351/64 298/75 351/64 /
gdb07 22 325/68 415/57 24 1095 1-10/10 325/68 415/57 325/69 415/57 /
gdb08 46 348/48 396/38 126 754 1-6/10 353/45 406/38 358/44 426/38 /
gdb09 51 303/43 333/37 357 339 1-10/10 303/49 335/37 306/43 335/37 /
gdb10 25 275/70 410/39 49 4272 1-10/10 275/71 410/39 275/76 410/39 /
gdb11 45 395/82 585/43 445 7767 1-10/10 395/87 585/43 399/93 591/43 /
gdb12 23 458/97 547/93 19 768 1-10/10 458/97 557/93 458/97 583/93 /
gdb13 28 544/128 544/128 27 196 2-10/10 544/128 544/128 544/128 544/128 536/140
gdb14 21 100/21 136/15 25 272 1-10/10 100/21 136/15 100/21 136/15 /
gdb15 21 58/15 68/8 29 78 1-10/10 58/15 68/8 58/16 70/8 /
gdb16 28 127/27 151/14 47 382 1-10/10 127/29 151/14 129/24 157/14 127/26
gdb17 28 91/14 101/9 49 68 1-7/10 91/14 103/9 91/15 103/9 /
gdb18 36 164/33 232/19 135 948 1-6/10 164/34 232/19 164/34 250/19 /
gdb19 11 55/21 63/17 6 40 1-10/10 55/21 63/17 55/21 63/17 /
gdb20 22 121/34 131/20 26 224 1-10/10 121/36 131/20 123/26 133/20 /
gdb21 33 156/28 194/15 73 570 1-8/10 156/29 194/15 158/27 198/15 /
gdb22 44 200/28 240/12 138 747 1-6/10 200/30 242/12 202/28 244/12 /
gdb23 55 235/25 279/13 520 627 2-7/10 235/28 281/13 235/28 287/13 233/26
kshs1 15 14661/4117 16825/3528 10 1716726 1-10/10 14661/4117 16825/3528 14661/4117 16825/3528 /
kshs2 15 9863/2646 13601/2109 11 1919208 1-10/10 9863/2646 13601/2109 9863/2646 13601/2109 /
kshs3 15 9320/2640 9666/2084 10 395567 1-10/10 9320/2640 9666/2084 9320/2670 9666/2084 /
kshs4 15 11498/3349 12964/2713 12 1007131 1-10/10 11498/3349 12964/2713 11498/3349 12964/2713 /
kshs5 15 10957/4195 15857/2865 14 6980854 1-10/10 10957/4195 15857/2865 10957/4746 15857/2865 /
kshs6 15 10197/4032 11177/3472 13 851510 1-10/10 10197/4032 11177/3472 10197/4032 11177/3472 /
val1A 39 173/58 216/40 276 865 1-10/10 173/58 216/40 173/61 230/40 /
val1B 39 173/60 216/40 194 929 5-7/10 173/59 216/40 179/52 216/40 173/59
val1C 39 245/41 248/40 84 61 1-10/10 245/41 248/40 245/42 248/40 /
val2A 34 227/114 395/71 224 6431 1-10/10 227/114 395/71 227/114 397/71 /
val2B 34 259/108 395/71 157 5338 1-10/10 259/108 401/71 260/101 407/71 /
val2C 34 457/71 457/71 54 92 1-10/10 457/71 457/71 462/71 462/71 /
val3A 35 81/41 106/27 252 375 1-10/10 81/41 114/27 81/41 120/27 /
val3B 35 87/32 106/27 130 109 1-10/10 87/32 106/27 87/32 106/27 /
val3C 35 138/27 138/27 52 14 1-10/10 138/27 138/27 138/27 138/27 /
val4A 69 400/134 514/80 7839 7493 1-10/10 400/134 578/80 400/134 578/80 /
val4B 69 412/104 530/80 3424 3126 1-10/10 412/106 562/80 412/108 573/80 /
val4C 69 428/99 496/80 1992 2224 1-10/10 428/99 534/80 428/100 555/80 /
val4D 69 530/82 538/80 1075 234 1-10/10 530/83 542/80 530/85 578/80 /
val5A 65 423/141 715/72 698 1 20759 1-10/10 423/141 722/72 423/142 785/72 /
val5B 65 446/112 718/72 4258 10933 1-10/10 446/113 762/72 446/115 774/72 /

Continued on next page

17

Table 1: Detailed results over all instances (continued)

10000 iterations 1000 iterations 100 iterations best left sol
Instance n left right time[s] hyper-vol rank left right left right ten runs
val5C 65 474/95 725/72 2321 6094 1-10/10 474/97 737/72 474/99 774/72 /
val5D 65 575/90 697/72 995 3268 2-5/10 578/89 705/72 581/84 717/72 575/83
val6A 50 223/75 309/45 1717 2350 1-10/10 223/75 309/45 223/75 311/45 /
val6B 50 233/68 307/45 948 1856 1-10/10 233/68 315/45 233/68 319/45 /
val6C 50 317/54 323/45 297 242 1-10/10 317/55 329/45 317/55 343/45 /
val7A 66 279/85 385/39 4020 5443 1-10/10 279/85 391/39 279/85 401/39 /
val7B 66 283/58 385/39 2703 1890 1-10/10 283/58 385/39 283/61 403/39 /
val7C 66 334/50 387/39 946 839 1-10/10 334/50 405/39 334/50 411/39 /
val8A 63 386/129 635/67 4252 15741 1-10/10 386/129 657/67 386/129 695/67 /
val8B 63 395/99 623/67 4123 7401 1-5/10 395/101 655/67 395/105 680/67 /
val8C 63 521/85 635/67 849 2790 3-5/10 527/81 645/67 527/81 671/67 521/77
val9A 92 323/108 459/44 26676 9421 1-10/10 323/109 459/44 323/114 480/44 /
val9B 92 326/82 454/44 17292 5090 1-10/10 326/84 471/44 326/86 484/44 /
val9C 92 332/67 457/44 9374 2923 1-5/10 332/68 470/44 332/70 494/44 /
val9D 92 391/50 423/44 3361 306 1-10/10 391/51 439/44 393/52 455/44 391/49
val10A 97 428/143 742/47 37684 31348 1-10/10 428/143 781/47 428/145 787/47 /
val10B 97 436/109 751/47 24660 18955 1-10/10 436/110 783/47 436/111 789/47 /
val10C 97 446/90 755/47 14046 12663 1-10/10 446/91 768/47 446/95 790/47 /
val10D 97 526/64 751/47 4882 4310 1-10/10 526/74 769/47 528/69 772/47 526/63
egl-e1-A 51 3548/943 3889/820 633 77319 1-10/10 3548/943 4159/820 3548/943 4159/820 /
egl-e1-B 51 4498/899 4540/820 436 31161 1-10/10 4525/839 4615/820 4525/839 4973/820 /
egl-e1-C 51 5595/836 5659/820 345 19328 1-10/10 5595/836 5699/820 5595/836 5719/820 /
egl-e2-A 72 5018/953 6164/820 1525 225869 1-10/10 5018/953 6360/820 5018/953 6424/820 /
egl-e2-B 72 6321/870 7140/820 1410 105197 1-10/10 6344/871 7369/820 6352/871 7456/820 6317/878
egl-e2-C 72 8335/854 8583/820 846 45858 1-10/10 8354/854 8763/820 8354/854 8884/820 /
egl-e3-A 87 5898/929 7981/820 4385 317300 1-10/10 5898/929 8183/820 5898/929 8409/820 /
egl-e3-B 87 7777/872 9289/820 1754 149063 5-10/10 7777/872 9416/820 7801/872 9895/820 7775/872
egl-e3-C 87 10292/927 10495/820 1087 129013 1-6/10 10292/927 10746/820 10361/927 11222/820 /
egl-e4-A 98 6461/929 8079/820 3732 257491 1-10/10 6464/929 8597/820 6476/929 8597/820 /
egl-e4-B 98 9005/914 10126/820 2415 190411 5-6/10 9041/946 10264/820 9078/930 10633/820 8999/914
egl-e4-C 98 11614/872 11626/820 1541 56500 1-10/10 11624/872 12074/820 11688/872 12313/820 11594/872
egl-s1-A 75 5018/1023 7761/912 2248 395446 1-10/10 5018/1023 7849/912 5050/1023 7946/912 /
egl-s1-B 75 6388/984 8379/912 2567 233879 1-10/10 6435/984 8455/912 6435/984 8759/912 /
egl-s1-C 75 8518/1018 9571/912 863 235424 1-10/10 8518/1018 9824/912 8518/1018 10154/912 /
egl-s2-A 147 9915/1084 13017/979 13544 479242 4-6/10 10055/1075 13550/979 10055/1075 13715/979 9875/1083
egl-s2-B 147 13162/1060 15167/979 7893 327341 2-10/10 13283/1060 15468/979 13290/1060 15940/979 13065/1060
egl-s2-C 147 16547/1040 17549/979 3887 202535 5/10 16611/1040 17698/979 16633/1040 17780/979 16425/1040
egl-s3-A 159 10244/1099 13745/979 30651 621389 5/10 10314/1099 13747/979 10356/1192 13783/979 10233/1099
egl-s3-B 159 13704/1060 15768/979 11079 354833 5/10 13780/1060 15919/979 13822/1060 16088/979 13682/1060
egl-s3-C 159 17228/1040 18462/979 8319 208331 5/10 17341/1040 18472/979 17555/1040 18472/979 17223/1040
egl-s4-A 190 12351/1103 12793/1027 21318 129756 5/10 12442/1060 13017/1027 12476/1120 13464/1027 12315/1080
egl-s4-B 190 16323/1027 16322/1027 18055 42484 5/10 16430/1027 16430/1027 16430/1027 16430/1027 16198/1027
egl-s4-C 190 20648/1035 20696/1027 8826 62716 4-6/10 20725/1035 20731/1027 20890/1027 20890/1027 20614/1037
C01 79 4150/610 4230/585 1920 14752 1-10/10 4195/600 4230/585 4215/630 4240/585 /

Continued on next page

18

Table 1: Detailed results over all instances (continued)

10000 iterations 1000 iterations 100 iterations best left sol
Instance n left right time[s] hyper-vol rank left right left right ten runs
C02 53 3135/515 3135/515 460 4082 1-10/10 3135/515 3135/515 3135/570 3140/515 /
C03 51 2575/575 2585/490 638 15135 1-10/10 2575/575 2585/490 2585/490 2585/490 /
C04 72 3510/620 3955/590 1484 26516 1-10/10 3510/620 3955/590 3510/620 3985/590 /
C05 65 5365/715 6510/595 829 194332 1-10/10 5365/755 6535/595 5370/705 6765/595 /
C06 51 2535/540 2935/460 584 46126 1-10/10 2535/540 2935/460 2550/505 2935/460 /
C07 52 4075/610 4075/610 380 6324 1-10/10 4075/610 4075/610 4075/660 4125/610 /
C08 63 4090/750 4495/600 607 111286 1-10/10 4100/670 4535/600 4100/670 4535/600 /
C09 97 5260/525 5650/505 3716 27056 1-10/10 5270/555 5650/505 5300/535 5800/505 /
C10 55 4700/710 4885/640 499 43355 1-10/10 4700/710 4915/640 4700/710 5005/640 /
C11 94 4640/590 5285/510 4953 71400 1-10/10 4640/590 5435/510 4640/605 5435/510 /
C12 72 4240/645 4260/575 952 22702 1-10/10 4240/645 4260/575 4240/645 4260/575 /
C13 52 2955/695 3750/520 667 176585 1-10/10 2955/695 3830/520 2955/695 3860/520 /
C14 57 4030/695 5535/520 600 305305 1-10/10 4030/695 5625/520 4060/695 5645/520 /
C15 107 4940/645 5200/640 4683 18663 1-10/10 4945/645 5215/640 4990/645 5260/640 /
C16 32 1475/500 1660/480 73 10324 1-10/10 1475/500 1660/480 1510/500 1660/480 /
C17 42 3555/665 5010/540 116 216704 1-10/10 3575/665 5010/540 3650/615 5010/540 /
C18 121 5620/650 5620/650 7560 9306 1-10/10 5625/655 5645/650 5625/655 5675/650 /
C19 61 3115/705 3645/560 1471 109714 1-10/10 3115/705 3710/560 3120/705 3975/560 /
C20 53 2120/515 2500/410 683 54236 1-10/10 2120/515 2640/410 2120/515 2670/410 /
C21 76 3970/685 3970/685 1526 6965 1-10/10 3970/685 3970/685 3970/685 3970/685 /
C22 43 2245/660 3440/550 262 155942 1-10/10 2245/660 3605/550 2245/660 3605/550 /
C23 92 4085/755 4210/695 4590 30028 1-10/10 4085/755 4275/695 4095/755 4410/695 /
C24 84 3400/655 4110/575 2680 97094 1-10/10 3400/655 4310/575 3410/685 4350/575 /
C25 38 2310/560 2490/475 120 25070 1-10/10 2310/560 2490/475 2345/560 2540/475 /
D01 79 3215/840 3870/585 5162 218802 1-10/10 3235/685 3870/585 3235/690 3915/585 /
D02 53 2520/695 3040/515 1301 105070 1-10/10 2520/695 3065/515 2520/695 3115/515 /
D03 51 2065/710 2605/490 1218 152630 1-10/10 2065/710 2695/490 2065/710 2815/490 /
D04 72 2785/750 3825/590 4996 176011 1-10/10 2785/750 3825/590 2785/750 3865/590 /
D05 65 3935/820 5795/595 2256 420500 1-10/10 3935/820 5795/595 3935/820 6115/595 /
D06 51 2125/785 3030/460 1640 318005 1-10/10 2125/785 3045/460 2125/785 3110/460 /
D07 52 3125/880 3775/610 1546 208335 2-10/10 3125/910 3815/610 3165/830 3875/610 3115/960
D08 63 3045/800 4285/600 1781 252655 1-10/10 3045/810 4285/600 3045/830 4285/600 /
D09 97 4120/695 5650/505 11578 304725 1-10/10 4120/700 5745/505 4120/720 5785/505 /
D10 55 3340/760 3880/640 1278 74765 1-10/10 3340/760 3880/640 3340/765 3880/640 /
D11 94 3745/820 5365/510 16496 522637 1-10/10 3760/790 5495/510 3760/790 5580/510 /
D12 72 3310/760 3845/575 4664 117522 1-10/10 3310/760 3905/575 3310/760 4105/575 /
D13 52 2535/825 3770/520 1825 390178 1-10/10 2535/840 3790/520 2540/780 3790/520 /
D14 57 3280/840 5505/520 1256 720511 1-10/10 3280/840 5605/520 3280/845 5635/520 /
D15 107 3990/845 4615/640 12473 190079 1-10/10 3990/920 4690/640 4000/755 4715/640 /
D16 32 1060/535 1480/480 270 28890 1-10/10 1060/535 1500/480 1060/535 1505/480 /
D17 42 2620/710 4920/540 252 378182 1-10/10 2620/710 4920/540 2620/710 4920/540 /
D18 121 4165/800 4840/650 25810 131418 1-10/10 4165/800 5140/650 4165/805 5235/650 /
D19 61 2400/875 3715/560 2325 440492 1-10/10 2400/875 3845/560 2400/875 3935/560 /
D20 53 1870/705 2530/410 2967 204497 1-10/10 1870/705 2670/410 1870/705 2700/410 /

Continued on next page

19

Table 1: Detailed results over all instances (continued)

10000 iterations 1000 iterations 100 iterations best left sol
Instance n left right time[s] hyper-vol rank left right left right ten runs
D21 76 3055/825 3410/685 5323 77882 1-10/10 3055/855 3410/685 3060/860 3640/685 /
D22 43 1865/910 3420/550 690 597422 1-10/10 1865/910 3575/550 1865/910 3685/550 /
D23 92 3130/845 4035/695 8850 175004 1-10/10 3130/890 4115/695 3135/905 4115/695 /
D24 84 2710/855 4215/575 12870 452461 1-10/10 2710/855 4305/575 2710/855 4345/575 /
D25 38 1815/760 2490/475 223 181550 1-10/10 1815/760 2520/475 1815/760 2660/475 /
E01 85 4910/655 5150/585 2621 48827 1-6/10 4950/600 5190/585 4960/605 5260/585 /
E02 58 3990/605 4485/500 702 72846 1-10/10 3990/630 4560/500 4110/610 4655/500 /
E03 47 2015/620 2635/420 348 153164 1-5/10 2025/490 2635/420 2025/490 2645/420 /
E04 77 4155/625 4405/590 2159 27917 1-10/10 4165/625 4775/590 4205/665 4905/590 /
E05 61 4585/665 5765/595 1746 122621 1-5/10 4595/695 5860/595 4595/700 5870/595 /
E06 43 2055/500 2690/420 203 49670 1-10/10 2055/500 2820/420 2055/500 2880/420 /
E07 50 4155/660 4325/600 322 34852 1-10/10 4155/660 4415/600 4155/660 4465/600 /
E08 59 4710/670 5710/600 490 91528 1-10/10 4710/670 5730/600 4715/670 5760/600 /
E09 103 5820/590 7535/500 4943 177400 2-9/10 5830/595 7595/500 5955/635 7735/500 5810/590
E10 49 3605/680 4610/540 250 162775 1-10/10 3605/695 4730/540 3605/695 4730/540 /
E11 94 4670/570 4790/560 3836 12940 1-10/10 4720/570 4980/560 4720/590 5005/560 /
E12 67 4185/660 4685/570 1478 61165 3-10/10 4205/660 4685/570 4230/660 4895/570 4180/660
E13 52 3345/695 4215/520 428 181985 1-10/10 3345/695 4245/520 3345/695 4245/520 /
E14 55 4115/735 5650/520 482 405879 1-10/10 4115/735 5740/520 4135/685 5740/520 /
E15 107 4205/645 4375/640 7193 15696 1-10/10 4225/645 4435/640 4235/655 4540/640 /
E16 54 3775/640 3835/630 580 10386 1-10/10 3805/635 3835/630 3805/640 3860/630 /
E17 36 2740/700 4305/540 76 284226 1-10/10 2755/670 4305/540 2755/670 4395/540 /
E18 88 3835/635 4335/580 3272 37629 1-10/10 3835/635 4335/580 3835/635 4335/580 /
E19 66 3235/650 4115/530 1799 123583 1-10/10 3235/705 4145/530 3235/705 4155/530 /
E20 63 2825/465 3100/455 1429 12989 1-10/10 2825/465 3165/455 2825/465 3250/455 /
E21 72 3730/705 4680/570 3485 174481 1-10/10 3755/735 4790/570 3795/705 4880/570 /
E22 44 2470/685 3125/555 197 106605 1-10/10 2480/675 3125/555 2485/675 3230/555 /
E23 89 3710/635 4340/535 5270 92286 1-10/10 3710/640 4370/535 3710/640 4370/535 /
E24 86 4020/590 4400/580 4453 22265 1-10/10 4020/600 4425/580 4020/665 4540/580 /
E25 28 1615/565 2075/485 48 45775 1-10/10 1615/565 2085/485 1615/565 2115/485 /
F01 85 4040/825 4970/585 8260 263480 1-10/10 4050/865 5175/585 4060/865 5240/585 /
F02 58 3300/830 4505/500 2140 416968 1-10/10 3300/860 4505/500 3300/870 4520/500 /
F03 47 1665/685 2635/420 587 244000 1-10/10 1665/685 2635/420 1665/685 2645/420 /
F04 77 3485/855 4340/590 8528 280667 1-10/10 3485/875 4510/590 3485/900 4510/590 /
F05 61 3605/900 5465/595 2790 586035 1-10/10 3605/915 5830/595 3605/925 5840/595 /
F06 43 1875/690 2770/420 587 248520 1-10/10 1875/690 2880/420 1875/690 2880/420 /
F07 50 3335/880 4315/600 882 300075 1-10/10 3335/880 4325/600 3335/880 4370/600 /
F08 59 3705/1010 5530/600 2326 792722 1-10/10 3705/1010 5770/600 3705/1010 5835/600 /
F09 103 4730/820 7660/500 15894 967023 1-10/10 4730/870 7835/500 4770/865 7835/500 /
F10 49 2925/765 4610/540 414 371849 1-10/10 2925/765 4710/540 2925/770 4710/540 /
F11 94 3835/830 4645/560 19960 282936 1-10/10 3835/835 4875/560 3835/845 4995/560 /
F12 67 3395/830 4325/570 4878 249869 1-10/10 3395/830 4555/570 3405/855 4575/570 /
F13 52 2855/780 4255/520 1286 364325 1-10/10 2855/780 4315/520 2855/780 4315/520 /
F14 55 3330/915 5615/520 2247 907706 1-10/10 3330/915 5665/520 3330/950 5825/520 /

Continued on next page

20

Table 1: Detailed results over all instances (continued)

10000 iterations 1000 iterations 100 iterations best left sol
Instance n left right time[s] hyper-vol rank left right left right ten runs
F15 107 3560/825 4040/640 22403 143851 1-10/10 3560/830 4160/640 3560/845 4190/640 /
F16 54 2725/855 3495/630 1295 161810 1-10/10 2725/855 3495/630 2725/855 3515/630 /
F17 36 2055/825 4305/540 224 630432 1-10/10 2055/825 4325/540 2055/825 4405/540 /
F18 88 3075/825 4095/580 15324 259175 1-10/10 3075/825 4235/580 3075/830 4385/580 /
F19 66 2525/875 4125/530 6327 514673 1-10/10 2525/875 4130/530 2525/875 4205/530 /
F20 63 2445/760 3125/455 6513 241343 1-10/10 2445/770 3160/455 2445/805 3165/455 /
F21 72 2930/820 4670/570 4442 424018 1-10/10 2930/825 4680/570 2930/835 4850/570 /
F22 44 2075/790 3155/555 375 263275 1-10/10 2075/790 3235/555 2075/790 3235/555 /
F23 89 3005/820 4430/535 13843 424144 1-7/10 3010/820 4540/535 3010/820 4585/535 /
F24 86 3210/885 4355/580 10228 362225 1-10/10 3210/890 4550/580 3210/980 4550/580 /
F25 28 1390/695 2090/485 145 137350 1-10/10 1390/695 2120/485 1390/695 2165/485 /
g1-A 347 996314/79057 1106365/64602 247663 2772320599 4-5/10 1001014/79057 1109683/64602 1007721/79057 1127740/64602 995012/79057
g1-B 347 1119244/69401 1234420/64602 177761 1315176672 5/10 1127502/73666 1239506/64602 1128250/68281 1250141/64602 1118030/69401
g1-C 347 1247389/67327 1319112/64602 179723 790716736 5/10 1248841/67327 1322350/64602 1253038/70435 1322350/64602 1240426/65050
g1-D 347 1378623/69858 1461910/64602 142378 1263989332 5/10 1378623/69858 1482185/64602 1384613/69858 1488186/64602 1370958/69858
g1-E 347 1517332/65050 1581206/64602 105685 500386883 5/10 1523702/65050 1584236/64602 1541154/65050 1605028/64602 1512391/65050
g2-A 375 1099540/77143 1210964/64602 408421 2682206278 5/10 1106295/69858 1221964/64602 1108890/70190 1222205/64602 1097390/68655
g2-B 375 1212862/69576 1280285/64602 298460 1065013036 5/10 1222303/69858 1288482/64602 1225003/68909 1297422/64602 1209590/65050
g2-C 375 1342654/69858 1408032/64602 251254 1151418644 5/10 1342654/69858 1414252/64602 1350437/69858 1416940/64602 1340303/65050
g2-D 375 1483181/65050 1547055/64602 197390 494065575 5/10 1488894/65050 1552768/64602 1496833/65050 1560707/64602 1480726/65050
g2-E 375 1627294/65050 1687426/64602 157700 508708208 5/10 1629065/65050 1692939/64602 1642751/66004 1708399/64602 1621535/65050

21

4.2 The impact of three main components of Decoder-EA

Many (meta-)heuristic algorithms are designed by putting together a number of different components and
Decoder-EA is no exception. A legitimate question might be asked: can certain of these components be
disabled (or designed in a very different way) without substantially weakening the overall algorithm? To
gain insight into this, we here compare the standard Decoder-EA to three other Decoder-EA variants obtained
by performing the following changes:

A. Swap only blocks of equal length in the LS, i.e., fix δ = δ in the neighborhood definition from Sec-
tion 2.2.1. The resulting Decoder-EA variant is considerably easier to implement, because it is enough
to record all routes using fixed-length array-like neighborhood data structures.

B. Perform a random survival selection instead of discriminating the implicit solutions using the non-
dominated sorting from Section 3.1, and the roulette wheel from point 1.(b) of Section 3.4. We still
keep the limitation from point 1.(a) of Section 3.4, i.e., at maximum 30% of the current population
(of implicit solutions) can survive to the next generation.

C. Perform a random parent selection instead of the roulette wheel from Section 3.3.

We selected the 5 instances for which Decoder-EA exhibits the most pronounced variation in performance
when we change different parts of it. The results on many other instances are not not very sensible to (the
considered) algorithm changes. To ensure fair comparative conditions, we do not impose a maximum number
of iterations but a CPU time limit, i.e., 200 seconds for gdb08, 800 seconds for val5d and val8c, 400 for
egl-e1-C and 7000 for egl-s2-C.

Table 2 presents the comparison between the above Decoder-EA variants over 40 runs. For each variant,
we reported the left-most solution (in the format “Ctot/Cmax”) for the best, the 10th, the 20th, the 30thand
the worst run out of 40 (Column 2). The ranking criterion is the first objective (Ctot) breaking ties using
the makespan. For the best and the worst run we also indicate the number of runs that tie for this position,
e.g., “3×348/44” means that 3 runs reached the same best objective values 348/44. The last five rows report
the best rightmost solution ever reached in 40 runs. This table demonstrates that:

A. The use of unequal block swaps is clearly very useful for Decoder-EA, because the solution from Column
3 (standard Decoder-EA) is strictly better than the one from Column 4 (no unequal swaps) on roughly
three quarters of the rows.

B. The non-dominated ranking used by the standard Decoder-EA to perform the survival selection is
also very useful. The solution from Column 3 is strictly better than the one from Column 5 (random
survival selection) for roughly half of the rows. The reverse happens much more rarely, only in 3 rows
out of 25. The last five rows of Table 2 also show that using a random replacement selection degrades
the quality of the best rightmost solution on all five instances. Preliminary experiments suggest that
this may also degrade (the hyper-volume of) the optimal Pareto frontiers returned in the end.

C. Except for egl-e1-C, the comparison with the Decoder-EA variant from Column 6 (random parent se-
lection) shows that is generally important to use the parent selection included by default in Decoder-EA

(Section 3.3). Interestingly, a random parent selection may sometimes improve the quality of the best
rightmost solution (see last five rows). This may come from the fact that the parent selection from
Section 3.3 imposes a selective pressure that only relies on the first Ctot criterion while ignoring the
second one.

If we did not include in Table 2 an algorithm version with no Local Search at all, it is because such a
Decoder-EA variant would report very low quality results. Preliminary experiments clearly show that such
an algorithm variant can not compete with the ones considered in this section. It may have difficulties to
reach even the worst solution returned (in the end) by any algorithm from Table 2.

22

Instance Rank
Standard Use only equal Random survival Random parent

Decoder-EA block swaps in LS selection selection

g
d
b
0
8

best 3×348/44 4×348/44 3×348/44 5×348/44
10th 348/51 348/48 348/48 348/62
20th 350/44 350/44 350/44 350/44
30th 350/44 350/44 350/44 350/44
worst 1×352/44 2×350/50 1×350/46 1×353/44

v
a
l
5
D

best 8×575/83 2×577/83 1×575/83 3×575/90
10th 577/82 581/80 577/83 577/83
20th 577/83 583/83 577/84 578/83
30th 577/83 585/80 578/82 579/83
worst 3×579/83 1×586/79 1×581/81 1×581/82

v
a
l
8
C

best 2×521/77 3×521/83 1×521/80 1×521/85
10th 521/83 525/77 523/80 525/80
20th 523/77 527/76 525/79 527/77
30th 523/79 527/79 527/77 527/79
worst 1×525/79 1×531/77 1×527/81 1×529/78

e
g
l
-
e
1
-
C best 38×5595/836 7×5595/836 35×5595/836 39×5595/836

10th 5595/836 5615/859 5595/836 5595/836
20th 5595/836 5615/859 5595/836 5595/836
30th 5595/836 5625/839 5595/836 5595/836
worst 1×5615/859 1×5675/836 5×5613/859 1×5613/859

e
g
l
-
s
2
-
C best 3×16425/1040 1×16551/1040 4×16425/1040 1×16496/1040

10th 16430/1040 16613/1040 16431/1040 16609/1040
20th 16442/1040 16648/1040 16451/1040 16618/1040
30th 16479/1040 16696/1040 16538/1040 16625/1040
worst 1×16619/1040 1×16789/994 1×16669/1040 1×16672/1040

gdb08

b
es

t
ri

gh
t 388/38 26×396/38 25×396/38 394/38

val5D 689/72 671/72 689/72 683/72
val8C 2×621/67 2×627/67 3×627/67 2×627/67
egl-e1-C 7×5659/820 2×5677/820 4×5659/820 30×5659/820
egl-s2-C 17046/979 17075/979 17058/979 16976/979

Table 2: Comparison of the standard Decoder-EA with three different variants obtained by changing certain
components.

Finally, it is worth mentioning that we also launched more massive runs on g1-B and egl-s2-B because
we had access to a more powerful cluster towards the end of the project.9 Despite the fact that we launched
hundreds of runs in parallel, the best we were able to achieve was to improve the best solution of g1-B from
1118030/69401 to 1117796/68328 and that of egl-s2-B from 13065/1060 to 13058/1060. This suggest that
performing 100 runs instead of 10 runs does not necessarily lead to revolutionary better solutions.

4.3 Comparison with existing literature on the most critical instances

We here compare the results of the standard Decoder-EA to the best-known results from the bi-objective
CARP literature. Specifically, we will refer to the following algorithms already discussed in the introduction:

1. the Multi-Objective Genetic Algorithm (MOGA) [Lacomme et al., 2006];

9We thank the director of the CRIStAL laboratory [more details after potential publication].

23

Decoder-EA MOGA D-MAENS ε-constraint ID-MAENS IRDG-MAENS DE-ICA
Instance best1 best2 best1 best2 best1 best2 best1 best2 best1 best2 best1 best2 best1 best2
gdb08a 348 38 350 38 348 38 348 38 350 348 44
gdb09a 303 37 309 37 304 37 303 37 303 303 43
gdb13 536 128 544 128 536 128 536 128 536 536 128
gdb23 233 13 235 20 233 20 233 25 233 233 22
egl-e1-B 4498 820 4525 820 4525 820 4498 820 4525 4525 836 4525
egl-e1-C 5595 820 5687 820 5595 820 5595 820 5595 5595 838 5595
egl-e2-B 6317 820 6411 820 6347 820 6317 820 6340 6317 852 6321
egl-e2-C 8335 820 8440 820 8339 820 8335 820 8414 8343 854 8335
egl-e3-A 5898 820 5956 820 5926 820 5898 820 5898 5898 916 5898
egl-e3-B 7775 820 7911 820 7801 820 7777 820 7789 7801 872 7787
egl-e3-C 10292 820 10349 820 10340 820 10305 929 10307 10305 864 10311
egl-e4-A 6461 820 6548 820 6476 820 6456 820 6472 6464 914 6473
egl-e4-B 8999 820 9116 820 9069 820 9000 820 9004 9037 843 9031
egl-e4-C 11594 820 11802 820 11774 820 11601 820 11618 11618 820 11634
egl-s1-A 5018 912 5102 924 5068 912 5018 1023 5018 5018 1032 5018
egl-s1-B 6388 912 6500 912 6435 912 6388 984 6422 6422 981 6435
egl-s1-C 8518 912 8694 912 8518 912 8518 946 8518 8518 966 8518
egl-s2-A 9875 979 10207 979 10117 979 9956 1051 10122 10122 1023 10040

egl-s2-B 13065 979 13548 979 13459 979 13165 1060 13345 13331 1040 13283
egl-s2-C 16425 979 16932 979 16832 979 16524 979 16682 16674 1040 16691
egl-s3-A 10233 979 10456 979 10469 979 10260 1051 10347 10436 1053 10402
egl-s3-B 13682 979 14004 979 14082 979 13807 979 13918 14020 998 13841
egl-s3-C 17223 979 17825 979 17650 979 17234 979 17363 17342 1040 17324
egl-s4-A 12315 1027 12730 1027 12602 1027 1040 12442 12654 994 12422
egl-s4-B 16198 1027 16792 1027 16686 1027 16442 1027 16443 16600 1023 16430
egl-s4-C 20614 1027 21309 1027 21213 1027 20591 1034 21195 20933 1027 20964
val03A 81 27 81 31 81 27 81 34 81 82 39
val04D 530 80 539 80 536 80 530 82 536 536 88
val05D 575 72 595 72 595 72 586 579 81
val08C 521 67 545 67 532 67 521 67 523 527 78
val09A 323 44 326 68 324 47 323 97 323 325 107
val09D 391 44 399 44 392 44 391 49 391 391 51
val10A 428 47 428 91 428 62 428 125 429 430 139
val10B 436 47 436 77 436 60 436 98 437 437 97
val10C 446 47 448 66 446 58 446 79 446 447 39
val10D 526 47 537 54 533 51 528 54 533 535 60
g1-A 995012 64002 1027498 65367 1012078
g1-B 1118030 64002 1174216 65752 1138229
g1-C 1240426 64002 1289544 63833 1258065

g1-D 1370958 64002 1441236 64473 1426809

g1-E 1512391 64002 1587913 63365 1584395
g2-A 1097390 64002 1137134 65050 1125827
g2-B 1209590 64002 1256059 67738 1240357
g2-C 1340303 64002 1428880 67296 1424978

g2-D 1480726 64002 1568942 64602 1535056

g2-E 1621535 64002 1687900 64602 1679487

Table 3: Decoder-EA compared to six other algorithms (in chronological order) on the selected critical
instances. We omit the Beullens instances (C01–F25) because no cited paper provides full results on them.b

An underlined best1 value in Column 2 signals that the corresponding solution improves upon the best Ctot

upper bound ever reported before in the (considerably) larger mono-objective CARP literature (as described
in Remark 2, p. 16).

a In certain papers, gdb8 and gdb9 are called gdb10, resp gdb11; actually, all instances gdbx above with x ≥ 8 are called gdbx+2.
b IRDG-Maens provides only statistical/simulation information and DE-ICA only reports results for 16 instances out of 100.

24

2. the Decomposition-Based Memetic Algorithm (D-MAENS) [Mei et al., 2011];

3. The ε-constraint method [Grandinetti et al., 2012];

4. The Improved D-MAENS (ID-MAENS) [Shang et al., 2014];

5. The IRDG-MAENS algorithm [Shang et al., 2016a];

6. The Directed Evolution Immune Clonal Algorithm (DE-ICA) [Shang et al., 2016b].

We restrict to a set of (very) critical instances on which one can observe a higher variation in the
performance of the compared algorithms. Recall from (Column 7 of) Table 1 that, on many instances, all
ten Decoder-EA runs may report the same solutions in the end. On such instances, most algorithms from
the literature also report the same Ctot–best and Cmax–best solutions.

Table 3 compares the best solutions reported by Decoder-EA to the one reported by the above algorithms;
this is a simple comparison for indicative purposes only, because the experimental conditions and the running
times of these algorithms can be very different. The columns best1 and best2 simply provide the Ctot–best and
(resp.) the Cmax–best solution (ever) reported by each of the seven considered algorithms. For Decoder-EA,
the contents of the columns best1 and best2 were simply imported from (Columns 3-4 or Column 12) of
Table 1. A best1 value in italics (in Column 2) indicates that Decoder-EA reached the best (Ctot) upper
bound ever reported in the bi-objective CARP literature. A best1 value in both italics and boldface signals
that corresponding solution strictly dominates all solutions reported by the other bi-objective algorithms
shown here. An underlined best1 value in italics and boldface indicates that Decoder-EA discovered an
Ctot upper bound that has never been reported before in the (considerably) larger mono-objective CARP
literature (as described in Remark 2, p. 16).

5 Exploring a Traveling Salesman Problem bi-objective variant

We here study the application of the decoder-based framework from Section 3 on a different problem. Most
algorithmic descriptions from Sections 3.1–3.2 may actually apply to a new problem (most often without
changing a word) by simply plugging-in a different decoder.

We consider the well-known Traveling Salesman Problem (TSP), but let us formulate it a manner that
better fits the given CARP instances. As thus, the n required edges ER become the vertices of a directed
graph GTSP. In the new TSP problem, we ask to traverse each edge e = {va, vb} ∈ ER (i.e., each TSP
vertex) along the direction va → vb, where va < vb. We say that va is the low end of e and that vb is the
high end of e. The salesman has to first visit the low end and then the high end; all required edges ER have
to be travelled this way. The TSP length of an arc (e, e′) of GTSP is simply given by the shortest path (in G)
between the high end of e and the low end of e′. This means that after finishing travelling e at its high end,
the salesman has to move to the low end of the next required edge (GTSP vertex). The most straightforward
mono-objective goal is to find the minimum cost tour in the directed graph GTSP; the resulting problem can
be easily reduced to TSP and vice-versa.

We next propose the bi-objective variant. First, let us assign a weight (price) to each vertex e ∈ ER;
this price is simply given by the demand qe of e in the considered CARP instance.10 Secondly, we allow the
feasible tours to skip visiting a vertex by paying the associated price as penalty; this way, the number of
vertices visited by a feasible tour becomes |ER|−1. Finally, a candidate solution is defined by a permutation
of ER and a skipped edge e ∈ ER. We ask to minimize the following objective functions:

obj1 the length of the tour that visits all TSP vertices except the chosen skipped e ∈ ER in the order
indicated by the permutation

obj2 the price (penalty) qe associated to the chosen e.

10One may use a price given by the edge length and we can obtain a very similar problem.

25

The decoder is significantly simpler than the arc-routing one. Given a permutation of ER as input, it is
enough to scan all elements e of this permutation one by one and to calculate the above objective values for
for each skipped edge e. Since the permutation has n = |ER| elements, this may generate up to n explicit
solutions per permutation. In practice, however, most of these n solutions may be dominated; the decoder
filters them and may eventually return a Pareto frontier with (far) less non-dominated solutions, in many
cases only a few. Figure 6 below illustrates two tours that could be determined by our decoder on a simple
instance.

5
0
 (3

)

50 (0)

10 (0)

10
0

(0
)

220

0

5
0
 (3

)

50 (0)

10 (0)

10
0

(0
)

14
0

(4
)

1

14
0

(4
)

non-required edge
(hence 0 demand)

c (0)

required edge (so
q is the demand)

c (q)

0

220

1

Figure 6: Two TSP tours for the same instance (originally used for Arc-Routing). Each edge has a label
“cij (qij)”, where cij is the traversal cost and qij is the demand. The left solution skips edge {0, 1} with
a demand of 2, and so, obj = 2; its obj1 value is the total cost 120 + 140 + 200 + 50 + 10 = 520. The
right solution skips edge {2, 3} with a demand of 4, and so, obj2 = 4; its obj1 value is the total cost
40+100+200+50+10 = 400. Considering input permutation permutation ({0, 1}, {2, 3}, {3, 4}, {4, 5}), our
decoder may determine (among others) these two solutions with objective values (520, 2) and resp. (400, 4)
(and notice all edges e = {va, vb} are traversed in the sense va → vb with va < vb).

Table 4 presents the results of Decoder-EA on the gdb instances. Let us mention that we did not change
a single line of code in the C++ software module that implements the EA component; we only needed to
link it to a separately compiled file (tsp decoder.cpp) that implements the decoder. Table 4 reports the
instance in Column 1, the number of vertices of GTSP (equal to n = |ER|) in Column 2, the leftmost solution
in Column 3, the rightmost solution in Column 4 and the CPU time in seconds in Column 5. The stopping
condition for the results in Columns 3-5 is to reach 100.000 iterations. The last two columns also report the
leftmost and rightmost solutions reached after 1.000 iterations (usually calculated in a time of milliseconds).

Table 4: Results of Decoder-EA on the proposed TSP bi-objective variant

100000 iterations 1000 iterations
Instance n = |ER| left right time[s] left right

gdb01 22 371/1 371/1 4 412/1 412/1
gdb02 26 439/1 439/1 5 462/1 462/1
gdb03 22 377/1 377/1 4 409/1 409/1
gdb04 19 363/1 363/1 4 377/1 377/1
gdb05 26 506/1 506/1 5 542/1 542/1
gdb06 22 369/1 369/1 4 396/1 396/1
gdb07 22 377/1 377/1 4 406/1 406/1
gdb08 46 531/9 543/1 18 570/4 591/1
gdb09 51 480/6 493/1 13 480/6 493/1
gdb10 25 384/2 391/1 6 405/2 411/1
gdb11 45 685/6 704/1 16 743/6 752/1
gdb12 23 558/3 578/1 9 598/16 622/1
gdb13 28 563/8 639/2 12 575/8 655/2

Continued on next page

26

Table 4: Detailed TSP results over all egl instances (continued)

100000 iterations 1000 iterations
Instance n = |ER| left right time[s] left right

gdb14 21 131/5 142/1 10 136/5 145/1
gdb15 21 68/7 74/2 14 70/5 76/2
gdb16 28 145/2 147/1 10 154/7 155/1
gdb17 28 102/8 109/2 20 106/8 115/2
gdb18 36 218/8 221/1 11 227/3 230/1
gdb19 11 55/5 63/1 8 55/5 63/1
gdb20 22 145/1 145/1 7 149/4 151/1
gdb21 33 197/2 199/1 10 207/2 208/1
gdb22 44 234/8 236/1 12 240/8 243/1
gdb23 55 292/5 294/1 13 306/4 309/1

Future work may focus on problems that are not naturally expressed as permutation problems. In fact,
any problem for which we can establish an order of the decision variables can be seen as a sequencing or
permutation problem [Campos et al., 2005, Porumbel et al., 2017, van Hoorn, 2016]. If one can encode a
candidate solution as an order of the decision variables, a decoder can assign values to these variables in the
considered order.

To discuss only one example, consider the graph coloring problem. Graph coloring is usually seen as a
partition problem in the sense that the candidate solutions represent partitions of the vertex set. But we
could also interpret it as a permutation problem: consider an order of the vertices and color them step by
step in this order by choosing, for each vertex, a color that minimizes the number of edges with their end
vertices of the same color. Actually, there already exists a well-known coloring heuristic (DSatur) that uses
such an order in a similar manner and that could (be extended to) be used as a decoder inside Decoder-EA.

6 Conclusions

We proposed a bi-objective Evolutionary Algorithm (EA) framework to which we plugged in an exact decoder
to solve the bi-objective Capacitated Arc Routing Problem (CARP). Although we were initially motivated
only by CARP, the proposed EA framework can be seen as an algorithmic “backbone” to which one can also
attach a different decoder to solve a different problem. We could this way also solve a bi-objective variant of
the Traveling Salesman Problem (TSP), without changing a single line of code in the EA software module.
For both problems, the role of the decoder is to turn an implicit solution (permutation) into a Pareto frontier
of non-dominated explicit solutions. The CARP decoder is significantly more complex than the TSP one
because it integrates a dynamic programming scheme.

The decoder enabled us to decompose the problem, shifting the focus from the given problem to the space
of implicit solutions. The EA framework could thus be designed (Section 3) without taking into account
any particular CARP feature. This framework builds upon the non-dominated sorting concept of NSGA2;
we could not directly use NSGA2 because the (fitness) evaluation of the implicit solutions is more complex
than in NSGA2. This is due to the fact that each implicit solution is associated to a set of 2D points in the
objective space and not to a unique point as in NSGA2. The proposed EA incorporates multiple mechanisms
to maintain diversity and to encourage young individuals (recent offspring); we noticed there is a serious
need to prevent older individuals from monopolizing the genetic material in the population.

Yet, we do not think that working only in the (more abstract) permutation space is enough to obtain
the most competitive results. Recall that the final full algorithm was able to improve upon the best-known
total-cost upper bound for nine instances, with regards to the (larger) mono-objective CARP literature. To
achieve this, we had to reinforce the exact decoder using a CARP-specific Local Search (LS). More exactly,
the explicit solution of minimum total-cost returned by the decoder is improved using an LS operator that
manipulates explicit routes. Since the decoder is exact subject to the service order indicated by the input
permutation (Theorem 1), the LS can only find better solutions by changing the input permutation. We

27

can thus see the LS as a (mutation) operator that moves from one permutation to the other in the encoded
space, with no negative interaction between the LS and the decoder.

References

[Campos et al., 2005] Campos, V., Laguna, M., and Mart́ı, R. (2005). Context-independent scatter and tabu search
for permutation problems. INFORMS Journal on Computing, 17(1):111–122.

[Corberán et al., 2021] Corberán, Á., Eglese, R., Hasle, G., Plana, I., and Sanchis, J. M. (2021). Arc routing problems:
A review of the past, present, and future. Networks, 77(1):88–115.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2):182–197.

[Grandinetti et al., 2012] Grandinetti, L., Guerriero, F., Laganà, D., and Pisacane, O. (2012). An optimization-based
heuristic for the multi-objective undirected capacitated arc routing problem. Computers & Operations Research,
39(10):2300–2309.

[Lacomme et al., 2006] Lacomme, P., Prins, C., and Sevaux, M. (2006). A genetic algorithm for a bi-objective
capacitated arc routing problem. Computers & Operations Research, 33(12):3473–3493.

[Mei et al., 2014] Mei, Y., Li, X., and Yao, X. (2014). Cooperative coevolution with route distance grouping for
large-scale capacitated arc routing problems. IEEE Transactions on Evolutionary Computation, 18(3):435–449.

[Mei et al., 2011] Mei, Y., Tang, K., and Yao, X. (2011). Decomposition-Based Memetic Algorithm for Multiobjective
Capacitated Arc Routing Problem. IEEE Transactions on Evolutionary Computation, 15(2):151–165.

[Porumbel et al., 2017] Porumbel, D., Hsu, T., Allaoui, H., and Goncalves, G. (2017). Arc-routing via column
generation and iterated local search in a permutation set-covering framework. European Journal of Operational
Research, 256:349–367.

[Prins et al., 2014] Prins, C., Lacomme, P., and Prodhon, C. (2014). Order-first split-second methods for vehicle
routing problems: A review. Transportation Research Part C: Emerging Technologies, 40:179 – 200.

[Santos et al., 2010] Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2010). An improved ant colony optimiza-
tion based algorithm for the capacitated arc routing problem. Transportation Research Part B: Methodological,
44(2):246–266.

[Shang et al., 2016a] Shang, R., Dai, K., Jiao, L., and Stolkin, R. (2016a). Improved memetic algorithm based on
route distance grouping for multiobjective large scale capacitated arc routing problems. IEEE transactions on
cybernetics, 46(4):1000–1013.

[Shang et al., 2016b] Shang, R., Du, B., Ma, H., Jiao, L., Xue, Y., and Stolkin, R. (2016b). Immune clonal algorithm
based on directed evolution for multi-objective capacitated arc routing problem. Applied soft computing, 49:748–
758.

[Shang et al., 2014] Shang, R., Wang, J., Jiao, L., and Wang, Y. (2014). An improved decomposition-based memetic
algorithm for multi-objective capacitated arc routing problem. Appl. Soft Comput., 19:343–361.

[Talbi, 2009] Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. Wiley Publishing.

[Ulusoy, 1985] Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European Journal of
Operational Research, 22(3):329–337.

[van Hoorn, 2016] van Hoorn, J. (2016). Dynamic Programming for Routing and Scheduling: Optimizing Sequences
of Decisions. PhD thesis, Vrije Universiteit Amsterdam.

A The best Pareto frontiers obtained on the smallest instances

Here, we graphically depict the best Pareto frontiers reported by Decoder-EA on all instances with n = |ER| ≤ 21.
For the smallest graph (gdb19) with n = 11, we could even calculate the optimal Pareto frontier by running the
decoder on all n! permutations.

28

50 60 70 80 90

16

18

20

22

55/21

63/20

71/19

83/17

certified optimal

total cost

m
a
k
es

p
a
n

gdb19 (n = 11)

280 300 320 340 360 380
60

65

70

75
287/74

317/66

350/64

total cost

m
a
k
es
p
a
n

gdb04 (n = 19)

100 110 120 130 140

14

16

18

20

22
100/21

104/18
108/17

116/16
136/15

total cost

m
a
k
es
p
a
n

gdb14 (n = 21)

58 60 62 64 66 68 70
5

10

15 58/15

60/12
62/11

64/10
66/9

68/8

total cost
m
a
k
es
p
a
n

gdb15 (n = 21)

15000 16000 17000 18000

3300

3700

4100 14661/4117

14729/3830

16825/3528

total cost

m
a
k
es
p
a
n

kshs1 (n = 15)

10000 12000 14000

2000

2200

2400

2600

13601/2109

12365/2204

11099/2378

9953/2577
9923/2609
9863/2646

total cost

m
a
k
es
p
a
n

kshs2 (n = 15)

9400 9600 9800

2000

2200

2400

2600

9666/2084

9535/25739407/2583

9320/2640

total cost

m
a
k
es
p
a
n

kshs3 (n = 15)

11500 12000 12500 13000 13500

2600

2800

3000

3200

3400

12964/2713
12844/2785

12768/297412386/3008

12376/3029

11498/3349

total cost

m
a
k
es
p
a
n

kshs4 (n = 15)

B A decoder execution example

We here follow the construction of the (partial) solutions sol[k] step by step for each k ∈ [0..n] in Algorithm 1. The
full solutions servicing all clients are constructed in the last step when k = n, i.e., the final sol[n] contains the Pareto
frontier to be eventually returned.

29

The (partial) solutions determined at Step 3 of
Algorithm 1 (p. 7) are generated as follows:

– Solution 1 (k = 0) represents a null artificial
solution initialized at Line 14. The for loop
at line 17 extends this solution by inserting all
feasible routes starting at ek+1 = e1. There
are two such routes: (e1) and (e1, e2) which
generate transitions to Solutions 2 and 3.

– Solution 2 (k = 1) is expanded with all
the routes starting at ek+1 = e2, i.e., all
the routes recorded in R(ek+1, `) for all ` ∈
[1..len(ek+1)], see lines 18-19. This leads to
Solutions 4, 6 and 8, i.e., all solutions with
two routes, the first of which is (e1).

– Solution 3 (k = 2) is extended to Solutions
5 and 9. But Solution 5 is discarded at
Line 20 because it is dominated by the already-
computed Solution 6.

– Solution 4 (k = 2) leads to Solutions 7 and 12;

– Solution 5 was discarded above;

– Solution 6 (k = 3) and resp. Solution 7 (k = 3)
generate Solutions 10 and resp. 11, both dom-
inated by existing Solution 12.

solution Cmax-ordered routes in sol[k]
k

fleet
ID in the form:(Ctot, Cmax) size
1 ∅:(0,0) 0 0
2 {(e1)

6

}:(6, 6)
1

1

3 {(e1, e2)
18

}:(18, 18)

2

1

4 {(e1)
6

, (e2)
14

}:(20, 14) 2

5 {(e1, e2)
18

, (e3)
8

}:(26, 18)∗

3

2

6 {(e1)
6

, (e2, e3)
16

}:(22, 16) 2

7 {(e1)
6

, (e2)
14

, (e3)
8

}:(28, 14) 3

8 {(e1)
6

, (e2, e3, e4)
20

}:(26, 20)

4

2

9 {(e1, e2)
18

, (e3, e4)
12

}:(30, 18) 2

10 {(e1)
6

, (e2, e3)
16

, (e4)
10

}:(32, 16)∗ 3

11 {(e1)
6

, (e2)
14

, (e3)
8

, (e4)
10

}:(38, 14)∗ 4

12 {(e1)
6

, (e2)
14

, (e3, e4)
12

}:(32, 14) 3

∗ indicates a dominated solution (never returned).

Table 5: Final solutions sol[k] for k ∈ [0..n]. Algorithm 1 constructs this table and returns the non-marked
(non-dominated) solutions listed for k = 4, i.e., {(26, 20), (30, 18), (32, 14)}.

30

	Introduction
	Bi-objective CARP definition, decoder and local search
	The Dynamic programming exact one-to-many decoder
	Notations, definitions and example
	 The complete pseudo-code

	The Local Search phase
	The neighborhood
	Complete specification of the LS algorithm

	The decoder-based EA framework in the implicit space
	Ranking implicit solutions using an extended non-dominated sorting
	The general design and overall pseudo-code
	The crossover and the parent selection
	Improving the population dynamics to avoid premature convergence

	Numerical Results on Arc-Routing
	Complete results over 100, 1000 and 10000 iterations on all instances
	The impact of three main components of Decoder-EA
	Comparison with existing literature on the most critical instances

	Exploring a Traveling Salesman Problem bi-objective variant
	Conclusions
	The best Pareto frontiers obtained on the smallest instances
	A decoder execution example

