
Optimizing Set-Covering Models when Column Generation requires
Knapsack Based Subproblems with Unbounded Capacities

Daniel Porumbel1 and Gilles Goncalves1

1 Univ Lille Nord de France, F 59000 Lille, France; UArtois, LGI2A, F 62400, Béthune, France
{daniel.porumbel,gilles.goncalves}@univ-artois.fr

Numerous combinatorial optimization problems can be expressed in a set-covering model. For instance, the
well-known cutting-stock problem is often solved using the famous Gilmore-Gomory model; very strong lower
bounds can be obtained by optimizing the resulting linear program with column generation methods. The
sub-problem is the knapsack problem with profits defined by the dual values. Similar sub-problems can arise
in many other capacitated versions of various problems, e.g., in logistics, one finds Capacitated Arc Routing,
Capacitated Vehicle Routing, or Capacitated p-Median. The latter one is defined as follows: given a graph with
n nodes, select p < n nodes as facilities such that certain capacities (per facility) are respected; each facility
serves a number of nodes and the objective is to minimize the sum of the distances from facilities to nodes. The
subproblem in the associated set-covering model requires solving n knapsack problems problems [1]. Typically,
such problems often use capacities that are polynomially bounded with respect to n; this makes the sub-problem
solvable via dynamic programming in polynomial time.

We investigate the more difficult case of unbounded capacities. Such situations can easily arise in real-
life applications that deal with continuous quantities of material; this leads to fractional weights, equivalent
to considering unbounded capacities. If the sub-problem is a pure knapsack problem, certain state-of-the
art knapsack algorithms (e.g. Combo1) can often still cope with the problem in reasonable time. However,
slightly modified knapsack problems (many “capacitated” subproblems in logistics problems above) might take
prohibitive time when the capacities are unbounded. We here focus on a version in which the capacity constraint
can be (slightly) violated if a certain penalty is accepted. Solving a single knapsack-based sub-problem can take
prohibitive time; in this case, classical column generation can require prohibitive time as well.

In column generation, many studies are concerned with stabilisation routines [2], i.e., they speed-up the con-
vergence by reducing the number of iterations (sub-problems to solve). We propose a different method in which
the number of sub-problems is not necessarily reduced, but the sub-problems are simplified by manipulating the
dual values (knapsack profits). Using ideas from the well-known ε-approximation algorithm for the knapsack
problem [3], we observe that an unbounded knapsack-based sub-problem can be solved in pseudo-linear time
if the profits are integer: one can use a dynamic programming algorithm indexed by profits. The classical
column generation algorithm can not be applied—the profits (dual values) can be far from integer (or scalable
to integers). The proposed method optimizes by moving on integer rays (defined with integer values) inside
the polytope. For instance, it is usually possible to compute in polynomial time the intersection between the
dual polytope boundary and the ray starting from 0 in the direction [1 1 . . . 1]n (regardless of the capacity).
The same holds for any integer direction; using several rays leads to getting valid lower bounds. A valid upper
bound can be derived from the facets (dual constraints) discovered when computing the intersection between
rays and the boundary. We will test these ideas on various problem instances where knapsack constraints arise.

References

[1] L.A.N. Lorena and E.L.F. Senne A column generation approach to capacitated p-median problems Com-
puters & Operations Research, 31(6):863–876, 2004.

[2] F. Clautiaux, C. Alves, J.V. de Carvalho, and J. Rietz New Stabilization Procedures for the Cutting Stock
Problem Informs Journal on Computing DOI 10.1287/ijoc.1100.0415

[3] V. Vijay. Approximation Algorithms Springer-Verlag, 2003.

1www.diku.dk/~pisinger/codes.html

1


