
A Study of Evaluation Functions for the Graph

K-Coloring Problem

Daniel Cosmin Porumbel1, Jin-Kao Hao1 and Pascale Kuntz2

1 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
2 LINA, PolytechNantes, 44306 Nantes, France

Abstract. The evaluation or fitness function is a key component of
any heuristic search algorithm. This paper introduces a new evaluation
function for the well-known graph K-coloring problem. This function
takes into account not only the number of conflicting vertices, but also
inherent information related to the structure of the graph. To assess
the effectiveness of this new evaluation function, we carry out a number
of experiments using a set of DIMACS benchmark graphs. Based on
statistic data obtained with a parameter free steepest descent, we show
an improvement of the new evaluation function over the classical one.

1 Introduction

Heuristic algorithms are known to be a very powerful tool for solving hard and
large combinational optimization problems. It is now well recognized that the
performance of a heuristic algorithm is strongly conditioned by the design of a
number of key components. For instance, for local search algorithms, the neigh-
borhood relation constitutes an element that must be carefully studied. Similarly,
for evolutionary algorithms, it is important to seek problem specific operators
such as crossover and mutation in order to obtain a better search performance.
For both local and genetic search paradigms, another indispensable key compo-
nent is the evaluation or fitness function. Indeed, it is this function that guides
the search process to explore an arbitrarily large search space.

There are different approaches to design an informative evaluation function
[14]. First, the static or dynamic penalty approach is a well established tech-
nique for constrained problems. Here relaxed constraints are integrated into the
evaluation function with special penalty terms, which can be fixed statically or
tuned dynamically. Second, in a hierarchical approach, the evaluation function is
decomposed into several ordered components; the evaluation is realized accord-
ing to that order. The third approach, less studied in the literature, consists in
designing specific evaluation function specially adapted to the problem at hand.
Contrary to the penalty or hierarchical approaches which are general techniques
and thus applicable to different problems, the problem-specific approach requires
a fine analysis of the target problem in order to identify particular properties
that are useful for the design of the evaluation function. Such a problem-specific
approach has demonstrated its effectiveness for several NP-hard problems [4, 8,
13].

In this paper, we consider the well-known graph K-coloring (K-COL) prob-
lem and try to devise a new and more informative evaluation function for a
heuristic solving of this problem. Informally, for a given graph, K-COL requires
to find a conflict-free vertex coloring using only K different colors such that two
adjacent vertices receive two different colors. As one of the three problems cho-
sen for the DIMACS second implementation challenge [9], K-COL is certainly
one of the most studied NP-complete problems with a large number of solution
algorithms.

The long-term goal of our study is the development of high performance al-
gorithms able to produce competitive results across a large range of benchmark
instances. For this purpose, we here focus our study on the discovery of a new
evaluation function that will provide a better guidance than the classical penalty
based evaluation function for local or genetic search algorithms. Indeed, the con-
ventional evaluation function (called f in the paper) simply counts, for a given
K-coloring, the number of conflicting vertices and consequently cannot distin-
guish two K-colorings of equal number of conflicts having different potential for
further improvements.

2 Heuristic Search for Graph Coloring

2.1 Graph K-coloring and graph coloring

Definition 1. (K-COL) Given a graph G = (V, E) (V and E are respectively
the vertex and edge set) and a positive integer K such that K < |V |, the graph
K-coloring problem is to determine whether there exists a conflict-free vertex
coloring using K colors or less, i.e. a function c : V → {1, 2, · · · , K} such that
∀{i, j} ∈ E, c(i) 6= c(j). If such a coloring exists, G is said to be K − colorable.
In the following, we denote a coloring by C = (c(1), c(2), · · · , c(|V |)).

Definition 2. (COL) Given a graph G, the graph coloring problem is to deter-
mine the smallest K such that G is K−colorable. The smallest K is the chromatic
number of G.

From a theoretical viewpoint, K-COL is a very important NP-complete prob-
lem as it is one of the 21 NP-complete problems listed [10]. Coloring problems
are also at the heart of numerous applications including for instance, scheduling,
register allocation in compilers and frequency assignment in mobile networks.

The graph coloring problem COL is an optimization problem (to minimize
K), while K-COL is its corresponding decision problem (to determine whether
there exists a K-coloring or not). Notice that if one can solve K-COL, one can
also solve COL by the following iterative approach: find a K−coloring of G for
a fixed K, K < |V | (solve K-COL), then decrease K (K = K − 1) until no
conflict-free K-coloring can be found.

2.2 Local search for K-coloring

To solve K-COL by local search, we consider K-COL from an optimization point
of view. For a given K-COL instance, i.e., a graph G = (V, E) and an integer
K, we define the following optimization problem (S, f) where:

– S is the search space composed of all the |V |K possible K-colorings, i.e.
S = {C|C : V → {1, 2, · · · , K}};

– f is an ”artificial” objective counting the number of conflicting edges, i.e.
∀C ∈ S, C = (c(1), c(2), · · · , c(|V |)),

f(C) =
∑

{i,j}∈E

pij , where pij =

{

1 if c(i) = c(j)

0 if c(i) 6= c(j)

Accordingly, any C∗ ∈ S such that f(C∗) = 0 corresponds to a conflict-free
K-coloring and thus represent a solution to the given K-COL instance. To solve
this optimization problem by local search, three main components need to be
defined: an evaluation function, a neighboring relationship and an exploration
strategy of the neighborhood.

– Evaluation function: One convenient evaluation function is the above ob-
jective function f which counts the number of conflicting edges of a given
K-coloring. Indeed, this evaluation function is largely used by many well-
known coloring algorithms [7, 5, 2, 6, 1]. We will show in this paper that this
evaluation function is not discriminating enough and can be improved.

– Neighborhood: Given a configuration (K-coloring) C = (c(1), c(2), · · · , c(|V |)),
a neighboring configuration C′ of C is a K-coloring C′ = (c′(1), c′(2), · · · , c′(|V |))
with exactly one conflicting color c(i) being changed to c′(i).

– Exploration strategy: The exploration strategy used in this paper is a steep-
est descent detailed in section 4.1.

3 A New Evaluation Function

For the graph K-coloring problem, many previous algorithms use f as their
evaluation function, although other functions are also proposed (see for instance
[12, 3]). However, the function f is not sufficiently discriminating since it cannot
distinguish configurations having the same number of conflicts while these color-
ings may have different possibilities for further improvement. To overcome this
difficulty, we are trying to define another evaluation function able to identify
the configurations which, despite of having the same conflict number, are more
promising for further exploration.

3.1 The new evaluation function

Let us consider two configurations (3-colorings) C1 (figure 1.a)) and C2 (figure1.b))
of the same graph for which one needs to obtain a 3-coloring without conflicts.

Fig. 1. Two 3-colorings with one conflict. The conflicting edge is marked in larger
thickness; it is easier to solve the gray one (C1, left) than the black one (C2, right)
even if both configurations have just a single conflict

We denote by Econfl the set of edges in conflict, by δ(i) the degree of vertex i

and by confl(i) the number of conflicts for vertex i.

The Econfl set has just one element for both examples: {i, j} for C1 and
{i, k} for C2. Since δ(j) < K < δ(k), we can assign to j a color not used by
its δ(j) neighbors (i.e black or white) to solve the {i, j} conflict; it requires just
one more step. Since this is not necessarily the case for the conflict {i, k} in
C2, C1 is here preferable to C2. Furthermore, it is natural to consider that C1

is preferable to C2 only because δ(j) < δ(k) (without considering the value of
K), since the more neighbors a vertex has, the more difficult it is to change
its color without perturbing the rest of the configuration. In order to consider
all conflicting vertices in a single formula, we propose the following evaluation
function:

f̂(C) = f(C) −
∑

i∈V

confl(i)
1

δ(i)
. (1)

In all practical cases, we have f(C) − 1 < f̂(C) < f(C) since, for a non-
trivial problem the final number of conflicts (the number of terms in the sum)
is considerably smaller than the average degree of conflicting vertices (average
denominator δ(i)). The second part of the function allows us to discriminate

the configurations having the same number of conflicts ; note that f̂ preserves
the f ordering: f̂(C) < f̂(C′) whenever f(C) < f(C′). In other words, we
have two components each one with a different goal: (a) the first counts the
number of conflicts (f more precisely), (b) the second is a quantity of the form
∑

i∈Vconflict

1
δ(i) (which is less than 1) that better discriminates colorings unable

to be distinguished by f . All reported values of f̂ in this paper will be rounded to

the nearest greater integer since all encountered values of f̂(C) satisfy
⌈

f̂(C)
⌉

=

f(C).

3.2 Computational complexity

The computational efforts required by f and f̂ are equivalent. To see this, we
re-write the formula of f̂ in a computationally convenient way. Let us remark
that:

∑

i∈V

confl(i)
1

δ(i)
=

∑

{i,j}∈Econfl

(
1

δ(i)
+

1

δ(j)
).

Consequently, we have:

f̂(C) = f(C) −
∑

{i,j}∈Econfl

(
1

δ(i)
+

1

δ(j)
) =

∑

{i,j}∈Econfl

(1 −
1

δ(i)
−

1

δ(j)
)

In our implementation, both functions are constructed by adding constant
coefficients (E[i, j] = 1 − 1

δ(i) −
1

δ(j)) for each conflicting edge {i, j}. All values

from E are computed before starting the main algorithm and they have a time
complexity of (O(|V |2)). In our numerical experiments, the computing time for
E is always less than 1 second on a Pentium 4 with a CPU at 2.8GHz. The only
non-negligible difference is the data types we are manipulating: instead of integer
values we use double values to store the table E and to perform all operations.

4 Experimental Comparisons of the Two Evaluation

Functions

In this section, we perform an extensive experimental analysis of the effect of
f̂ on the steepest descent (SD) algorithm. We start by detailing the algorithm,
then we present the test instances, the comparison criteria and we analyze the
results.

4.1 Steepest descent

The steepest descent (SD) algorithm starts from a random initial configuration
and iteratively chooses, from the whole neighborhood, the best neighbor accord-
ing to the evaluation function. When there exists several equally best neighbors,
one of these neighbors is chosen at random. The algorithm stops when there
exists no improving neighbor - i.e. when the current coloring is a local optimum
with respect to the given neighborhood relation and evaluation function. For
all the experimental results reported in this paper, this simple SD algorithm is
considered with the two evaluation functions f and f̂ .

The choice of the SD algorithm for our experimentations is here justified by
the fact that it is one of the few algorithms to ensure a complete neutrality in

the final results. In any algorithm which closely depends on a given parameter
(e.g. temperature in simulated annealing, tabu list length in Tabu Search, etc),
the tuning of this parameter might significantly skew the results favoring one
method or another.

We also started performing experiments with other more advanced algorithms
(especially Tabu Search), but however, the aim of this paper is not to compete
with the best graph coloring algorithms. The goal of our experiments is to study
the influence of evaluation functions for the graph coloring algorithms from a
completely neutral point of view.

4.2 The experimental conditions

Instances The following graphs from the well-known second DIMACS challenge
benchmarks are used:

– Five uniform random graphs generated by Johnson et. al in their state-
of-the-art papers about simulated annealing [8] and used extensively after-
words in testing graph coloring algorithms: dsjc250.5, dsjc500.5, dscj1000.1,
dsjc1000.5 and dscj1000.9. They have 250, 500 and 1000 vertices respectively
and the density p is denoted by the last digit (i.e. .5 for the first graph).

– Three Leighton graphs: le450.15a, le450.25a and le450.25c, these graphs
have each 450 vertices and a known chromatic number (15 for the first, 25
for the others) [11]. The last two graphs are generated in the same manner,
but with different random seeds.

Comparison criteria The main indicator of solution quality is the number of
conflicts of the configuration obtained at the end of the search (Other criteria are
explained in Section 5. For each graph, we set K to be the smallest number of
colors for which a coloring has ever been found or the chromatic number when it
is known (i.e. for the Leighton graphs). Consequently, all these instances are dif-
ficult to solve. For the first five graphs (dsjc*.*) we use the least K found either
by a hybrid algorithm [6] or by a population based local search algorithm com-
bining two specific neighborhoods and using the strategy of successive building
of color classes [12].

Experimental protocol The experimental evaluation was carried out by con-
sidering 1000 independent runs, with different random seeds, for both functions
and by statistically analyzing the solutions obtained. We examine the extremal
conflict numbers found with the two evaluation functions and precisely analyze
the distributions of the values obtained on the run set.

4.3 Results

For each instance, we show in table 1 the minimum, the mean and the maxi-
mum solution quality (columns 2,3,4 and 6,7,8 respectively) computed separately

Classic Function(f)) New Function(f̂)

Graph (colors) Min Max Mean Std. Dev. Min Max Mean Std. Dev.

dsjc250.5(28) 60 106 83.0 7.4 36 71 54.1 5.6
dsjc500.5(49) 140 209 173.1 10.7 89 136 112.2 8.2
dsjc1000.1(20) 260 355 307.2 15.2 152 231 191.8 11.7
dsjc1000.5(83) 364 478 424.9 16.6 249 333 290.0 13.3
dsjc1000.9(224) 301 402 347.5 14.4 183 253 218.9 9.5
le450.15c(15) 270 345 310.3 10.6 216 284 250.3 9.9
le450.25a(25) 11 28 18.2 2.8 0 10 4.6 1.6
le450.25c(25) 87 128 107.7 6.1 51 78 64.1 4.8

Table 1. The results of 1000 runs of the SD algorithm on all the tested graphs. f̂

allows SD to obtain a better local optimum with a smaller number of conflicts for each
graph and even to find an optimal coloring for le450.25a. The numbers between the
parenthesis in Column 1 correspond to the smallest K reported in the literature.

for both functions. We also compute the standard deviation (columns 5 and 9
respectively), as it is an indicator of the algorithm’s precision and robustness.

The first observation is that the distributions of f and f̂ are disjoint in 75% of
cases: the quality of the solutions obtained with f̂ is always better (with smaller
numbers of conflicts) for absolutely all runs. And moreover, even for the rest of
25% cases, the general tendency remains the same.

More surprisingly, let us remark that f̂ leads one time to a proper coloring
(no conflicts) for the le450.25a graph with K=25 (its chromatic number). In
fact, even some state-of-the-art algorithms like HGA ([6]) fails to find a conflict
free coloring with 25 colors for graphs in the le450.25a family.

Furthermore, we collected for each graph the final values obtained by our
SD algorithm with the two evaluation functions f and f̂ into a single sample
and depicted in Figure 2 the distribution of the results according to two axes:
quality (number of conflicts) and the frequency (number of colorings having a

given quality). The distribution confirms once again the superiority of f̂ in the

search process. Indeed, the distribution with f̂ is more on the left than the
distribution with f , meaning that the solutions with f̂ have a smaller number
of conflicts.

Additionally, it is important to remark that all 1000 configurations found for
each method and each graph are pairwise different, i.e. the algorithm never comes
to two identical solutions. We consider two configurations (c(1), c(2), · · · c(|V |))
and (c′(1), c′(2), · · · , c′(|V |)) to be identical if and only if there exists a permu-
tation σ of the set {1, 2, 3, · · · , K} such that the first configuration is mapped
into the second by σ (i.e σ(c(i)) = c′(i), ∀i ∈ {1..|V |}).

5 Why the New Evaluation Function Works?

In this section, we try to understand why the new evaluation function f̂ works
better than the classical one f . For this purpose, we analyze the dynamics of the

Solution quality

N
r.

 o
f c

ol
or

in
gs

40 60 80 100

0
10

0

dsjc250.5

Solution quality
80 120 160 200

0
15

0

dsjc500.5

Solution quality

N
r.

 o
f c

ol
or

in
gs

150 200 250 300 350

0
15

0

dsjc1000.1

Solution quality
250 300 350 400 450

0
15

0 dsjc1000.5

Solution quality

N
r.

 o
f c

ol
or

in
gs

200 250 300 350 400

0
15

0

dsjc1000.9

Solution quality
220 260 300 340

0
15

0

le450_15c

Solution quality

N
r.

 o
f c

ol
or

in
gs

0 5 10 15 20 25

0
20

0

le450_25a

Solution quality
60 80 100 120

0
15

0 le450_25c

Fig. 2. The solution quality (evaluation function value) distribution for all graphs
considering 1000 random steepest descents with the new function f̂ (denoted by simple
bars) and the classic one f (denoted in shading lines)

steepest descent with f and f̂ and consider three indicators: a) the convergence

of the SD algorithm with f and f̂ , b) the number of quality-improving neighbors
induced by each evaluation function and c) the cardinality of equivalence classes
of configurations.

5.1 Convergence

Table 2 indicates the total number of iterations performed by typical search pro-
cesses using both functions. Figure 3 depicts the evolution of solution quality
with both functions along the same scale. These results show that the SD with
f is trapped earlier in a local optimum than with f̂ . For instance, for the graph
(dsjc250.5), while the descent with f stops at 159th iteration, the search con-

Graph (colors) New Function(f̂) Classic Function(f)

dsjc250.5(28) 245 158
dsjc500.5(49) 465 353
dsjc1000.1(20) 941 613
dsjc1000.5(83) 1003 703
dsjc1000.9(224) 921 635
le450.25a(25) 191 154

Table 2. The number of iterations performed by the steepest descent using f and f̂ .
The descent process with f̂ lasts always longer than the descent with f .

tinues with f̂ . This is possible because f̂ offers improving neighbors for a longer
time.

0 50 100 150 200 250

10
0

20
0

30
0

40
0

50
0

Number of iterations

E
va

lu
at

io
n

fu
nc

tio
n

Fig. 3. The solution quality (number of conflicts) evolution for a classic steepest descent
run (G = dsjc250.5, K = 28); f̂ is depicted in dotted line, f in continuous line. The
descent process with f stops at 159th iteration while the search continues with f̂ .

5.2 Neighborhood analysis

An important indicator about the dynamics of a search process is the evolution of
the number of improving neighbors during the search. Intuitively, if this number
decreases rapidly, the search process might easily get blocked in a local optima.
This is particularly true for a descent algorithm. Indeed, in a SD algorithm,

the number of improving neighbors tends to monotonically decrease until this
number drops to zero thus triggering the stop condition.

Let ∆ denote the improvement added by a neighbor vertex Vnext to the
current vertex Vcurrent according to f or f̂ : ∆f = |f(Vnext) − f(Vcurrent)| or

∆f̂ = |f̂(Vnext) − f̂(Vcurrent)|. For each coloring, we are interested to study: 1)
how many improving neighbors are there at each step and 2) what is the actual
improvement these neighbors can add (what values ∆ can take).

0 50 100 150

0
15

00
30

00

(classic function f)
Iterations

N
um

be
r

of
 n

ei
gh

bo
rs

0 50 100 150 200

0
15

00
30

00

(new function)
Iterations

N
um

be
r

of
 n

ei
gh

bo
rs

f̂

Fig. 4. A typical evolution of the number of quality-improving neighbors (∆ > 0, in
thin line) and of quality-stagnation neighbors (∆ = 0, in thick line) for f (left) and
f̂(right)

Figure 4 depicts the first indicator on a typical run by drawing the curves for
the number of neighbors satisfying ∆ > 0 (thin lines) and ∆ = 0 (thick lines).

These curves confirm that f̂ is more discriminating than f : the thick curves
present significantly lower values for f̂ than for f and, at each step, there are
numerous equivalent neighbors for f especially.

Figure 5 depicts the distribution of ∆ values, showing the degree of the im-
provements according to the two evaluation functions. An intriguing observation
is that the improvement at each iteration is rather small; the algorithm performs
many small steps rather than few large steps. In figure 5, one can see that the
number of neighbors improving the current solution by more than 3 is usually
very low. In most cases, the actual possible improvement of both f and f̂ is 1
or 2. Furthermore, note that at the end of the search using f̂ there are some
improvements of less than 1 (in fact of almost 0). The existence of these im-

provements is justified only by the second part of the function f̂ and not by
the conflict number; and this explains why f̂ can well distinguish between these
colorings having the same number of conflicts.

0 50 100 150

0
2

4

(classic function f)
Iterations

R
an

ge
∆

0 50 100 150 200

0
2

4

(new function)
Iterations

R
an

ge
∆

f̂

Fig. 5. A typical evolution of the possible improvement (values of ∆) in the neighbor-
hood according to f (left) and f̂ (right)

5.3 Classes of configurations in the landscape

An analysis of equivalence classes of configurations may be also useful for a better
understanding of the dynamics of the search process. In our case, an equivalence
class is a set of configurations that are evaluated at the same value by f or f̂ .
Thus, two colorings are in the same f -class if they have the same conflict number
and in the same f̂ -class if they have, in addition, the same degree distribution of
their conflicting vertices. Consequently, the cardinal of a f̂ -class is considerably
smaller and this is another indicator why the f̂−search is more discriminating.

The cardinal of an f̂ -class is strongly influenced by the degree distribution
of the considered graph. In regular graphs (all vertices have the same degree),

any f -class is also an f̂ -class (so there is no practical difference between the two
functions) since all edges {i, j} generate the same values E[i, j] = 1− 1

δ(i) −
1

δ(j) .

At the opposite, in a heterogeneous graph with few vertices having the same
degree, there are statistically very few edges generating equal values in the table
E.

6 Conclusions and Further Work

In this paper we have introduced a new evaluation function f̂ for the graph
K-coloring problem. This evaluation function is based not only on the conflicts
induced by a K-coloring, but also on information related to the structure of a
graph. The experimental results with a steepest descent algorithm show that
this function outperforms the classic evaluation function which is based only
on the conflict number. To explain the good performance of the new evaluation
function, some empirical justifications were proposed, based on the distribution
of improving neighbors induced by each evaluation function and an analysis of
the equivalent classes of configurations.

To further assess the practical usefulness of the proposed evaluation func-
tion, we are experimenting this function within a Tabu Search (TS) algorithm.
The preliminary results show that the new evaluation function boosts the Tabu
Search algorithm. Indeed, for a large number of the DIMACS graphs, the TS
algorithm using f̂ (as well as some other simple improvements) finds the best
known colorings. Moreover, it is even able to improve on half of the results
published by previous Tabu Search methods

More generally, we believe that the evaluation function introduced in this
paper may be useful for other heuristic coloring algorithm and shed light on the
design of other informative evaluation functions for the graph coloring problem.

Acknowledgments: This work is partially supported by the CPER project
”Pôle Informatique Régional” (2000-2006) and the Régional Project MILES
(2007-2009). We would like to thanks our referees for their useful comments.

References

1. C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for graph
coloring. European Journal of Operational Research, 151(2):379–388, 2003.

2. R. Dorne and J.K. Hao. Tabu search for graph coloring, T-colorings and set T-
colorings. Meta-Heuristics: Advances and Trends in Local Search Paradigms for

Optimization, pages 77–92, 1998.
3. A.E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionary graph

coloring. LNCS 1365: 95–106, 1998.
4. E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2:530, 1996.
5. C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring.

Annals of Operations Research, 63:437–461, 1996.
6. P. Galinier and J.K. Hao. Hybrid Evolutionary Algorithms for Graph Coloring.

Journal of Combinatorial Optimization, 3(4):379–397, 1999.
7. A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Com-

puting, 39(4):345–351, 1987.
8. D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by

Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and
Number Partitioning. Operations Research, 39(3):378–406, 1991.

9. D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiability: 2nd

DIMACS Implementation Challenge, volume 26 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, AMS, USA, 1996.
10. R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations, 43:85–103, 1972.
11. F.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal

of Research of the National Bureau of Standards, 84(6):489–503, 1979.
12. C. Morgenstern. Distributed Coloration Neighborhood Search. In [9], pages 335–

357, 1996.
13. E. Rodriguez-Tello, J.K. Hao, and J. Torres-Jimenez. An improved evaluation

function for the bandwidth minimization problem. LNCS 3242: 650-659, 2004.
14. E. Rodriguez-Tello and J.K. Hao. On the role of evaluation functions for heuristic

search. Working Paper, 2007.

