
From cutting planes to
cutting hypersurfaces

for convexifying quadratic programs

Amélie Lambert - Daniel Porumbel

Conservatoire National des arts et Métiers - CEDRIC-CNAM, Paris

1/10

We want the global solution of this non-convex program

We consider (P) a box-constrained quadratic program :

(P)
{

min
x∈[`,u]

f (x) ≡ 〈Q, xx>〉+ c>x

with a non-convex quadratic objective function f (x).

where 〈Q,X 〉 =
∑

i

∑

j

QijXij

A cutting convex quadrics approach :

1. A family of convex piecewise quadratic relaxations
2. A cutting-quadrics algorithm to compute the "best" quadratic cuts
3. A spatial B&B based on the computed relaxation.

2/10

We want the global solution of this non-convex program

We consider (P) a box-constrained quadratic program :

(P)
{

min
x∈[`,u]

f (x) ≡ 〈Q, xx>〉+ c>x

with a non-convex quadratic objective function f (x).

where 〈Q,X 〉 =
∑

i

∑

j

QijXij

A cutting convex quadrics approach :

1. A family of convex piecewise quadratic relaxations
2. A cutting-quadrics algorithm to compute the "best" quadratic cuts
3. A spatial B&B based on the computed relaxation.

2/10

Starting point : Convexification of a quadratic function

f (x) = 〈Q, xx>〉+ c>x

Add convex function 〈S , xx>〉 to be canceled by linear term 〈−S ,Y 〉

→ Add new variables Yij meant to satisfy Yij = xixj

→ For any matrix S � 0, function below is convex in x and linear in Y :

fS(x ,Y) =〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉
fS(x ,Y) =〈Q, xx>〉+ c>x = f (x) if Y = xx>

[MIQCR - Elloumi-Lambert (2019)]

x

f(x)

3/10

Starting point : Convexification of a quadratic function

f (x) = 〈Q, xx>〉+ c>x

Add convex function 〈S , xx>〉 to be canceled by linear term 〈−S ,Y 〉

→ Add new variables Yij meant to satisfy Yij = xixj

→ For any matrix S � 0, function below is convex in x and linear in Y :

fS(x ,Y) =〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉
fS(x ,Y) =〈Q, xx>〉+ c>x = f (x) if Y = xx>

[MIQCR - Elloumi-Lambert (2019)]

3/10

Starting point : Convexification of a quadratic function

f (x) = 〈Q, xx>〉+ c>x

Add convex function 〈S , xx>〉 to be canceled by linear term 〈−S ,Y 〉

→ Add new variables Yij meant to satisfy Yij = xixj

→ For any matrix S � 0, function below is convex in x and linear in Y :

fS(x ,Y) =〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉
fS(x ,Y) =〈Q, xx>〉+ c>x = f (x) if Y = xx>

[MIQCR - Elloumi-Lambert (2019)]

Y

x

f(x)

We’ll add McCormick inequalities to cut some Y corresponding to no x
3/10

Starting point : Convexification of a quadratic function

f (x) = 〈Q, xx>〉+ c>x

Add convex function 〈S , xx>〉 to be canceled by linear term 〈−S ,Y 〉

→ Add new variables Yij meant to satisfy Yij = xixj

→ For any matrix S � 0, function below is convex in x and linear in Y :

fS(x ,Y) =〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉
fS(x ,Y) =〈Q, xx>〉+ c>x = f (x) if Y = xx>

[MIQCR - Elloumi-Lambert (2019)]

Y

x

f(x)

After these McCormick cuts, the set of feasible Y is smaller
3/10

Starting point : Convexification of a quadratic function

f (x) = 〈Q, xx>〉+ c>x

Add convex function 〈S , xx>〉 to be canceled by linear term 〈−S ,Y 〉

→ Add new variables Yij meant to satisfy Yij = xixj

→ For any matrix S � 0, function below is convex in x and linear in Y :

fS(x ,Y) =〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉
fS(x ,Y) =〈Q, xx>〉+ c>x = f (x) if Y = xx>

[MIQCR - Elloumi-Lambert (2019)]

• If S = 0n our convex function

〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉

becomes f0(x ,Y) = 〈Q,Y 〉+ c>x , i.e., the surface a is a linear
hyperplane.

3/10

Starting point : Convexification of a quadratic function

f (x) = 〈Q, xx>〉+ c>x

Add convex function 〈S , xx>〉 to be canceled by linear term 〈−S ,Y 〉

→ Add new variables Yij meant to satisfy Yij = xixj

→ For any matrix S � 0, function below is convex in x and linear in Y :

fS(x ,Y) =〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉
fS(x ,Y) =〈Q, xx>〉+ c>x = f (x) if Y = xx>

[MIQCR - Elloumi-Lambert (2019)]

Y

x

f(x)

3/10

Starting point : Convexification of a quadratic function

f (x) = 〈Q, xx>〉+ c>x

Add convex function 〈S , xx>〉 to be canceled by linear term 〈−S ,Y 〉

→ Add new variables Yij meant to satisfy Yij = xixj

→ For any matrix S � 0, function below is convex in x and linear in Y :

fS(x ,Y) =〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉
fS(x ,Y) =〈Q, xx>〉+ c>x = f (x) if Y = xx>

[MIQCR - Elloumi-Lambert (2019)]

〈Q,Y 〉+ c>x + 〈S , xx>〉 − 〈S ,Y 〉

I Difficult to find the best S∗, we construct a special SDP program only
for that.

3/10

I Traditional convexification : the “best” S∗ is the one that leads to a
convex relaxation of the highest optimum value

I According to this criterion, the red convexification is better than the
blue one. Yet the blue one is tighter if we think over the whole area,
which may be useful when we start branching.

In reality, we can’t have
such a tight convexification as the blue one with a unique S∗. That’s
an ideal dream to forget =⇒ we need multiple S1,S2,S3,

4/10

I Traditional convexification : the “best” S∗ is the one that leads to a
convex relaxation of the highest optimum value

I According to this criterion, the red convexification is better than the
blue one. Yet the blue one is tighter if we think over the whole area,
which may be useful when we start branching. In reality, we can’t have
such a tight convexification as the blue one with a unique S∗. That’s
an ideal dream to forget =⇒ we need multiple S1, S2,S3,

4/10

A D (x,Y)

f

fS*

f

Idea Instead of a unique function fS∗ , use k functions fSk
. This is what

happens with k = 1

4/10

fS1 A D (x,Y)

f

C

fS*

f

Idea Instead of a unique function fS∗ , use k functions fSk
. This is what

happens with k = 1
Idea This is what happens for k = 2 when taking the best of two
functions, it’s a bit better

4/10

S2

fS*
fS1 A D B (x,Y)

ff

C
Idea Instead of a unique function fS∗ , use k functions fSk

. This is what
happens with k = 1
Idea This is what happens for k = 2 when taking the best of two
functions, it’s a bit better
⇒ This is what happens for k = 3. Generally,

f ∗(x ,Y) = max
k

fSk
(x ,Y)

f ∗ is a piecewise-quadratic convex understimator

4/10

S2

fS*
fS1 A D B (x,Y)

ff

C
Idea Instead of a unique function fS∗ , use k functions fSk

. This is what
happens with k = 1
Idea This is what happens for k = 2 when taking the best of two
functions, it’s a bit better
⇒ This is what happens for k = 3. Generally,

f ∗(x ,Y) = max
k

fSk
(x ,Y)

f ∗ is a piecewise-quadratic convex understimator

At each branching node : add more surfaces fSk
as in a Cutting-planes

4/10

A family of convex piecewise quadratic relaxations

(P)
{

min
x∈[`,u]

f (x) ≡ 〈Q, xx>〉+ c>x

Let K = {Sk � 0 , k = 1, . . . , k} and convex quadratic functions :

〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉 Sk∈ K

5/10

A family of convex piecewise quadratic relaxations

(P)

{
min

x∈[`,u]
t

t ≥ 〈Q, xx>〉+ c>x

Let K = {Sk � 0 , k = 1, . . . , k} and convex quadratic functions :

〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉 Sk∈ K

5/10

A family of convex piecewise quadratic relaxations

(P)

{
min

x∈[`,u]
t

t ≥ 〈Q, xx>〉+ c>x

Let K = {Sk � 0 , k = 1, . . . , k} and convex quadratic functions :

〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉 Sk∈ K

5/10

A family of convex piecewise quadratic relaxations

(P)

{
min

x∈[`,u]
t

t ≥ 〈Q, xx>〉+ c>x

⇔





min
x∈[`,u]

t

t ≥ 〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉Sk∈ K
Y = xx> ←− non-convex

Let K = {Sk � 0 , k = 1, . . . , k} and convex quadratic functions :

〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉 Sk∈ K

5/10

A family of convex piecewise quadratic relaxations

(P)

{
min

x∈[`,u]
t

t ≥ 〈Q, xx>〉+ c>x

relax−−−→(PK)





min
x∈[`,u]

t

t ≥ 〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉Sk∈ K
(x ,Y) ∈MC

Let K = {Sk � 0 , k = 1, . . . , k} and convex quadratic functions :

〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉 Sk∈ K

Yij = xixj
relax−−−→MC





Yij − ujxi − `ixj + uj`i ≤ 0
Yij − uixj − `jxi + ui`j ≤ 0
−Yij + ujxi + uixj − uiuj ≤ 0
−Yij + `jxi + `ixj − `i`j ≤ 0
McCormick envelopes specific to each node

5/10

A family of convex piecewise quadratic relaxations

(P)

{
min

x∈[`,u]
t

t ≥ 〈Q, xx>〉+ c>x

relax−−−→(PK)





min
x∈[`,u]

t

t ≥ 〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉Sk∈ K
(x ,Y) ∈MC

Let K = {Sk � 0 , k = 1, . . . , k} and convex quadratic functions :

〈Sk , xx>〉+ c>x + 〈Q − Sk ,Y 〉 Sk∈ K

We would like to cut more Y values that are too far from an outer product
form xx>. Since Y is meant to satisfy Y = xx>, we may like to add
Y � xx>, but it’s too expensive because above program is quadratic in x :
applying a branch-and-bound on such program would be too slow.

5/10

Illustration : Cutting-Quadrics Algorithm
We extend with Y meant to satisfy Y = xx>

x

f(x)

6/10

Illustration : Cutting-Quadrics Algorithm
We extend with Y meant to satisfy Y = xx>

Y

x

f(x)

6/10

Illustration : Cutting-Quadrics Algorithm
We cut some unwanted Y using linear McCormick

Y

x

f(x)

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ?

Y

x

f(x)

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ?

Y

x

f(x)

•

(x1, Y 1) opt (PK1
)

et (x1x1> −Y 1) � 0

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ? Construct S2 = v1v1>, where v1 corresponds to the
maximum eigenvalue of x1x1> − Y 1 of first iterate (x1,Y 1)
K = {S1}

Y

x

f(x)

• 〈

S2︷ ︸︸ ︷
rv1v1>, x1x1> − Y 1〉

(x1, Y 1) opt (PK1
)

et (x1x1>−Y 1) � 0

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ?
This S2 generates a new hyper-surface !
K = {S1,S2}

Y

x

f(x)

• 〈

S2︷ ︸︸ ︷
rv1v1>, x1x1> − Y 1〉

(x1, Y 1) opt (PK1
)

et (x1x1>−Y 1) � 0

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ?
The optimum values moves to (x2,Y 2) !
K = {S1,S2}

Y

x

f(x)

•

(x2, Y 2) opt (PK2
)

et (x2x2> −Y 2) � 0

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ? Construct S3 = v2v2>, where v2 corresponds to
the maximum eigenvalue of x2x2> − Y 2

Y

x

f(x)

• 〈

S3︷ ︸︸ ︷
rv2v2>, x2x2> − Y 2〉

(x2, Y 2) opt (PK2
)

et (x2x2>−Y 2) � 0

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ?
K = {S1, S2,S3}

Y

x

f(x)

• 〈

S3︷ ︸︸ ︷
rv2v2>, x2x2> − Y 2〉

6/10

Illustration : Cutting-Quadrics Algorithm
We want Y � xx> which implies xx> − Y � 0, but how to add it to the
quadratic program ?
K = {S1, S2,S3} The optimum moves to (x3,Y 3) that does satisfy
x3x3> � Y 3, so we
can’t cut it anymore

Y

x

f(x)

•

x3x3> − Y 3 � 0

6/10

Computational results

7/10

Instances boxqp [Burer et al. 09]

Description of boxqp :
• 99 purely continuous quadratic instances with x ∈ [0, 1]
• Sizes vary from n = 20 to 125, densities of Q from 20%, to 100%.

Two versions of Cutting Quadrics - B&B (CQBB) with stopping criteria :
• CQBB-1 : fewer iterations per node
• CQBB-2 : more iterations per node

8/10

#calls is the number of calls of the convex quadratic solver

9/10

Conclusions et prospects

• We designed quadratic-convex variant of Cutting-Planes

• We uses it to update the convexification at branching node

→ Experimentally : more efficient than performing no iteration

• It is very expensive to re-optimize after adding a cutting hypersurface
(unlike a dual simplex Pivot when adding a hyperplane in LP). Any
improvement in such re-optimization tasks can speed-up it all

• just accepted by Journal of Global Optimization ; pdf here :
cedric.cnam.fr/~porumbed/pconvex.pdf

10/10

cedric.cnam.fr/~porumbed/pconvex.pdf

	A family of convex piecewise quadratic relaxations
	Computational results

