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We want the global solution of this non-convex program

We consider (P) a box-constrained quadratic program :

(p){ Xre’n[m] f(x)=(Q,xx") +c'x

with a non-convex quadratic objective function f(x).

where (Q, X) =" " Q;X;
J

i
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We want the global solution of this non-convex program

We consider (P) a box-constrained quadratic program :

(p){ Xre'n[m] f(x)=(Q,xx") +c'x

with a non-convex quadratic objective function f(x).

where (Q, X) =" " Q;X;
i

A cutting convex quadrics approach :

1. A family of convex piecewise quadratic relaxations
2. A cutting-quadrics algorithm to compute the "best" quadratic cuts

3. A spatial B&B based on the computed relaxation.
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Starting point : Convexification of a quadratic function

F(x) = (Q,xx") +c'x
Add convex function (S, xx ")

f(z)

to be canceled by linear term (—S5,Y)
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Starting point : Convexification of a quadratic function

F(x) = (Q,xx") +c'x

Add convex function (S, xx ") to be canceled by linear term (—S, Y)

— Add new variables Yj; meant to satisfy Yj; = x;x;

— For any matrix S = 0, function below is convex in x and linear in Y :

fo(x,Y) =(Q,Y) +c x+ (S, xx") —(5,Y)

fo(x,Y) =(Q,xx ")+ c'x=f(x) if Y =xx'
[MIQCR - Elloumi-Lambert (2019)]
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Starting point : Convexification of a quadratic function
F(x) = (Q,xx") +c'x
Add convex function (S, xx ") to be canceled by linear term (—S, Y)

f(z)

Y

We'll add McCormick inequalities to cut some Y corresponding to no x
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Starting point : Convexification of a quadratic function
F(x) = (Q,xx") +c'x
Add convex function (S, xx ") to be canceled by linear term (—S, Y)

/()

Y

After these McCormick cuts, the set of feasible Y is smaller
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Starting point : Convexification of a quadratic function
f(x) = <Q,XXT> +c'x

Add convex function (S, xx ") to be canceled by linear term (—S, Y)

e If S =0, our convex function
(Q,Y)+c'x+(S,xx") —(5,Y)

becomes fy(x, Y) = (Q,Y) + c'x, i.e., the surface a is a linear
hyperplane.
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Starting point : Convexification of a quadratic function

F(x) = (Q,xx") +c'x

Add convex function (S, xx ")

f(x)

to be canceled by linear term (—S5,Y)
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Starting point : Convexification of a quadratic function
f(x) = <Q,XXT> +c'x

Add convex function (S, xx ") to be canceled by linear term (—S, Y)

(Q,Y)+c ' x+ (S, xx")—(5,Y)

» Difficult to find the best S*, we construct a special SDP program only
for that.
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» Traditional convexification : the “best” S* is the one that leads to a
convex relaxation of the highest optimum value

» According to this criterion, the red convexification is better than the
blue one. Yet the blue one is tighter if we think over the whole area,
which may be useful when we start branching.
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» Traditional convexification : the “best” S* is the one that leads to a
convex relaxation of the highest optimum value

» According to this criterion, the red convexification is better than the
blue one. Yet the blue one is tighter if we think over the whole area,
which may be useful when we start branching. In reality, we can't have
such a tight convexification as the blue one with a unique S*. That's
an ideal dream to forget =— we need multiple 51, 55, S3, .. ..
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fS* M ..... - (x,Y)

A D
Idea Instead of a unique function fs-, use k functions fs,. This is what
happens with k=1
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(x,Y)

Idea Instead of a unique function fs+, use k functions fgk.Fhis is what
happens with k=1

Idea This is what happens for k = 2 when taking the best of two
functions, it's a bit better
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Idea Instead of a unique function fs-, use k functions fsk.Fhis is what
happens with k =1

Idea This is what happens for kK = 2 when taking the best of two
functions, it's a bit better

= This is what happens for k = 3. Generally,

(x,Y)= max fs (x,Y)
f* is a piecewise-quadratic convex understimator
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Idea Instead of a unique function fs-, use k functions fsk.Fhis is what
happens with k =1

Idea This is what happens for kK = 2 when taking the best of two
functions, it's a bit better

= This is what happens for k = 3. Generally,

(x,Y)= max fs (x,Y)

f* is a piecewise-quadratic convex understimator

At each branching node : add more surfaces s, as in a Cutting-planes
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A family of convex piecewise quadratic relaxations

(p){ min, £ = (Quoc) e x
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A family of convex piecewise quadratic relaxations

min_t
(P){ x€[l,u]

t > <Q,XXT> +c'x
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A family of convex piecewise quadratic relaxations

min ¢

(P) { x€[l,u]

t > <Q,XXT> +c'x

Let K= {S, = 0,k=1,..., k} and convex quadratic functions :
(Skyxx ")+ ¢"x+(Q — Sk, Y) Skek
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A family of convex piecewise quadratic relaxations

min ¢
x€[0,u]

min t
(P){ x€[e,u] S t>(Sexx )+ x+(Q— S, Y)Se K

T T
t > XX c X
=z <Q, > + <— non-convex

Let K= {S, = 0,k=1,..., k} and convex quadratic functions :
(Skyxx ")+ ¢"x+(Q — Sk, Y) Skek
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A family of convex piecewise quadratic relaxations

min t
min t relax xeltu
(P){ x€e[t,u] —(Px) t > (Sk,xx )+ x+(Q — Sk, Y)Ske K
t>(Q,xx ) +c'x (x,Y) e MC

Let K= {S, = 0,k=1,..., k} and convex quadratic functions :
(Skyxx ")+ ¢"x+(Q — Sk, Y) Skek

Yi — ujxi — lix; + uil; <0

Yi — uixp — ix; + uil; <0

=Y+ uixi + upx; — ujup <0

=Y+ ixi+lixp —il; <0

McCormick envelopes specific to each node

1
Y,'J' = X,'Xj m MC
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A family of convex piecewise quadratic relaxations

min t
min t relax XE[Z,U]
(P){ x€e[t,u] —(Px) t > (Sk,xx )+ x+(Q — Sk, Y)Ske K
t>(Q,xx )+ c'x (x,Y) e MC

We would like to cut more Y values that are too far from an outer product
form xx . Since Y is meant to satisfy Y = xx ", we may like to add

Y = xx|, but it's too expensive because above program is quadratic in x :
applying a branch-and-bound on such program would be too slow.
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[llustration : Cutting-Quadrics Algorithm

We extend with Y meant to satisfy Y = xx '

f(z)
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[llustration : Cutting-Quadrics Algorithm

We extend with Y meant to satisfy Y = xx '

f(z)

T
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lllustration : Cutting-Quadrics Algorithm

We cut some unwanted Y using linear McCormick
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lllustration : Cutting-Quadrics Algorithm

We want Y > xx' which implies xx — Y < 0, but how to add it to the
quadratic program?
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lllustration : Cutting-Quadrics Algorithm

We want Y > xx' which implies xx" — Y < 0, but how to add it to the
quadratic program?

f(x)

(xl,Yl) opt (ﬁ;cl)
et (zlz!T =Yt 20
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lllustration : Cutting-Quadrics Algorithm

We want Y > xx' which implies xx" — Y < 0, but how to add it to the
quadratic program?  Construct S, = viv! ', where v} corresponds to the
maximum eigenvalue of x1xtT — Y1 of first iterate (xt, YY)

K={5} fz)

(z',Y") opt (Px,)
et (zlz!T —v1) £0
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[llustration : Cutting-Quadrics Algorithm
We want Y > xx' which implies xx" — Y < 0, but how to add it to the

quadratic program?
This S, generates a new hyper-surface !

=102} /(@)

(z',Y") opt (Px,)
et (zlz!T -1 £0
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lllustration : Cutting-Quadrics Algorithm
We want Y > xx' which implies xx" — Y < 0, but how to add it to the

quadratic program?
The optimum values moves to (x2, Y?)!

K ={51,5)} fa)

(zz, Y2) opt (ﬁ;gz)
et (22227 —Y?) £0
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[llustration : Cutting-Quadrics Algorithm

We want Y > xx' which implies xx" — Y < 0, but how to add it to the

quadratic program?  Construct S3 = v? va, where v? corresponds to

. . T
the maximum eigenvalue of x?>x? — Y?

f(z)

(12, Yz) opt (ﬁ;CQ)
et (2227 —Y?) £ 0,
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lllustration : Cutting-Quadrics Algorithm
We want Y > xx' which implies xx" — Y < 0, but how to add it to the

quadratic program?
K = {51, %, S3}
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lllustration : Cutting-Quadrics Algorithm

We want Y > xx' which implies xx" — Y < 0, but how to add it to the
quadratic program?

K = {51, 55, S3} The optimum moves to (x3, Y3) that does satisfy
353" = Y3, 50 we ()

can't cut it anymore )
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Computational results
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Instances boxgp [Burer et al. 09]

Description of boxqp :
e 99 purely continuous quadratic instances with x € [0, 1]
e Sizes vary from n = 20 to 125, densities of @ from 20%, to 100%.

Two versions of Cutting Quadrics - B&B (CQBB) with stopping criteria :

e CQBB-1 : fewer iterations per node

e CQBB-2 : more iterations per node
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instance

Initial method (0 iterations)

CQBB-1 (few iterations)

CQBB-2 (more iterations)

Nodes CPU  #calls Nodes CPU #calls Nodes CPU  #calls
050-030-1 13 038 13 9 0.5 11 7 0.8 12
050-030-2 19 1.1 19 17 0.9 19 15 1.4 24
050-030-3 31 1.6 31 27 14 35 13 1.2 20
050-040-1 9 0.7 9 9 0.6 12 5 0.6 8
050-040-2 43 2.5 43 31 1.3 31 25 2.1 40
050-040-3 7 0.5 7 7 0.4 7 5 0.6 8
050-050-1 5207 381 5207 4549 218 5088 4447 455 8286
050-050-2 65 3.7 65 67 3.2 T 53 4.5 88
050-050-3 155 8 155 121 7 180 63 5.8 114
060-020-1 13 1.2 13 5 0.5 5 5 0.8 7
060-020-2 11 1.0 11 5 0.5 5 5 0.8 7
060-020-3 61 4. 61 33 2.1 33 33 4.2 54
070-025-1 77 8 7 4T 3.7 41 33 6.5 57
070-025-2 199 22 199 129 11 133 109 21 209
070-025-3 225 25 225 145 15 168 105 17 174
070-050-1 183 21 183 159 17 184 145 26 255
070-050-2 29 3.6 29 25 3.0 31 23 4.7 40
070-050-3 9 1.4 9 11 1.6 15 7 1.7 11
070-075-1 65 7 65 59 6.1 63 55 11 108
070-075-2 1735 203 1735 1435 161 1750 1401 263 2592
070-075-3 819 96 819 729 86 990 H85 113 1148
080-025-1 391 61 391 227 41 412 23 8 53

#calls is the number of calls of the convex quadratic solver
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Conclusions et prospects

We designed quadratic-convex variant of Cutting-Planes

We uses it to update the convexification at branching node

— Experimentally : more efficient than performing no iteration

It is very expensive to re-optimize after adding a cutting hypersurface
(unlike a dual simplex Pivot when adding a hyperplane in LP). Any
improvement in such re-optimization tasks can speed-up it all

just accepted by Journal of Global Optimization; pdf here :
cedric.cnam.fr/~porumbed/pconvex.pdf
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