

Preuve Formelle Mecanisée

MOPS/ENSIIE 2010-2011

Systèmes formels Lambda Calcul Pur

O. Pons

Revision: 33

Date: 2011 - 09 - 3011: 24: 12 + 0200(ven.30sept.2011)

Histoire

Modèle de calcul (Church, \simeq 1930)

- ► Fondation des mathématiques, mécanisation de la logique, ~ « échec »(paradoxe : Kleen-Rosser)
- Théorie de la fonctionnalité
- language de programmation de bas niveau
- Calculabilité (fonctions récursives, Turing-calculables)
- ► Programmation fonctionnelle
 - ▶ λ -calcul pur \sim Lisp,Scheme,JavaScript etc.
 - λ -calcul typés \leadsto famille **ML**, etc.

Lambda calcul (Syntaxe)

- ► Ensemble dénombrable de variables $V = \{x, y, z, ...\}$
- Termes du λ-calcul de la forme :

```
x (variable) (\lambda x.M) M un terme (abstraction) (M N) M et N des termes (application)
```

Lambda calcul (Explications et exemples)

Explications;

- $\lambda x.M$: fonction f telle que f(x) = M
- \rightarrow $x \mapsto M$ (notation bourbakiste)
- « fonction qui à x associe M »
 - x est la variable liée (argument)
 - M le corps

Exemples:

- λx.x « fonction identité »
- λx.c « fonction constante c »
- (f x) « f appliquée à x »
- λf.λx.(fx) « applique son 1^{er} argument au 2^{em} » notez l'omission des parenthèses superflues

Lambda calcul (Syntaxe)

- ▶ Alphabet : $A = V \cup \{\lambda, (,)\}$
- Définition Inductive :

Le plus petit ensemble Λ tel que :

- ▶ $x \in V$ alors $x \in \Lambda$
- ▶ $M \in \Lambda$ et $N \in \Lambda$ alors $(M \ N) \in \Lambda$
- ▶ $M \in \Lambda$ et $x \in X$ alors $(\lambda x.M) \in \Lambda$

Structure

Naturellement, raisonnement par induction sur les λ -termes : Soit P une "propiété" de Λ ,

- ▶ P(x) pour tout $x \in X$
- ▶ P(M) et $P(N) \Rightarrow P((M N))$
- ▶ $P(M) \Rightarrow P(\lambda x.M)$

Alors P(M) pour tout $M \in \Lambda$

Lambda calcul (Syntaxe : Codage en caml)

```
(* definition des termes *)
type variable = string;;

type lambda=
   Var of variable
   |App of lambda*lambda
   |Lam of variable * lambda;;
```

Lambda calcul (Syntaxe : en Coq)

```
Coq <
Inductive lambda :Set :=
  var:nat->lambda
  |app:lambda->lambda->lambda
  |lam:nat ->lambda->lambda.Coq
```

lambda is defined
lambda_rect is defined
lambda_ind is defined
lambda_rec is defined

Lambda calcul (Syntaxe : en Coq)

Variables libres, variables liées

- ► Occurrence de variable liée : dans la portée du lieur λ Ex. : $\lambda f.(f x), (x \lambda x.(f x)), ((\lambda x.x) \lambda f.(f x))$
- Variable Libre : non liée.
- Definitions inductives :
 - ► Ensemble des Variables libres d'un λ -terme t (FV(t)) (free variables) :
 - ► $FV(x) = \{x\}$ ► $FV(\lambda x.M) = FV(M) - \{x\}$ ► $FV((M N)) = FV(M) \cup FV(N)$
 - ► Ensemble des variables liées d'un λ -terme t (BV(t)) (bound variables)
 - ▶ $BV(x) = \{\}$
 - \blacktriangleright $BV(\lambda x.M) = BV(M) \cup x$
 - $BV(M N) = BV(M) \cup BV(N)$

Variables libres, variables liés (codage en caml)

```
let rec varLibres lambdaTerm = match lambdaTerm with
  Var (x) ->[x]
  |App (n,m)->union (varLibres n) (varLibres m)
  |Lam (x,m)->remove x (varLibres m);;

let rec varLiees lambdaTerm = match lambdaTerm with
  Var (x) ->[]
  |App (n,m)->union (varLiees n) (varLiees m)
  |Lam (x,m)->add x (varLiees m);;
```

Variables libres et variables liées

Une même variable x dans un terme t : des occurences libres, d'autres liées

Ex. :
$$(x \lambda x.x)$$
 ou $(y((\lambda x.(xy))(y x)))$

▶ dans \(\lambda_{\blue{X}}\).M, \(\blue{X}\) « muet »

Ex. : $\lambda x.x$ et $\lambda y.y$ équivalentes pour identité

Substitution

Remplacement de variable par λ -terme dans λ -terme.

- M[y := L] (ou M[y → L] ou M[L/y]) λ-terme obtenu en substituant par L toutes les occurrences libres de y dans M
- Définie par induction :

$$x[y := L] = L \text{ si } x = y$$

 $x \text{ sinon}$

$$(\lambda x.M)[y := L] = (\lambda x.M) \text{ si } x = y$$

 $(\lambda x.M[y := L]) \text{ sinon}$

$$(M N)[y := L] = (M[y := L] N[y := L])$$

Substitution et capture de variables

Exemples

- ▶ Définition : La substitution M[x := M] est dite **sure** si $BV(M) \cap FV(N) = \Phi$.
- Se limiter aux substitutions sures.
 Procéder à d'éventuels renommages (α conversions).

Variables, α -conversion

Relation α -réduction (\rightarrow_{α}) :

$$\lambda x.M \rightarrow_{\alpha} \lambda y.M[x := y]$$
 pour tout $y \notin FV(E)$

Relation α -conversion (= $_{\alpha}$):

- lacktriangle côture de $ightarrow_{lpha}$, réflexive, symétrique, transitive, par contexte
- *i.e.* plus petite relation reflexive, symetrique transitive, stable par contexte qui contient \rightarrow_{α} .
- ightharpoonup α -conversion : congruence

Variables, α -conversion

Proposition.

M et *N* α -convertibles \Leftrightarrow

- $M = N = x \in X$
- ► $M = (F_1 \ G_1)$ et $N = (F_2 \ G_2)$ ou $F_1 =_{\alpha} F_2$ et $G_1 =_{\alpha} G_2$
- ▶ $M = \lambda x.F_1$ et $N = \lambda y.F_2$ ou $F_1[x \mapsto z] =_{\alpha} F_2[y \mapsto z]$ avec $z \notin FV(F_1) \cup FV(F_2)$

Dém. par recurrence

Corollaire.

 $=_{\alpha}$: décidable

Désormais on travaille modulo $=_{\alpha}$ -conversion

Renommage et substitution (codage en caml)

```
(* renommer var *)
let renomme var listeVar =
  let rec renommeAux j=
   let varj=(var^(string_of_int j)) in
    if (member varj listeVar) then
     renommeAux (j+1)
   else varj
  in
  renommeAux 0;;
```

Renommage et substitution (codage en caml)

```
(* substituer terme a var dans exp *)
let rec substituer exp var terme = match exp with
  |Var(x)| \rightarrow if (x=var) then terme else exp
  |App(n,m)->App((substituer n var terme),
                   (substituer m var terme))
  |Lam(x,m)->
     (* pas d'occurence libre on en fait rien *)
     if (not (member var (varLibres exp)))
     then exp
     else
       (* si capture on renome *)
       if (member x (varLibres terme)) then
         let newV=renomme x (varLibres terme) in
         let newCorps=substituer m x (Var(newV)) in
           Lam(newV, (substituer newCorps var terme))
       else
       (* sinon *)
          Lam(x, (substituer m var terme));;
```

Notation alternative : indices de De Bruijn

- Du nom de leur inventeur : Nicolaas Govert de Bruijn
- But : Éliminer les noms de variable de la représentation des termes
 - Termes écrits invariants par rapport à l'αconversion
 - Vérifier l' α -équivalence \longrightarrow vérifier l'égalité syntaxique
- Comment:
 - Indice de De Bruijn : un entier naturel représentant une occurrence d'une variable dans un λ-terme
 - dénote le nombre de lieurs (λ) entre cette occurrence et le lieur qui lui correspond.

Notation alternative : indices de De Bruijn

Exemples :

- λx.λy.x s'écrit λλ2
 Le lieur pour l'occurrence de x est le second λ.
- $\rightarrow \lambda x.\lambda y.\lambda z.xz(yz)$ s'écrit $\lambda\lambda\lambda31(21)$.
- ▶ $\lambda z.(\lambda y.y(\lambda x.x))(\lambda x.zx)$ s'écrit $\lambda(\lambda 1(\lambda 1))(\lambda 21)$. On peut donner une représentation graphique :

Réduction

- Idée : Exprimer l'évaluation de l'application d'un λ-terme(abstraction, représentant "une fonction") à un λ-terme
- Définition : Redex application d'une abstraction à un terme :

$$((\lambda x.M)N)$$

▶ β -réduction d'un redex : $((\lambda x.M)N) \rightarrow_{\beta} M[x := N])$ si la substitution est sure

Réduction

Étendus aux sous-termes (passage au contexte) :

$$\begin{array}{lll} (\lambda x.M) \rightarrow_{\beta} (\lambda x.M') & \text{si } M \rightarrow_{\beta} M' \\ (M\ N) \rightarrow_{\beta} (M'\ N) & \text{si } M \rightarrow_{\beta} M' \\ (M\ N) \rightarrow_{\beta} (M\ N') & \text{si } N \rightarrow_{\beta} N' \end{array}$$

- \triangleright β -réduction(plusieurs étape de calcul) :
 - $lackbox{}{} \to_{eta}^*$:clôture transitive et reflexive de \to_{eta}
 - $\rightarrow \beta^* = \cup_{n \in \mathbb{N}} \rightarrow_{\beta}^n$
- Exemple :

$$\begin{array}{l} ((\lambda x.(\lambda y.(xy))b)c) \to_{\beta}^* (bc) \text{ car} \\ ((\lambda x.(\lambda y.(xy))b)c) \to_{\beta} ((\lambda y.(by))c) \to_{\beta} (bc) \end{array}$$

Forme Normale

- Définition (Forme normale)
 - ▶ Terme *M* en **forme normale** : si il ne contient aucun rédex.
 - i.e. ne peut plus être β-réduit
 - ▶ il n'existe aucun N tel que $M \rightarrow_{\beta} N$
 - i.e. calcul terminé
 - Un λ -terme N, forme normale d'un λ -terme M si
 - 1. $M \rightarrow^{\star}_{\beta} N$
 - 2. N en forme normale
- Exemple

(*b c*) forme normale de
$$((\lambda x.(\lambda y.(xy))b)c)$$
 car : $((\lambda x.(\lambda y.(xy))b)c) \rightarrow^*_{\beta} (b c)$ et $(b c)$ irréductible

Forme normale

- ▶ Définition (Terme normalisable) Un terme E est normalisable si il existe un terme E' en forme normale telle que $E \to_{\beta}^* E'$.
- Tous terme normalisable?
 - Exemples :

$$\Delta = \lambda x.(x \ x)$$
 forme normale $\Omega = (\Delta \ \Delta) = (\lambda x.(x \ x) \ \Delta)$ $\rightarrow_{\beta} (x \ x)[x := \Delta]$ $= (\Delta \ \Delta) = \Omega$

• Un λ -terme n'a pas toujours de forme normale

Stratégie de réduction

- Il existe plusieurs facons de réduire un terme.
- Exemple

$$((\lambda x.((\lambda y.(x\ y)u))z)) \rightarrow_{\beta} ((\lambda y.(z\ y))u) \rightarrow_{\beta} (z\ u)$$

$$\downarrow_{\beta}$$

$$((\lambda x.(x\ u))z)$$

$$\downarrow_{\beta}$$

$$(z\ u)$$

- Les reductions même t-elle toujours au même résultat?
- ▶ **Théorème.** Church-Rosser Si $E \to_{\beta}^* E_1$ et $E \to_{\beta}^* E_2$, alors il existe E' tel que $E_1 \to_{\beta}^* E'$ et $E_2 \to_{\beta}^* E'$.
- Ce théorème assure l'unicité de la forme normale i.e. Même résultat quel que soit l'ordre des calculs

Stratégie de réduction

exemple

$$\lambda y.y \leftarrow_{\beta} (\lambda x.\lambda y.y \Omega) \rightarrow_{\beta} \cdots$$

- Suivant stratégie, forme normale atteinte...ou pas!
- existe t'il une stratégie gagnante?
 - Réduction normale d'un λ-terme : appliquer la β-réduction au rédex le plus a gauche.
 - ► Théorème (Curry) Si E est normalisable vers une forme normale N alors, la réduction normale de E mène aussi à N.

i.e. : La réduction normale d'un terme normalisable termine toujours (mais n'est pas toujours la plus rapide!)

Réduction (codage en caml)

```
let estRedex terme = match terme with
    |App(Lam(_,_),_) ->true
    |_ -> false;;

exception NOTREDEX;;
let betaReducRedex redex = match redex with
    |App(Lam(x,m),n) ->substituer m x n
    |_ ->raise NOTREDEX;;
```

Réduction (codage en caml)

```
exception IRREDUCTIBLE;;
let rec reduc1Normale terme = match terme with
   Var(x)->raise IRREDUCTIBLE
  |Lam(x,m)->Lam(x,(reduc1Normale m))
  |App(n,m)-\rangle
     if (estRedex terme)
      then (betaReducRedex terme)
      else
         try
            App((reduc1Normale n),m)
         with IRREDUCTIBLE -> App(n, (reduc1Normale m));;
```

Réduction (codage en caml)

```
let rec reduc1Valeur terme =
 match terme with
      Var(x)->raise IRREDUCTIBLE
    |Lam(x,m)->Lam(x,(reduc1Valeur m))|
    |App(n,m)->
       try
          App(n, (reduc1Valeur m))
          with TRREDUCTIBLE ->
              try
              App((reduc1Valeur n),m)
              with TRREDUCTIBLE->
                 try
                  (betaReducRedex terme)
                 with NOTREDEX ->raise IRREDUCTIBLE;;
```

Representation des données en λ -calcul

 Booléen : 2 combinateurs non β-convertibles, relier par la négations

$$VRAI = (\lambda x.(\lambda y.x))$$

$$FAUX = (\lambda x.(\lambda y.y))$$

$$NON = (\lambda b.((b FAUX) VRAI))$$

$$(NON VRAI) = ((\lambda b.((b FAUX) VRAI))(\lambda x.(\lambda y.x))) \rightarrow_{\beta}$$

$$(((\lambda x.(\lambda y.x)) FAUX) VRAI) \rightarrow_{\beta} ((\lambda y.FAUX) VRAI) \rightarrow_{\beta}$$

$$FAUX$$

combinateur ternaire SI

$$SI = (\lambda b.(\lambda e_1.(\lambda e_2.((b e_1) e_2))))$$

On vérifie:

$$(((SI VRAI) x) y) = \beta x$$
$$(((SI FAUX) x) y) = \beta y$$

Les entiers de Church

Codage des entiers en λ – *calcul* ,

▶ Des itérateurs de fonction :

$$\begin{array}{rcl}
\overline{0} & = & \lambda f.\lambda x.x \\
\overline{1} & = & \lambda f.\lambda x.(f x) \\
\overline{2} & = & \lambda f.\lambda x.(f(f x)) \\
& \cdots \\
\overline{n} & = & \lambda f.\lambda x.\underbrace{(f(f \dots x) \dots)}_{\text{n fois}}
\end{array}$$

fonction sur les entiers

$$SUCC = (\lambda n.(\lambda f.(\lambda x.(f(n f) x))))$$

$$ADD = (\lambda m.(\lambda f.(\lambda x.((m f)((n f)x)))))$$

Fonctions λ -représentables et Thèse de Church

- Fonctions λ -représentables Soit f une fonction de $N^k \to N$. f est λ -représentable par un terme F si $\forall n_1, ..., n_k \in N, ((F\overline{n_1}) ... \overline{n_k}) \to_{\beta}^* \overline{f(n_1, ..., n_k)}$
- ► Thèse de Church : Les fonctions calculables sont les fonctions λ -représentables.

Representation des données en λ -calcul

Les listes

```
\begin{array}{lll} \textit{CONS} &=& (\lambda x.(\lambda y.(\lambda f.((f \ x)y)))) \\ \textit{CAR} &=& (\lambda I.(I \ \textit{VRAI}) \\ \textit{CDR} &=& (\lambda I.(I \ \textit{FAUX})) \\ \textit{VIDE} &=& (\lambda I.VRAI) \\ \textit{VIDE?} &=& (\lambda I.(I \ (\lambda a.(\lambda d.FAUX)))) \end{array}
```

Qui vérifient :

```
(CAR ((CONS x) y)) = \beta x

(CDR ((CONS x) y)) = \beta y

(VIDE? VIDE) = \beta VRAI

(VIDE? ((CONS x) y)) = \beta FAUX
```

Récursion et points fixes

Fonction renvoyant le dernier élément d'une liste non vide

```
let rec dernier =
  function l ->match l with
    x::[] ->x
    | x::tl->dernier tl;;
```

abstraction de l'appel récursif à dernier

```
let phi = function f ->
  function l ->match l with
    x::[] ->x
    | x::tl->f tl;;
```

- On a l'égalité : dernier=phi (dernier)
- dernier est un point fixe de Phi
- ▶ Soit *M* un λ -terme existe t'il un λ -calcul *N* tq. (*M N*) = $_{\beta}$ *N*?
- ▶ Oui (*Fix* :combinateur de point fixe) $(Fix M) =_{\beta} (M (Fix M))$

Récursion et points fixes

▶ Combinateur Y (dû à Curry)

$$Y = (\lambda f.((\lambda x.(f(x x)))(\lambda x.(f(x x)))))$$

- ▶ on vérifie : $(Y M) \rightarrow_{\beta} \cdots \rightarrow_{\beta} (M (Y M))$
- ▶ Définition de la fonction dernier : (Y \(\lambda f.(\lambda I.(((SI(VIDE? (CDR I)))(CAR L))(f (CDR I)))))\)