Consider a convex quadratic constraint $(Q \succeq \mathbf{0})$:

$$
\begin{equation*}
\mathbf{x}^{\top} Q \mathbf{x}+2 \mathbf{q}^{\top} \mathbf{x}+r \leq 0 \tag{*}
\end{equation*}
$$

Here are two ways to cast it into a second order cone constraint used in SOCP.

Method 1

Write $Q=L L^{T}$ using either the eigen-decomposition or the square root one (or Cholesky). Let us consider the SOCP constraint:

$$
\left\|\begin{array}{l}
1+\underset{2 L^{\top} \mathbf{x}}{2 \mathbf{q}^{\top} \mathbf{x}}+r
\end{array}\right\|_{2}^{2} \leq\left(1-\left(2 \mathbf{q}^{\top} \mathbf{x}+r\right)\right)^{2}
$$

This SOCP inequality boils down to:

$$
\begin{aligned}
\left(2 L^{\top} \mathbf{x}\right)^{\top}\left(2 L^{\top} \mathbf{x}\right)+\left(1+\left(2 \mathbf{q}^{\top} \mathbf{x}+r\right)\right)^{2} & \leq\left(1-\left(2 \mathbf{q}^{\top} \mathbf{x}+r\right)\right)^{2} \\
4 \mathbf{x}^{\top} L L^{\top} \mathbf{x}+\left(1+\left(2 \mathbf{q}^{\top} \mathbf{x}+r\right)\right)^{2} & \leq\left(1-\left(2 \mathbf{q}^{\top} \mathbf{x}+r\right)\right)^{2} \\
4 \mathbf{x}^{\top} Q \mathbf{x}+4 \cdot\left(2 \mathbf{q}^{\top} \mathbf{x}+r\right) & \leq 0
\end{aligned}
$$

which is $(*)$.

Method 2

We still write $Q=L L^{\top}$, but we will see that we need to take L to be the square root matrix of positive definite Q, so that $L=L^{\top}$.

Let us consider the SOCP constraint:

$$
\left\|L^{T} x+L^{-1^{T}} \mathbf{q}\right\|_{2}^{2} \leq-r+\mathbf{q}^{T} Q^{-1} \mathbf{q}
$$

This SOCP inequality boils down to:

$$
\begin{array}{r}
\mathbf{x}^{\top} L L^{\top} \mathbf{x}+\mathbf{q}^{\top} \underbrace{L^{-1} L^{-1}{ }^{\top}}_{=Q^{-1} \text { iff } L=L^{\top}} q+2 \mathbf{q}^{T} \underbrace{L^{-1} L^{\top}}_{=I \text { iff } L=L^{\top}} \mathbf{x} \leq-r+\mathbf{q}^{T} Q^{-1} \mathbf{q} \\
\mathbf{x}^{T} Q x+\mathbf{q}^{T} Q^{-1} \mathbf{q}+2 \mathbf{q}^{T} \mathbf{x} \leq-r+\mathbf{q}^{T} Q^{-1} \mathbf{q}
\end{array}
$$

which is $\left(^{*}\right)$. The underbraces show that we need $L=L^{\top}$. Since we use $Q^{-} 1$, we also need Q to be strictly positive definite.

