
Math. Program., Ser. A (2017) 163:1–23
DOI 10.1007/s10107-016-1053-z

FULL LENGTH PAPER

Min–max–min robust combinatorial optimization

Christoph Buchheim1 · Jannis Kurtz1

Received: 27 January 2016 / Accepted: 2 July 2016 / Published online: 14 July 2016
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016

Abstract The idea of k-adaptability in two-stage robust optimization is to calculate
a fixed number k of second-stage policies here-and-now. After the actual scenario
is revealed, the best of these policies is selected. This idea leads to a min–max–
min problem. In this paper, we consider the case where no first stage variables exist
and propose to use this approach to solve combinatorial optimization problems with
uncertainty in the objective function. We investigate the complexity of this special
case for convex uncertainty sets. We first show that the min–max–min problem is as
easy as the underlying certain problem if k is greater than the number of variables and
if we can optimize a linear function over the uncertainty set in polynomial time. We
also provide an exact and practical oracle-based algorithm to solve the latter problem
for any underlying combinatorial problem. On the other hand, we prove that the min–
max–min problem is NP-hard for every fixed number k, even when the uncertainty set
is a polyhedron, given by an inner description. For the case that k is smaller or equal
to the number of variables, we finally propose a fast heuristic algorithm and evaluate
its performance.

A preliminary version of this paper will appear in the Proceedings of the International Network
Optimization Conference 2015 [9].

This work has partially been supported by the German Research Foundation (DFG) within the Research
Training Group 1855.

B Jannis Kurtz
jannis.kurtz@math.tu-dortmund.de

Christoph Buchheim
christoph.buchheim@math.tu-dortmund.de

1 Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-016-1053-z&domain=pdf

2 C. Buchheim, J. Kurtz

Keywords Robust optimization · k-Adaptability · Complexity

Mathematics Subject Classification 90C27 · 90C57

1 Introduction

The robust optimization approach, designed for tackling the uncertainty that is present
in the parameters of many optimization problems, was introduced by Soyster [19] in
1973 and has received increasing attention since the seminal works of Ben-Tal and
Nemirovski [3], El Ghaoui et al. [11], andKouvelis andYu [15] in the late 1990s.More
recently, the focus of research has moved to the development of new approaches that
try to avoid, or at least reduce, the so-called price of robustness [6]: since the original
robust optimization approach asks for a worst-case optimal solution, this solution can
be very conservative and hence far from optimal in the actual scenario.

In this paper, we are interested in robust counterparts of combinatorial optimization
problems of the form

min
x∈X c�x, (M)

where X ⊆ {0, 1}n contains the incidence vectors of all feasible solutions of the given
problem and the objective function vector c ∈ R

n is assumed to be uncertain. As is
common in robust optimization, we assume that a set U of objective function vectors
is given, called the uncertainty set of the problem. In the strictly robust optimization
approach [3], the aim is to find the worst-case optimal solution when taking into
account all scenarios in U . This leads to the min–max problem

min
x∈X max

(c,c0)∈U
c�x + c0 (M2)

with U ⊆ R
n+1. In general, Problem (M2) turns out to be NP-hard even for feasible

sets X for which Problem (M) is tractable, both in the case of finite or polyhedral
uncertainty sets [15] and in the case of ellipsoidal uncertainty sets [18]. This remains
true even in the special case where the constant c0 is certain, i.e., all vectors inU share
that same last entry.

As mentioned above, the main drawback of the min–max robust approach is the
price of robustness. A first method to address this problem was the so-called gamma-
uncertainty presented by Bertsimas and Sim [5], allowing to define a parameter Γ to
control the maximum number of parameters which may deviate from a given nominal
value in a constraint or in the objective function. Liebchen et al. [16] proposed the
concept of recovery robustness. Here a set of algorithmsA is given and the objective is
to find a solution x such that for every possible scenario ξ there exists an algorithm A ∈
A such that A applied to x and ξ constructs a solution which is feasible for scenario ξ .
Büsing [10] used this idea to define amodel for the shortest path problemwhich allows
to change a fixed number k of edges of a given path in a second stage. Ben-Tal et al. [2]
proposed the so-called adjustable robustness, where the set of variables is decomposed

123

Min–max–min robust combinatorial optimization 3

into here and now variables x and wait and see variables y. The objective is to find
a solution x such that for all possible scenarios there exists a y such that (x, y) is
feasible and minimizes the worst case.

Bertsimas and Caramanis [4] introduced the concept of k-adaptability. The idea is
to compute k second-stage policies here-and-now; the best of these policies is chosen
once the scenario is revealed. The authors analyze the gap between the static problem
and the k-adaptability problem and give necessary conditions under which a certain
level of improvement is achieved. Moreover, they prove that the problem is NP-hard
in its general form, and devise a bilinear formulation for the 2-adaptability problem.
The idea of k-adaptability was later used by Hanasusanto et al. [14] to approximate
two-stage robust binary programs. This leads to a min–max–min problem for which
the authors show that, if the uncertainty only occurs in the objective function, it suffices
to calculate n + 1 second-stage policies to reach the optimal value of the two-stage
problem. Still in the case of objective uncertainty and for polyhedral uncertainty sets,
the authors provide a MILP formulation to solve the problem. When the uncertainty
also occurs in the constraints, it is shown that the evaluation of the objective function
can be performed in polynomial time if the number of second-stage policies is fixed
but becomes strongly NP-hard otherwise. For this case, the authors devise a mixed-
integer bilinear program depending on a parameter ε that approximates the problem
arbitrarily well when ε tends to zero.

In this paper, we consider the k-adaptability approach in the casewhere no first stage
variables exist.Wepropose to apply it for solving combinatorial optimization problems
with uncertain objective functions, since such problems are naturallymodeled by using
only one stage. Instead of asking for a single worst-case optimal solution x ∈ X as
in (M2), we thus aim at calculating k solutions x (1), . . . , x (k) ∈ X , allowing to choose
the best of them once the actual scenario is revealed. In fact, since in our case no first-
stage variables exist, we can interpret the latter calculation as a robust preprocessing,
concerning all possible scenarios, which is done before any solution is implemented.
As a typical application for such an approach, consider a parcel service delivering
to the same customers every day. Each morning, the company needs to determine a
tour depending on the current traffic situation. However, computing an optimal tour
from scratch may take too long in a real-time setting. Instead, in our approach a set of
candidate tours is computed once and the company can choose the best one out of these
solutions every morning. Apart from yielding better solutions in general compared to
the min–max approach, this approach has the advantage that the solutions are more
easily accepted by a human user if they do not change each time but are taken from a
relatively small set of candidate solutions.

Asmentionedbefore, the k-adaptability approach leads to amin–max–minproblem.
In our case, the latter is of the form

min
x (1),...,x (k)∈X

max
(c,c0)∈U

min
i=1,...,k

c�x (i) + c0. (M3)

The main objective of this paper is to determine the computational complexity of
Problem (M3) for convex uncertainty sets U , which among others include polyhedral
or ellipsoidal uncertainty sets. The complexity of course depends on the underlying

123

4 C. Buchheim, J. Kurtz

set X or, more precisely, on the complexity of the corresponding certain problem (M).
We will assume throughout that the set X is given implicitly by a linear optimization
oracle for the certain problem (M).

Ourmain result is that Problem (M3) is as easy as the underlying certain problem (M)
if we can optimize a linear function overU in polynomial time and if k ≥ n + 1. This
is in contrast to the NP-hardness of the more general problems studied in [14]. Note
that for k = n + 1 the selection of the best solution out of the candidate set can be
performed in O(n2) time once the scenario is revealed, independently of the feasible
set X . To solve Problem (M3) for k ≥ n + 1, we provide an oracle-based algorithm
that is applicable for any underlying combinatorial structure X , where the uncertainty
set U can be specified by any linear optimization oracle. The second main result of
this paper is that Problem (M3) is NP-hard if the number of solutions k is fixed. As a
corollary, it follows that themore general two-stage problem studied in [14] isNP-hard,
which has not been proved yet. We also propose and evaluate a heuristic algorithm for
Problem (M3) for the case k < n+1 based on the algorithm for k = n+1, which turns
out to yield good solutions in very short running times in our numerical experiments.

2 Preliminaries

In the next section, we will show that Problem (M3) becomes as easy as the underlying
certain optimization problem as soon as k ≥ n + 1. The first step in the proof is the
following reformulation, which follows from the proof of Theorem 1 in [14] by a
straightforward generalization.

Lemma 1 Let U ⊆ R
n+1 be a non-empty convex set. Then

min
x (1),...,x (k)∈X

max
(c,c0)∈U

min
i=1,...,k

c�x (i) + c0 = min
x∈X (k)

max
(c,c0)∈U

c�x + c0

where

X (k) :=
{

k∑
i=1

λi x
(i) | λi ≥ 0,

k∑
i=1

λi = 1, x (i) ∈ X for i = 1, . . . , k

}

is the set of all convex combinations of k elements of X.

In the following, we will thus consider the problem

min
x∈X (k)

max
(c,c0)∈U

c�x + c0 (1)

in order to solve Problem (M3). From Lemma 1 and Carathéodory’s theorem, we
immediately obtain

Corollary 1 For k ≥ n + 1 and for each non-empty convex set U we have

min
x (1),...,x (k)∈X

max
(c,c0)∈U

min
i=1,...,k

c�x (i) + c0 = min
x∈conv(X)

max
(c,c0)∈U

c�x + c0.

123

Min–max–min robust combinatorial optimization 5

In the special case where no uncertain constant c0 is considered, the objective func-
tion maxc∈U c�x is linear on any line through the origin. Therefore its optimum is
obtained over the boundary of conv (X). Since the latter agrees with the boundary
of X (n), we obtain the latter result for all k ≥ n then.

Corollary 1 implies that considering more than n + 1 solutions will not lead to any
further improvement in the objective value of Problem (M3), which was also shown in
[14]. On the other hand, k = n+ 1 is a reasonable choice for the proposed application
of our approach, namely to compute k alternative solutions in a preprocessing step
and then to choose the best one out of these solutions every time a new scenario
occurs. For k = n + 1, the latter task can be performed in O(n2) time, as it reduces to
computing the objective values of all n + 1 solutions.

Example 1 Using Lemma 1, we give an example showing that the difference between
the optimal values of (M2) and (M3) can be arbitrarily large. Consider the shortest
path problem on the graph G = (V, A) with V = {s, t} and two edges A = {a1, a2}
both leading from s to t :

s t

a1

a2

Let an ellipsoidal uncertainty set Uα = {
c ∈ R

2 | c�Σαc ≤ 1
}
be given, with

positive definite matrix

Σα =
(
4 + 1

α
2 − 2

α

2 − 2
α

1 + 4
α

)
= 9(x∗)(x∗)� + 1

α
vv�

for α ≥ 1, where x∗ = (23 ,
1
3)

� and v = (−1, 2)�. The corresponding ellipsoid is
given as follows:

x1

x2

x∗

v

Increasingα leads to a scaling of the ellipsoid in direction of v. The optimal solution
of (M2) is the path a1 with value 1

5

√
4 + α, which can be arbitrarily large if we increase

α. On contrary, to solve Problem (M3) for k = 2 we can use reformulation (1), then

123

6 C. Buchheim, J. Kurtz

x∗ = 2
3a1 + 1

3a2 ∈ X (2)

is a feasible solution with an objective value of 1
3 , independently of α.

In the following, we investigate the solution of Problem (M3) for k = n+ 1. Based
on Corollary 1, we propose the following two-stage approach: in the first step, we
calculate an optimal solution x∗ of the continuous problem

min
x∈conv(X)

max
(c,c0)∈U

c�x + c0. (2)

This step depends on the uncertainty set U and the underlying feasible set X . In
the second step, we calculate a corresponding set of solutions x (1), . . . , x (n+1) of
Problem (M3). The next result, following directly from Theorem 6.5.11 in [13], shows
that the second step can be performed in polynomial time if the underlying certain
problem can be solved in polynomial time.

Lemma 2 Assume we are given an optimization oracle for the certain problem

c 	→ min
x∈X c�x .

If x∗ ∈ conv (X) is rational, then, in polynomial time, we can compute affinely inde-
pendent vectors x (1), . . . , x (m) ∈ X and rational coefficients λ1, . . . , λm ≥ 0 with∑m

i=1 λi = 1 such that x∗ =∑m
i=1 λi x (i) and m ≤ n + 1.

Note that the algorithm given in [13], which is used in the latter lemma, computes a
convex combination with the smallest possible m. The remaining task in the case k =
n + 1 is thus to solve (2). In the following section, we investigate the complexity of
the latter problem. For this, we use two further important results from [13], which we
report here for convenience of the reader.

First note that for general convex sets the famous equivalence between optimization
and separation does not hold in the strong sense. Instead, we have to take into account
irrational values and therefore need a parameter ε > 0 which determines the accuracy
of calculations. For an arbitrary convex set K we define

Bε(K) = {x ∈ R
n | ‖x − y‖ ≤ ε for some y ∈ K }

and

B−ε(K) = {x ∈ K | Bε(x) ⊆ K },

so that B−ε(K) ⊂ K ⊂ Bε(K). Then a full-dimensional compact convex set K
is called centered convex body if the following information is explicitly given: the
integer n such that K ⊆ R

n , a positive R ∈ Q such that K ⊆ BR(0), and some r ∈ Q

and a0 ∈ Q
n such that Br (a0) ⊆ K . We then write K (n, R, r, a0) and define the

encoding length of K as the sum of the encoding lengths of R, r , and a0.

123

Min–max–min robust combinatorial optimization 7

Theorem 1 [13] Let ε > 0 be a rational number, K (n, R, r, a0) a centered convex
body given by a weak membership oracle and f : Rn → R a convex function given
by an oracle which returns for every x ∈ Q

n and δ > 0 a rational number t such that
| f (x)− t | ≤ δ. Then there exists an oracle-polynomial time algorithm in the encoding
length of K and log ε that returns a vector y ∈ Bε(K) such that f (y) ≤ f (x) + ε for
all x ∈ B−ε(K).

A weak membership oracle for K has to assert, for any given point y ∈ Q
n and

any rational value ε > 0, either that y ∈ Bε(K) or that y /∈ B−ε(K). Note that by
definition at least one of the two assertions is true.

The problem solved in Theorem 1 can be seen as finding a vector almost in K which
almost maximizes the objective function over all vectors which are deep in K . Since
we ultimately want to find an almost optimal vector contained in K , we have to round
the solution given by Theorem 1. This can be done in polynomial time in the cases we
are interested in, as stated by the following result.

Lemma 3 [13] Let P ⊆ R
n be a polyhedron such that each facet has encoding length

at most ϕ ∈ N and let v ∈ B2−6nϕ (P). Then we can calculate q ∈ Zwith 0 < q < 24nϕ

and a vector w ∈ Z
n in polynomial time such that

‖qv − w‖ < 2−3ϕ

and such that 1
qw is contained in P.

3 Complexity for k ≥ n + 1

The min–max problem (M2) is well-known to be NP-hard for most classical combi-
natorial optimization problems when U is a general polytope, an ellipsoid, or a finite
set, e.g., for the shortest path problem, the minimum spanning tree problem, or even
in the unconstrained case with X = {0, 1}n . Only few cases are known where (M2)
remains tractable (without uncertain constant), e.g., if U is an axis-parallel ellipsoid
and X = {0, 1}n [1], if X corresponds to a matroid [17] or if U is a budgeted uncer-
tainty set [5]. In particular, the min–max–min problem (M3) is NP-hard in general
for k = 1 for ellipsoidal, polyhedral and finite uncertainty.

In contrast to this, we show that Problem (M3) is solvable in polynomial time
for both polyhedral and ellipsoidal uncertainty sets whenever the underlying certain
problem is solvable in polynomial time and k ≥ n + 1. This result holds even if U is
an arbitrary non-empty convex set provided that we can optimize any linear function
overU in polynomial time.Wewill first consider the (easier) case of polyhedral setsU
in Sect. 3.1 before dealing with the general case in Sect. 3.2.

3.1 Polyhedral uncertainty

In the case of a non-empty polyhedral uncertainty set U , we can show that Prob-
lem (M3) is tractable as soon as the underlying certain problem is tractable and k ≥
n + 1. More precisely, we have

123

8 C. Buchheim, J. Kurtz

Theorem 2 Let k ≥ n + 1. Given an optimization oracle for the problem

c 	→ min
x∈X c�x,

for any polyhedron U = {(c, c0) ∈ R
n+1 | A(c, c0)� ≤ b} with A and b rational we

can solve (M3) in polynomial time in the encoding length of (n, A, b).

Proof Let A(c, c0) = Āc+ c0a. Then, using Corollary 1, Problem (M3) is equivalent
to

min
x∈conv(X)

max {c�x + c0 | Āc + c0a ≤ b, c ∈ R
n, c0 ∈ R}. (3)

Replacing the inner linear program by its dual, we obtain

min
x∈P

b�y (4)

with

P := {(x, y) ∈ R
n × R

m | x ∈ conv (X) , y� Ā = x, y�a = 1, y ≥ 0}.

Now using the famous Theorem 6.4.9 in [13], for solving Problem (4) in polynomial
time it suffices to devise a polynomial-time algorithm for the strong separation problem
for P . By the same theorem and since

min
x∈X c�x = min

x∈conv(X)
c�x,

the separation problem for conv (X) can be solved in polynomial time using the given
oracle. On the other hand, the set

Q := {(x, y) ∈ R
n × R

m | y� Ā = x, y�a = 1, y ≥ 0}

is a rational polyhedron and every point (x, y) can be separated by checking whether
all equations are satisfied. The combination of both algorithms thus yields a separa-
tion algorithm for P and hence a polynomial-time algorithm for solving (3). As the
computed optimal solution x∗ is rational, the result follows from Lemma 2.
�

3.2 General convex uncertainty

In the following, we assume that U is a non-empty convex set for which we have
a weak optimization oracle, i.e., that for given x ∈ Q

n and rational ε > 0 we can
compute in polynomial time a vector (c, c0) ∈ U ∩ Q

n+1 with

c�x + c0 ≥ d�x + d0 − ε for all (d, d0) ∈ U.

123

Min–max–min robust combinatorial optimization 9

Moreover, we assume that U is bounded by a constant M , i.e., that

‖(c, c0)‖ ≤ M for all (c, c0) ∈ U.

Note that our assumptions hold for polytopal uncertainty sets, but also for the important
case of ellipsoidal uncertainty: if

U =
{
(c, c0) ∈ R

n+1 |
((

c
c0

)
− c̄
)�

Σ−1
((

c
c0

)
− c̄
)

≤ 1
}
,

with c̄ ∈ Q
n+1 denoting the center of the ellipsoid and Σ ∈ Q

(n+1)×(n+1) being a
positive definite symmetric matrix, we have

max
(c,c0)∈U

c�x + c0 = c̄�(x
1

)
+
√(

x
1

)�
Σ
(
x
1

)

for all x ∈ Q
n , and M can be chosen as ‖c̄‖ + λmin(Σ)−1 with λmin(Σ) being the

minimal eigenvalue of Σ .

Theorem 3 Let conv (X) be full-dimensional, ε ∈ (0, 1) ∩Q, and U as above. Given
an optimization oracle for the certain problem

c 	→ min
x∈X c�x,

we can solve Problem (M3) up to an accuracy of at most ε in time polynomial in
(n, logM, log ε) if k ≥ n + 1.

Before we prove the latter theorem, we need to show two technical lemmas.

Lemma 4 Let f : Rn → R be defined by f (x) := max(c,c0)∈U c�x + c0 where U is
a convex set bounded by M. If x, y ∈ R

n with ‖x − y‖ ≤ ε then

f (x) − f (y) ≤ Mε.

Proof Let x, y ∈ R
n with ‖x − y‖ ≤ ε. From c�x + c0 = c�(x − y) + c�y + c0 we

obtain

max
(c,c0)∈U

c�x + c0 ≤ max
(c,c0)∈U

c�(x − y) + max
(c,c0)∈U

c�y + c0

and thus
f (x) − f (y) ≤ max

(c,c0)∈U
‖c‖‖x − y‖ ≤ Mε

by the Cauchy–Schwarz inequality.
�
The following lemma states that if we can optimize over all elements deep in a convex
set K with an arbitrary accuracy then we can optimize over all elements in K with an
arbitrary accuracy.

123

10 C. Buchheim, J. Kurtz

Lemma 5 Let f and U be as in Lemma 4. Let K be any convex set for which we
know a radius R > 0 with K ⊆ BR(0) and for which we know that K contains a
ball with radius r . Additionally, let 0 < ε < r and x∗ ∈ Bε (K) such that for all
y ∈ B−ε (K)

f (x∗) ≤ f (y) + ε.

Then for all y ∈ K

f (x∗) ≤ f (y) + ε
(
1 + 2R

r M
)
.

Proof Formula (0.1.14) in [13] states that

K ⊆ B2Rε
r

(B−ε (K))

for all 0 < ε < r . Hence for all y ∈ K there exists some zy ∈ B−ε (K) such
that ‖zy − y‖ ≤ 2R

r ε. From Lemma 4 we obtain

f (zy) − f (y) ≤ M 2R
r ε.

By our assumption on x∗, we derive

f (x∗) ≤ f (zy) + ε ≤ f (y) + ε
(
1 + 2R

r M
)
.

which proves the result.
�
Proof (of Theorem 3) By Corollary 1 we have

min
x (1),...,x (k)∈X

max
(c,c0)∈U

min
i=1,...,k

c�x (i) + c0 = min
x∈conv(X)

max
(c,c0)∈U

c�x + c0.

Again define f (x) := max(c,c0)∈U c�x + c0 and note that f is a convex function, as
it is defined as the maximum of affine–linear functions. The basic idea of the proof
is to use Theorem 1 to calculate a near-optimal point x∗ ∈ Bε′(conv (X)), for an
appropriately defined ε′, and to use Lemma 3 to round x∗ to a point in conv (X)which
is optimal up to the given ε. As X ⊆ {0, 1}n and conv (X) is full-dimensional, we
have

Br (x0) ⊆ conv (X) ⊆ BR (0)

for an appropriate rational center point x0 ∈ conv (X) and radii r and R that are
polynomial in n. Hence conv (X) satisfies all assumptions of Theorem 1. All vertices
of conv (X) have encoding length at most n and therefore all facets have encoding
length at most 3n3 by Lemma 6.2.4 in [13]. Choose ϕ ≥ 3n3 such that 2−3ϕ ≤ ε

2M ,
then also

123

Min–max–min robust combinatorial optimization 11

ε′ := min

{
ε
2

1 + 2R
r M

, 2−6nϕ

}

has encoding length polynomial in (n, logM, log ε) if ϕ is chosen polynomial
in (logM, log ε). Using the optimization oraclewe can separate fromconv (X) in poly-
nomial time and in particular solve the weakmembership problem in polynomial time.
By Theorem 1 we can compute a rational x∗ ∈ Bε′(conv (X))with f (x∗) ≤ f (y)+ε′
for all y ∈ B−ε′(conv (X)), in time polynomial in the binary encoding length of n and
ε′. We may assume M ≥ 1, then ε′ < r so that Lemma 5 can be applied. Hence

f (x∗) ≤ f (y) + ε′(1 + 2R
r M) ≤ f (y) + ε

2

for all y ∈ conv (X). Since the solution x∗ is not necessarily contained in conv (X),
we apply Lemma 3 to round x∗. For ϕ chosen as above and v := x∗, by Lemma 3
we can calculate q ∈ Z and w ∈ Z

n with ‖qx∗ − w‖ < 2−3ϕ , in polynomial time in
the input. Since x∗ ∈ Bε′ (conv (X)) ⊆ B2−6nϕ (conv (X)), from the latter lemma it
follows that x ′ := 1

qw is contained in conv (X). Moreover

‖x∗ − x ′‖ = 1
q ‖qx∗ − w‖ < 1

q 2
−3ϕ.

By the choice of ϕ above, we obtain ‖x∗ − x ′‖ < ε
2M and therefore by Lemma 4 we

have f (x ′) − f (x∗) ≤ ε
2 . By the calculations above we obtain

f (x ′) ≤ ε

2
+ f (x∗) ≤ f (y) + ε

for all y ∈ conv (X). Now by Lemma 2 we can calculate, in polynomial time,
solutions x (1), . . . , x (n+1) ∈ X with x ′ = ∑n+1

i=1 λi x (i) for appropriate λ ≥ 0
with

∑n+1
i=1 λi = 1. Then x (1), . . . , x (n+1) is the desired approximate solution of

Problem (M3).
�
Note that the condition that conv (X) must be full-dimensional is only technical (see
Section 6.1.2 in [13]). We can achieve a separation algorithm for lower dimensional
sets by the following idea: if conv (X) is (n − 1)-dimensional, then we can calculate
the hyperplane in R

n which contains conv (X) in polynomial time by [12]. But then
every point which is not contained in this hyperplane can be separated using the
hyperplane itself. So the problem is reduced to the full-dimensional separation problem
in dimension n−1which is equivalent to the optimization problem in dimension n−1.

4 Practical algorithm for k ≥ n + 1

The algorithm underlying Theorem 3 makes heavy use of the ellipsoid method and
is thus not practical. In this section, we propose a variant of this algorithm that does
not provably run in polynomial time, but works well in practice. It is based on the
idea of column generation and uses two oracles: one for linear optimization over U

123

12 C. Buchheim, J. Kurtz

and one for solving the certain problem (M). Except for these oracles, the algorithm is
independent of the considered type of uncertaintyU and of the underlying combinato-
rial structure X . In particular, we can use any combinatorial algorithm for solving the
certain problem (M); no polyhedral description of conv (X) is needed. This approach
can be seen as an application of the algorithm presented in [8] to the dual problem
of (2).

The algorithm is stated below. It does not only return the optimal solution
set {x (1), . . . , x (n)} of Problem (M3), but also computes the optimal solution x∗
of Problem (2) as well as the coefficients defining x∗ as a convex combination
of x (1), . . . , x (n). The latter are used in Sect. 6 below when defining a heuristic algo-
rithm for the case k ≤ n.

Algorithm 1 Algorithm to solve Problem (M3) for k ≥ n + 1
Input: U , X
Output: optimal solution of Problem (M3) (and Problem 2)
1: i := 0
2: repeat
3: calculate optimal solution (z∗, (c∗, c∗0)) of

max {z | c� x̄ j + c0 ≥ z ∀ j = 1, . . . , i, z ∈ R, (c, c0) ∈ U }
4: calculate optimal solution x̄i+1 of

min {(c∗)�x + c∗0 | x ∈ X}
5: i := i + 1
6: until (c∗)� x̄i + c∗0 ≥ z∗
7: calculate a basic feasible solution of the linear system

z∗ − c∗0 =∑i
j=1 λ j (c

∗)� x̄ j ,
∑i

j=1 λ j = 1, λ ≥ 0

8: X∗ := {x̄ j | λ j > 0, j = 1, . . . , i}
9: return X∗ and x∗ :=∑i

j=1 λ j x̄ j

Theorem 4 Algorithm 1 is correct and terminates in finite time.

Proof First note that, for every subset X ′ ⊆ X , we have

min
x∈conv(X ′)

max
(c,c0)∈U

c�x + c0 = max
(c,c0)∈U

min
x∈conv(X ′)

c�x + c0

= max
(c,c0)∈U

{z | z ≤ c�x + c0 ∀x ∈ conv
(
X ′)}

= max
(c,c0)∈U

{z | z ≤ c�x + c0 ∀x ∈ X ′}

by the classical min–max theorem. To prove correctness of Algorithm 1, note
that (c∗)�x + c∗

0 ≥ z∗ holds for all x ∈ X after termination of the loop. Hence

max
(c,c0)∈U

{z | z ≤ c� x̄ j + c0 ∀ j = 1, . . . , i} = max
(c,c0)∈U

{z | z ≤ c�x + c0 ∀x ∈ X}

123

Min–max–min robust combinatorial optimization 13

and therefore, by the equivalence above, an appropriate convex combination of the
calculated solutions x̄ j yields an optimal solution of Problem (2). Note that the convex
combination of x∗ calculated in Step 7 has the same objective value z∗ and uses at
most n + 1 solutions x̄ j . Finite running time follows directly from the finiteness of X .

�
Algorithm 1 does not run in polynomial time in general. However, in the following

we give some evidence that it performs very well in practice. To solve problem (M3),
we implemented Algorithm 1 for the knapsack problem

X := {x ∈ {0, 1}n | a�x ≤ b}

with ellipsoidal uncertainty for the profits and certain constant, i.e., for

U :=
{
(c, 0) ∈ R

n+1 | (c − c̄)�Σ−1(c − c̄) ≤ Ω2
}

,

where Σ ∈ R
n×n is a symmetric positive semidefinite matrix and Ω ∈ N. Prob-

lem (M3) for k ≥ n is then equivalent to

min
x∈conv(X)

c̄�x + Ω
√
x�Σx .

For our experiments, we created instances similar to those used in [7]: for any n ∈
{250, 500, 750} we created 10 random knapsack instances together with 10 ran-
dom ellipsoids. The weights ai were chosen randomly from the set {100, . . . , 1500}
and b was set to 100n. The ellipsoid center c̄ was chosen randomly with c̄i ∈
{10,000, . . . , 15,000}. The extreme rays of the ellipsoid were calculated as random
orthonormal baseswhere the length of the rayswere chosen randomly as

√
δ j c j , where

δ j is a random number in [0, 1]. Note that the resulting ellipsoids are not axis-parallel
in general. For any instance, we scaled the ellipsoid by varying the parameterΩ from 1
to 5. Additionally, to compare our algorithm to theMILP formulation given in [14], we
implemented our algorithm for the knapsack problem with gamma-uncertainty sets

UΓ :=
{

(c, 0) ∈ R
n+1 | ci = c̄i + δi di ,

n∑
i=1

δi ≤ Γ

}
,

where Γ is a given parameter. Again we created 10 random knapsack instances as
above, each equipped with a gamma-uncertainty set. As in [18], the mean vector c̄
was chosen randomly with c̄i ∈ {10,000, . . . , 15,000}, and di was set to 0.1c̄i for
all i = 1, . . . , n. Each instance has been solved for all values of Γ from the set
{0.05n, 0.1n, 0.15n, 0.25n, 0.5n}, rounded down if fractional.

Concerning the oracles for Algorithm 1, we used CPLEX 12.5 to solve the second-
order cone program in Step 3 for ellipsoidal uncertainty and the linear program for
gamma-uncertainty. For solving the knapsack problem in Step 4 we used the classical
dynamic programming algorithm.

123

14 C. Buchheim, J. Kurtz

Table 1 Results for the
knapsack problem with
ellipsoidal uncertainty

n Ω diff |X∗| iter tdual tcomb ttot

250 1 6.3 7.2 9.8 1.1 0.7 2.5

2 12.4 19.7 27.2 3.7 1.9 6.3

3 18.3 44.4 54.8 8.3 3.9 13.0

4 23.9 77.9 89.4 14.8 6.3 22.0

5 29.2 135.5 154.5 29.8 11.0 41.7

500 1 4.5 10.5 13.9 9.5 3.9 18.5

2 8.9 26.5 33.8 25.9 9.6 41.2

3 13.2 72.4 79.1 67.1 22.4 94.5

4 17.4 123.4 134.7 120.8 38.2 165.1

5 21.5 147.3 194.9 182.5 55.3 243.1

750 1 3.6 14.9 19.1 42.6 12.4 69.8

2 7.2 48.7 54.8 139.4 35.3 188.6

3 10.7 142.1 146.3 383.6 93.1 493.2

4 14.2 163.2 168.8 457.3 107.5 581.4

5 17.5 243.0 252.0 808.8 160.7 986.8

Table 2 Results for the
knapsack problem with
gamma-uncertainty

n Γ diff |X∗| iter tdual tcomb ttot

250 12 1.8 1.8 3.0 0.00 0.2 0.3

25 3.6 3.0 4.6 0.00 0.3 0.4

37 5.2 4.0 5.9 0.00 0.4 0.5

62 8.2 8.9 14.7 0.00 1.0 1.1

125 10.0 1.0 8.2 0.00 0.6 0.7

500 25 1.8 5.5 10.6 0.00 3.0 3.3

50 3.6 9.3 21.1 0.00 5.9 6.3

75 5.2 12.6 30.0 0.01 8.5 8.9

125 8.2 18.5 50.7 0.02 14.3 14.7

250 10.0 1.0 9.8 0.00 2.7 3.1

750 37 1.8 5.4 9.9 0.00 6.3 7.0

75 3.6 10.1 28.5 0.01 18.0 18.9

112 5.3 14.4 40.8 0.02 25.9 26.7

187 8.3 25.2 82.3 0.07 52.5 53.5

375 10.0 1.0 7.2 0.00 4.6 5.3

Results are listed in Tables 1 and 2. For each combination of n and Ω or n and Γ ,
respectively, we show the average over all 10 instances of the following numbers
(from left to right): the difference (in percent) of the objective value of Problem (M3)
to the value of the certain problem with the ellipsoid center c̄ or the mean vector c̄,
respectively, as cost function; the number of solutions in the computed set X∗; the
number of major iterations; the running times used by the two oracles (tdual for linear

123

Min–max–min robust combinatorial optimization 15

item i
20 40 60 80 100 120 140 160 180 200 220 240 260

20
40
60
80

100
120
140
160
180
200
220

Fig. 1 One instance for the knapsack problem in dimension 250. The number of calculated solutions is
214; the y-axis shows the number of solutions in which an item i is selected

optimization overU and tcomb for solving the certain combinatorial problem (M)); and
the total running time. All times are given in CPU seconds, on an Intel Xeon processor
running at 2.5GHz.

For ellipsoidal uncertainty the results show that running times increase with Ω and
(of course) n. However, even the hardest instances with n = 750 and Ω = 5 could be
solved within 16.5min on average. Interestingly, the number of solutions needed in
order to solve Problem (M3) to optimality usually remains well below n, in particular
for small uncertainty sets. The oracle for linear optimization overU takes most of the
running time.

For gamma-uncertainty, the results are even more positive, with much shorter run-
ning times, less iterations, and significantly smaller solution sets X∗. Contrarily to the
computations with ellipsoidal uncertainty, here the combinatorial oracle takes most of
the total running time, while the dual oracle runs less than a tenth of a second for all
instance sizes. For comparison, we also performed experiments using the approach
of [14]. It turned out however that CPLEX was not able to solve the corresponding
MILP formulations within hours even for n = 20.

To obtain some insight into the typical structure of an optimal solution computed
by Algorithm 1, we picked one instance with ellipsoidal uncertainty and counted in
how many of the computed solutions a given object is used. The result is shown in
Fig. 1, where objects are sorted (from left to right) by the number of appearances. It
turns out that more than half of the objects are never used, about one fifth is used in
every computed solution, while only the remaining objects are used in a non-empty
proper subset of the solutions. Similar pictures are obtained when considering other
instances.

5 NP-hardness for fixed k

For k = 1, Problem (M3) agrees with Problem (M2) and is thus NP-hard for many
classes of uncertainty sets, even if the underlying certain problem is tractable. As a
consequence, Problem (M3) is NP-hard in the same cases as soon as k is considered

123

16 C. Buchheim, J. Kurtz

part of the input. In the following, we show that Problem (M3) remains NP-hard for
any fixed number of solutions k ∈ N, even in the special case that U is a polyhedron
(given by an inner description) and X = {0, 1}n . To this end, for fixed k ∈ N, we
consider the problem

min
x∈{0,1}n(k) max

(c,c0)∈U
c�x + c0, (M3[k])

where the input consists of vectors v1, . . . , vr , w1, . . . , ws ∈ R
n+1 such that

U = conv (v1, . . . , vr) + cone (w1, . . . , ws) .

We use the following technical result.

Lemma 6 Let Y ⊆ R
n. Then the problem

min
x∈Y, Ax≤b

max
(c,c0)∈U

c�x + c0 (5)

with U = conv (v1, . . . , vr) + cone (w1, . . . , ws) is equivalent to the problem

min
x∈Y max

(c,c0)∈V
c�x + c0 (6)

with V = conv (v1, . . . , vr) + cone
(
w1, . . . , ws, (a1,−b1)�, . . . , (am,−bm)�

)
.

Proof Given an instance of Problem (5), let x be any solution of Problem (6). If
x /∈ P := {x ∈ R

n | Ax ≤ b}, we derive max(c,c0)∈V c�x + c0 = ∞ by construction
of V . On the other hand, for any x ∈ P and for any scenario

(c, c0) = v +
s∑

i=1

μiwi +
m∑
i=1

λi (ai ,−bi) ∈ V

where λi , μi ≥ 0 and v ∈ conv (v1, . . . , vr), the objective value is

c�x + c0 = v�x +
s∑

i=1

μiw
�
i x +

m∑
i=1

λi

(
a�
i x − bi

)
≤ v�x +

s∑
i=1

μiw
�
i x .

Therefore the worst case scenario is obtained in U , which proves the result.
�
In other words, we can add linear constraints to the feasible set Y without increasing

the complexity of the problem, as the latter can be embedded into the uncertainty setU .

Corollary 2 Problem (M
3
[1]) is NP-hard.

Proof Using Lemma 6 applied to Y = {0, 1}n , we can easilymodel, e.g., the determin-

istic knapsack problem in the form of Problem (M
3
[1]) with a polyhedral uncertainty

set.
�

123

Min–max–min robust combinatorial optimization 17

Theorem 5 For any k ∈ N, Problem (M3[k]) can be polynomially reduced to Prob-

lem (M
3
[k + 1]).

Proof The idea of the proof is to reduce minimization over {0, 1}n(k) to minimization
over {0, 1}n+1(k + 1) using Lemma 6 again. To this end, first note that the encoding
length of any convex hull of up to k + 1 vectors in {0, 1}n+1 is at most (k + 1)(n + 1).
Using Lemma 6.2.4 and Lemma 6.2.7 in [13], it follows that every such convex hull
either contains the center point c̄ := 1

21 ∈ R
n+1, or the Euclidean distance between c̄

and this convex hull is at least 2−6(k+1)(n+1)3−1. In particular, switching to the max-
norm and setting

d := 1
n+12

−6(k+1)(n+1)3−1,

we derive that any convex combination of k + 1 points in {0, 1}n+1 either contains c̄
or does not intersect the box

B := [c̄ − 1
2d1, c̄ + 1

2d1
] ∩ {x ∈ R

n+1 | xn+1 = 1
2 − 1

2d
}

.

Observe that the encoding length of d is polynomial in n. We now claim that the affine
function f (x) = (1− 1

d)c̄+ 1
d x induces a bijection between the two sets {0, 1}n+1(k+

1) ∩ B and {0, 1}n(k) × {0}.
To prove our claim, let x∗ ∈ {0, 1}n+1(k+1)∩ B with x∗ =∑k+1

i=1 λi x (i). As x∗ ∈
B, we obtain (f (x∗))n+1 = 0. Moreover, by the observations above, the center point
c̄ is contained in conv

(
x (1), . . . , x (k+1)

)
, let c̄ =∑k+1

i=1 μi x (i). Then

f (x∗) = (1 − 1
d)c̄ + 1

d x
∗ =

k+1∑
i=1

(
(1 − 1

d)μi + 1
d λi
)
x (i). (7)

Since x∗
n+1 > 0, there must exist some i with (x (i))n+1 = 1. As (f (x∗))n+1 = 0, we

derive (1 − 1
d)μi + 1

d λi = 0 from (7). Now (7) implies f (x∗) ∈ {0, 1}n+1(k) and
therefore f (x∗) ∈ {0, 1}n(k) × {0}.

To show the other direction, consider any y∗ ∈ {0, 1}n+1(k) with y∗
n+1 = 0.

Writing y∗ =∑k
i=1 νi x (i), we have

f −1(y∗) = −(d − 1)c̄ + dy∗

= (12 − 1
2d
)

1 + d
k∑

i=1

νi x
(i)

= (12 − 1
2d
) (

x (1) + x̄ (1)
)

+ d
k∑

i=1

νi x
(i)

123

18 C. Buchheim, J. Kurtz

where x̄ (1) denotes the complement vector of x (1), defined by x̄ (1)
i = 1 − x (1)

i
for all i . This is a convex combination of the binary vectors x (1), . . . , x (k), x̄ (1),
hence f −1(y∗) ∈ {0, 1}n+1(k + 1). It is easy to verify that f −1(y∗) ∈ B.

To conclude the proof, we have

min
x∈{0,1}n(k) max

(c,c0)∈U
c0 + c�x = min

x∈B∩{0,1}n+1(k+1)
max

(c,c0)∈U
c0 + c� f (x)

= min
x∈B∩{0,1}n+1(k+1)

max
(c′,c′

0)∈U ′
c′
0 + (c′)�x

where U ′ is the image of U under the linear map

(c, c0) 	→
(
1
d c, c0 + (1 − 1

d

)
c�c̄
)

.

Together with Lemma 6, modeling the box B by linear inequalities, this proves the
result.
�
By induction, the preceding two results imply

Corollary 3 Problem (M3) is NP-hard for any fixed k ∈ N, even if U is a polyhedron
given by an inner description and X = {0, 1}n.
The special case of Problem (M3) considered in Corollary 3 is probably the
most elementary one possible: both the certain combinatorial optimization problem
over X = {0, 1}n and the linear optimization problem over any uncertainty set given
as conv (v1, . . . , vr) + cone (w1, . . . , ws) can be trivially solved in polynomial time.
Yet the min–max–min problem turns out to be NP-hard for any fixed k even in this
case.

6 Heuristic algorithm for k < n + 1

As shown in the previous section, Problem (M3) is NP-hard for fixed k even if the
underlying certain problem can be solved in polynomial time. Nevertheless, the case
of fixed (or small) k can be important for practical applications, since a set of n + 1
solutions may be too large to be provided to—or accepted by—a human user. The
idea of Theorem 3 can be used to design an efficient heuristic algorithm for the case of
general k. The idea is to calculate an optimal solution {x (1), . . . , x (n+1)} for k = n+1
and then keep only those k solutions with the largest coefficients λi ; see Algorithm 2.
This heuristic is motivated by the observation that in our experiments we often find
optimal solutions affinely spanned by significantly less than n + 1 solutions, as was
shown also in Tables 1 and 2.

Theorem 6 Let k ∈ {1, . . . , n} and ε ∈ (0, 1). Let conv (X) be full-dimensional
and U as in Sect. 3.2. Given an optimization oracle for the certain problem

c 	→ min
x∈X c�x,

123

Min–max–min robust combinatorial optimization 19

Algorithm 2 Heuristic algorithm for Problem (M3) for k < n + 1
Input: U , X , integer k with 1 ≤ k < n + 1, ε ∈ (0, 1)
Output: feasible solution of Problem (M3)
1: calculate an optimal solution x∗ of (1) for k = n + 1 up to accuracy ε, using Theorem 3
2: calculate x(1), . . . , x(n+1) ∈ X , λ1, . . . , λn+1 ≥ 0 with

∑n+1
i=1 λi = 1, x∗ = ∑n+1

i=1 λi x
(i), using

Lemma 2
3: sort the λi in decreasing order λi1 ≥ . . . ≥ λin+1

4: return {x(i1), . . . , x(ik)}

Algorithm 2 calculates in polynomial time a solution of Problem (M3) with an additive

error of at most M
√
n(n+1−k)
k+1 + ε.

Proof By Theorem 3, Algorithm 2 has polynomial running time under the given
assumptions. Let xk ∈ X (k) be an optimal solution for Problem (1) and define

xa :=
k−1∑
j=1

λi j x
(i j) +

⎛
⎝n+1∑

j=k

λi j

⎞
⎠ x (ik) ∈ X (k).

Since X (k) ⊆ X (n + 1) and by the optimality of x∗, we have

max
(c,c0)∈U

c�xa + c0 − max
c∈U c�xk + c0 ≤ max

(c,c0)∈U
c�xa + c0 − max

(c,c0)∈U
c�x∗ + c0

≤ max
c∈U ‖c‖‖xa − x∗‖

≤ M
∥∥∥ n+1∑

j=k+1

λi j (x
(ik) − x (i j))

∥∥∥.
By the decreasing order of λi j , we have λi j ≤ 1

j . Additionally, as X ⊆ {0, 1}n , we
know ‖x (ik) − x (i j)‖ ≤ √

n. Therefore

∥∥∥ n+1∑
j=k+1

λi j (x
(ik) − x (i j))

∥∥∥ ≤ √
n

n+1∑
j=k+1

1

j
≤ √

n
n + 1 − k

k + 1
.

This implies the result.
�
For fixed U and n, the error bound given in Theorem 6 is strictly monotonously
decreasing with growing k ≤ n + 1. For k = n + 1, it coincides with ε.

To conclude this section, we provide some computational results showing that the
above heuristic often calculates solutions that are close to optimal even for small k.
To this end, we replace the theoretically fast algorithm underlying Theorem 3 by the
practically fast Algorithm 1 of Sect. 4. We applied our heuristic to the instances of the
shortest path problem used in [14]. The authors create graphs on 20, 25, . . . , 50 nodes,
corresponding to points in the Euclidean plane with random coordinates in [0, 10],
and choose a budget uncertainty set of the form

123

20 C. Buchheim, J. Kurtz

Ξ =
⎧⎨
⎩ξi j ∈ [0, 1] |

∑
i j

ξi j ≤ Γ

⎫⎬
⎭

where the costs on the edges are set to ci j (ξ) = (1 + ξi j
2)di j and di j is the Euclidean

distance of node i to node j . No uncertain constants are considered in the objective
function. The parameter Γ is chosen from {3, 6}. For more details see Section 4.2
in [14].

In Table 3, the computational results for Algorithm 2 are shown. In columns indi-
cated by #, we find the number of instances (out of 100) for which the problem was
solved to optimality by the authors of [14] within a time limit of 2h. For the latter
instances, in columns marked Δsol, we state how far our heuristic solution value is
above the exact minimum, on average (in percent). Similarly, for all 100 instances,
we denote by Δall how far our heuristic solution value is above the best solution
value found by the authors of [14] within the time limit, i.e., this number includes the
instances which could not be solved to proven optimality in [14]. In both cases, we
first state the mean and then the median value. For every type of instance, the running
time for our heuristic was at most one CPU second on average, and is thus not reported
in the table. Note that we are able to calculate heuristic solutions for all k up to n + 1
at one stroke.

Table 3 shows that, for every instance size considered, both the mean and the
median of the differencesΔall with respect to the best known solutions are within 8%.
In Fig. 2, we illustrate the mean differences in dependence of the problem size and k.
Not surprisingly, the gap grows with the number of nodes, whereas a larger number k
leads to better solutions.

Example 2 WhileAlgorithm2 performs verywell on the random instances considered
above, it is possible to construct instances where its solution value is arbitrarily far
away from the optimum even if n and k are fixed. By Theorem 6, then M has to be
unbounded. Consider the set X := {x ∈ {0, 1}n | 1�x ≤ 1}, so that conv (X) is a
simplex. For α > 0, we define an ellipsoid

Uα = {c ∈ R
n | (c + 1)�Σα(c + 1) ≤ 1},

where Σα is the inverse of the positive definite matrix α2(I − (1n − 1
2α2)11�). Then

the unique minimizer of

max
c∈Uα

c�x = −1�x +
√
x�Σ−1

α x = −1�x + α

√
x�
(
I −

(
1
n − 1

2α2

)
11�
)
x

over conv (X) is x∗ = 1
n 1. Its unique representation as convex combination of elements

of X is x∗ =∑n
i=1

1
n ei , where ei denotes the i th unit vector. Hence, whenever k ≤ n,

the heuristic will choose a set X∗ ⊆ {e1, . . . , en}. Assuming without loss of generality
that X∗ = {e1, . . . , ek}, the optimum of

min
x∈X∗(k)

max
c∈Uα

c�x

123

Min–max–min robust combinatorial optimization 21

Ta
bl

e
3

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
A
lg
or
ith

m
2

Γ
k

20
no

de
s

25
no

de
s

30
no

de
s

35
no

de
s

#
Δ
so
l

Δ
al
l

#
Δ
so
l

Δ
al
l

#
Δ
so
l

Δ
al
l

#
Δ
so
l

Δ
al
l

3
1

10
0

4.
1/
3.
3

4.
1/
3.
3

10
0

4.
6/
3.
7

4.
6/
3.
7

10
0

5.
4/
5.
2

5.
4/
5.
2

10
0

6.
5/
6.
1

6.
5/
6.
1

2
10
0

1.
9/
1.
2

1.
9/
1.
2

99
2.
4/
2.
0

2.
5/
2.
1

69
2.
8/
2.
2

3.
0/
2.
8

17
2.
6/
2.
0

3.
4/
3.
5

3
97

0.
8/
0.
2

0.
8/
0.
2

31
0.
5/
0.
3

1.
2/
0.
6

6
0.
1/
0.
0

1.
8/
1.
2

0
−/

−
2.
2/
2.
1

4
51

0.
2/
0.
0

0.
5/
0.
1

6
0.
1/
0.
0

0.
6/
0.
4

0
−/

−
0.
9/
0.
5

0
−/

−
1.
3/
1.
0

6
1

10
0

5.
3/
4.
0

5.
3/
4.
0

10
0

4.
8/
3.
8

4.
8/
3.
8

10
0

5.
2/
4.
5

5.
2/
4.
5

10
0

6.
7/
6.
6

6.
7/
6.
6

2
10
0

3.
7/
3.
3

3.
7/
3.
3

99
4.
6/
4.
3

4.
7/
4.
5

67
4.
8/
4.
7

5.
2/
5.
4

16
7.
1/
6.
9

5.
8/
5.
3

3
97

2.
3/
2.
1

2.
3/
2.
1

38
2.
3/
2.
0

3.
1/
3.
1

6
0.
7/
0.
1

3.
5/
3.
6

0
−/

−
4.
1/
4.
0

4
55

1.
0/
0.
5

1.
4/
0.
9

7
0.
5/
0.
1

2.
0/
1.
8

0
−/

−
2.
3/
2.
2

0
−/

−
3.
2/
3.
1

Γ
k

40
no

de
s

45
no

de
s

50
no

de
s

#
Δ
so
l

Δ
al
l

#
Δ
so
l

Δ
al
l

#
Δ
so
l

Δ
al
l

3
1

10
0

7.
0/
7.
1

7.
0/
7.
1

10
0

7.
3/
7.
4

7.
3/
7.
4

10
0

8.
0/
7.
8

8.
0/
7.
8

2
6

3.
1/
3.
0

3.
9/
3.
5

0
−/

−
3.
9/
3.
9

0
−/

−
4.
3/
4.
1

3
0

−/
−

2.
5/
2.
6

0
−/

−
2.
4/
2.
4

0
−/

−
2.
8/
2.
6

4
0

−/
−

1.
6/
1.
5

0
−/

−
1.
6/
1.
4

0
−/

−
1.
9/
1.
8

6
1

10
0

7.
2/
6.
0

7.
2/
6.
0

10
0

7.
8/
7.
2

7.
8/
7.
2

10
0

7.
8/
7.
8

7.
8/
7.
8

2
5

5.
0/
5.
5

6.
6/
6.
3

0
−/

−
7.
1/
6.
7

0
−/

−
7.
0/
6.
5

3
0

−/
−

4.
5/
4.
6

0
−/

−
4.
9/
4.
6

0
−/

−
4.
9/
4.
6

4
0

−/
−

3.
3/
3.
2

0
−/

−
3.
7/
3.
4

0
−/

−
3.
7/
3.
7

123

22 C. Buchheim, J. Kurtz

nodes

Δall in %

20 25 30 35 40 45 50

2

4

6

8

10

k = 1

k = 2

k = 3
k = 4

nodes

Δall in %

20 25 30 35 40 45 50

2

4

6

8

10

k = 1
k = 2

k = 3
k = 4

Fig. 2 Difference to the best known solution in % for Γ = 3 (left) and Γ = 6 (right)

is attained in 1
k

∑k
i=1 ei , the heuristic thus achieves the objective value

−1 + α

√
1
k − 1

n + k2

2α2 ,

which becomes arbitrarily large with growing α if k < n. On contrary, for large
enough α, every optimal solution contains the zero vector and has objective value
zero.
�

Acknowledgements We would like to thank the authors of [14] for providing us their instances and
computational results for the uncertain shortest path problem.

References

1. Baumann, F., Buchheim, C., Ilyina, A.: Lagrangean decomposition for mean-variance combinatorial
optimization. In: Combinatorial Optimization—Third International Symposium, ISCO 2014, Lecture
Notes in Computer Science, vol. 8596, pp. 62–74. Springer, Berlin (2014)

2. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain
linear programs. Math. Program. 99(2), 351–376 (2004)

3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)
4. Bertsimas, D., Caramanis, C.: Finite adaptability inmultistage linear optimization. IEEETrans. Autom.

Control 55(12), 2751–2766 (2010)
5. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1–3),

49–71 (2003)
6. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
7. Bertsimas, D., Sim, M.: Robust discrete optimization under ellipsoidal uncertainty sets (2004)
8. Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. J. Optim. Theory Appl.

19(2), 261–281 (1976)
9. Buchheim,C., Kurtz, J.:Min-max-min robustness: a new approach to combinatorial optimization under

uncertainty based on multiple solutions. In: International Network Optimization Conference—INOC
2015 (to appear)

10. Büsing, C.: Recoverable robust shortest path problems. Networks 59(1), 181–189 (2012)
11. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J.

Matrix Anal. Appl. 18(4), 1035–1064 (1997)
12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric methods in combinatorial optimization. In: Pro-

ceedings of Silver Jubilee Conference on Combinatorics, pp. 167–183 (1984)
13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.

Springer, Berlin (1993)

123

Min–max–min robust combinatorial optimization 23

14. Hanasusanto,G.A.,Kuhn,D.,Wiesemann,W.:K-adaptability in two-stage robust binary programming.
Optim. Online (2015)

15. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Springer, Berlin (1996)
16. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable robustness, linear

programming recovery, and railway applications. In: Robust and Online Large-scale Optimization, pp.
1–27. Springer, Berlin (2009)

17. Nikolova, E.: Approximation algorithms for reliable stochastic combinatorial optimization. In: Pro-
ceedings of APPROX ’10, Barcelona, Spain (2010)

18. Sim, M.: Robust optimization. Ph.D. thesis, Massachusetts Institute of Technology (2004)
19. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear

programming. Oper. Res. 21(5), 1154–1157 (1973)

123

	Min--max--min robust combinatorial optimization
	Abstract
	1 Introduction
	2 Preliminaries
	3 Complexity for kgen+1
	3.1 Polyhedral uncertainty
	3.2 General convex uncertainty

	4 Practical algorithm for kgen+1
	5 NP-hardness for fixed k
	6 Heuristic algorithm for k<n+1
	Acknowledgements
	References

