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a b s t r a c t

Given an undirected connected graph G = (V,E) where |V | = n and |E| = m, we
consider a wide class of graph partitioning problems, which includes as special cases
several versions classically considered in the literature. These problems are to find a
partition of the nodes in V into clusters satisfying several generic constraints (of set
function type) on the clusters, in order to minimize the number (or the total weight)
of the edges whose end-nodes do not belong to the same cluster. Partitions of V are
often modeled by using compact integer programming formulations containingO(n3)
triangle inequalities. The latter is the same whatever the sparsity of graph G could
be, i.e. its size does not depend on m. In this paper, we show that one can reduce
the size of the integer programming formulation to O(nm) triangle inequalities.
Moreover, it is shown that, when the additional constraints on the clusters satisfy
some monotonicity property, the strength of the linear programming relaxation is
preserved by this reduction. We present numerical experiments on two important
special cases arising from applications to show the benefit in terms of computational
efficiency of using the reduced formulation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The graph partitioning problem with set constraints investigated in the present paper can be generically
defined as follows. Given an undirected connected graph G = (V,E) where V = {1, . . . , n} , |E| = m and a
length le ∈ Z+ is associated with each edge e ∈ E, find a partition of V into disjoint sets (or clusters) such
that:
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• every cluster C ⊂ V satisfies a constraint of the form G(yC) ≤ 0 where yC is the incidence vector of C
in {0, 1}n and G : {0, 1}n → R is a given monotone nondecreasing pseudoboolean function (Note that G
can also be viewed as a set function: P(V ) → R which associates the real value G(yC) with each subset
C ⊂ V ),
• the sum of the lengths of the edges having end-nodes in different clusters is minimized.

The above class of problems (denoted GPP-SC, where SC stands for “set constraints”) is fairly general,
and includes several special cases of practical interest in particular:

(1) The case when each cluster C is required to satisfy a node weight constraint of the form

v∈C wv ≤W

where wv for all v ∈ V are given nonnegative node weights and W is a given upper limit on the total
node weight of the cluster. This corresponds to considering the linear constraint G(yC) ≤ 0 where G is
the nondecreasing pseudoboolean function defined by


v∈V wvy

C
v −W ≤ 0. Note that this special case

of GPP-SC is the classical version of the graph partitioning problem defined in Garey and Johnson’s
book [1] which is known to be NP-hard [2]. In this paper, we will refer to this special case as the graph
partitioning problem under knapsack constraints (GPKC).

(2) The case when each cluster C is subject to a constraint of the form G(yC) ≤ 0 where G is a given
nondecreasing quadratic pseudoboolean function {0, 1}n → R defined as:

G(yC) =


(u,v)∈E

tuv(yCu + yCv − yCu yCv )− T ≤ 0

for given tuv ∈ R+ for all (u, v) ∈ E and T a given positive constant. If one considers tuv as the capacity
of the edge (u, v), then


(u,v)∈E tuv(yCu +yCv −yCu yCv ) represents the total capacity over the edges having

at least one end-node in the cluster C. The constraint limits this capacity to a constant T . This variant
of graph partitioning arises as a subproblem of the SONET/SDH network design problem [3] and has
been introduced in [4] under the name of graph partitioning problem under capacity constraints. In the
present paper, this special case of GPP-SC will be denoted GPCC. It has been shown in [4] that GPCC
is NP-hard.

Note that in the definition of GPP-SC, the number of clusters is not bounded and it is part of the output of
the optimization process. The graph partitioning problem with unbounded number of clusters was considered
by several authors such as Sørensen [5], Labbé et al. [6]. Due to the fact that all the lengths le, e ∈ E are
positive, the objective of minimization of the sum of the lengths of the edges having end-nodes in different
clusters tends already to limit the number of clusters in the optimal partition. But in many cases, it is
interesting to limit the number of clusters to some given constant k < n [7–9]. In Section 4, we discuss the
extension of GPP-SC with an upper bound k on the number of clusters.

Most of the 0/1 programming formulation for representing the node partitions of a graph partitioning
problem fall into one of the two following categories: the Node–Cluster model [3,4] which is based on the
choice of decision variables xiq which are equal to 1 iff node i belongs to cluster q; the Node–Node model
[10–12,5,6,4] which is based on the choice of decision variables xij which are equal to 1 iff node i and node j
are not in the same cluster. The former is a 0/1 quadratic program [3,4]. The latter is a 0/1 linear program
and makes use of O(n2) variables and O(n3) triangle inequalities [10–12,5,6,4]. Approaches of mixing these
models have been experimented in [7–9] where the authors make use of variables both from the Node–Cluster
model and from the Node–Node model. This results in a mixed 0/1 program which has also O(n2) variables.
Note that the latter can be strengthened by triangle inequalities [7]. Computational experiments show
that, as a general rule, the continuous relaxation of the Node–Cluster model is weaker than the one of the



D.P. Nguyen et al. / Discrete Optimization 25 (2017) 175–188 177

Node–Node model [4]. The Node–Cluster model is also highly symmetric making branch-and-bound based
algorithms very inefficient. Reducing symmetries in this model has been investigated in [7,9,4].

A thorough and precise comparison between Node–Node and Node–Cluster models is out of the scope
of the present paper, and we restrict here to investigating the Node–Node model for GPP-SC with special
emphasis on the case of sparse graphs. As the number of triangle inequalities in this model is O(n3), it
quickly becomes extremely large as n increases and even the relaxations turn out to be difficult to solve.
Some authors have tried to overcome this difficulty by dualizing all or only a subset of the triangle inequalities
via a Lagrangian approach [13]. Another possible approach considered in the present paper, is to try and
reduce the number of triangle inequalities without weakening the relaxation. We will show that with only
O(nm) triangle inequalities, instead of O(n3), we can obtain an equivalent formulation, not only for the
Node–Node model for GPP-SC, but also for its relaxations. Obviously, such a reduction opens the way
to considerable improvement in case of sparse graphs where m ≪ n(n−1)

2 . Moreover, we will show that
this reduction of the triangle inequalities remains valid for GPP-SC even in the presence of an upper limit
constraint on the number of clusters.

The paper is organized as follows. In Section 2 we describe the Node–Node model for GPP-SC. We
introduce in Section 3 a reduction of this model preserving the strength of the relaxation and featuring only
O(nm) triangle inequalities. In Section 4, this reduction is extended to the case when an upper bound on
the number of clusters is imposed. In Section 5, we show how the improved compact formulation can be
applied to both special cases GPKC and GPCC and computational experiments are discussed in Section 6
to show the benefit in terms of computational efficiency of using the reduced formulation.

2. Basic 0/1 programming model for GPP-SC

The basic 0/1 programming model for GPP-SC which is considered in the sequel can be described as
follows. We introduce n(n−1)

2 binary variables xuv for all the pairs of nodes u, v ∈ V, u < v, such that

xuv =


0 if u and v belong to the same cluster,
1 otherwise.

The triangle inequalities together with the binary constraints are often used to define the partitions of a
graph G [11,10]. They will be used here as part of the constraints for formulating GPP-SC. Denoting T the
set of all triples (u, v, w) of nodes in V such that u < v < w and En the set of all ordered pairs of node in
V (i.e. |En| = n(n−1)

2 ), these constraints can be written as:

(I)



∀(u, v, w) ∈ T
xuv + xuw ≥ xvw (1)
xuv + xvw ≥ xuw (2)
xvw + xuw ≥ xuv (3)
xuv ∈ {0, 1} ∀(u, v) ∈ En.

The number of triangle inequalities in system (I) is 3

n

3


whatever the value of m may be. It has been

shown by Chopra [12] that for series–parallel graphs, the linear programming relaxation of (I) characterize
completely the convex hull of the incidence vectors of all the possible partitions of V , i.e. the vectors that
are the solutions of (I).

The Node–Node model for GPP-SC can be described as follows. Denoting 1 the n-vector with all
components equal to 1, for every node u ∈ V and for the cluster C that contains u, the incidence vector yC
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is equal to the n-vector 1− χu, where χu is the n-vector with components defined for all v ∈ V as:

χuv = x|uv| =


xuv if u < v,
xvu if u > v,
0 if u = v,

∀v ∈ V.

Now the constraint G(yC) ≤ 0 to be satisfied by every cluster C in the solution can be equivalently
reformulated as the n separate constraints G(1 − χu) ≤ 0, for all u ∈ V . Denoting gu(x) = G(1 −
χu), for all u ∈ V , the Node–Node model for GPP-SC is:

(IP)



min


(u,v)∈E

luvxuv

s.t. ∀(u, v, w) ∈ T
xuv + xuw ≥ xvw (1)
xuv + xvw ≥ xuw (2)
xvw + xuw ≥ xuv (3)
gu(x) ≤ 0 ∀u ∈ V (4)
xuv ∈ {0, 1} (u, v) ∈ En.

Observe that assuming G nondecreasing with respect to yC implies that each pseudoboolean function
gu : {0, 1}n → R+ should be nonincreasing with respect to x (note that gu actually only depends on
the subset of variables xij such that either i = u or j = u). Let (IP) denote the continuous relaxation of
(IP). This formulation has O(n2) variables and O(n3) constraints.

Variants of the above graph partitioning problem with various additional constraints have already
been considered by several authors [11,5,6,4]. These works proposed branch-and-bound or branch-and-cut
algorithms which are all based on (IP) enhanced by using various types of valid inequalities. Consequently,
these algorithms have to solve repeatedly the continuous relaxation (IP) of (IP). As already mentioned
above, the (IP) model does not take advantage of the possible sparsity of the graph under consideration:
it always requires O(n3) constraints, even in the case m ≪ n(n−1)

2 . Although the latter is just a standard
linear program with a polynomial number of constraints, it was reported in the literature (e.g. [13,4]) that
it is rather difficult to solve in the presence of all the 3


n

3


triangle inequalities even for small values of n

(i.e. n ≤ 20). In the next section, we will show that we can obtain an equivalent formulation for (IP) and
(IP) with only 3m(n− 2) triangle inequalities, instead of 3


n

3


as classically.

As will become apparent in the sequel, the above formulation (IP) is quite general and encompasses many
possible variants of graph partitioning. Depending on the type of problem considered, the functions gu(x)
involved in constraint (4) can be linear or nonlinear. In the latter case, solving (IP) with a MILP solver
requires linearization of these functions (this will be the case of GPCC for instance, see Section 6.2 in the
computational section). However, it should be stressed that all the results in the forthcoming Sections 3
and 4 concerning the reduction of the number of triangle inequalities will be applicable independently of the
linearization technique used.

3. Improved 0/1 programming model for GPP-SC

We now process to show that, for the case of sparse graphs, the number of triangle inequalities can
be significantly reduced while preserving the equivalence both for (IP) and (IP). The idea is instead of
considering all triples of T , we only consider those such that at least one pair of nodes forms an edge in E.
Precisely, let T ′ be the family of these triples, i.e. T ′ = {(u, v, w) : u < v < w ∈ V and at least one of the
edges (u, v), (u,w) and (v, w) ∈ E}. Then the reduced programming model is obtained from (IP) with the
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triangle inequalities expressed only for the triples in T ′

(RIP)



min


(u,v)∈E

luvxuv

s.t. ∀(u, v, w) ∈ T ′

xuv + xuw ≥ xvw (5)
xuv + xvw ≥ xuw (6)
xvw + xuw ≥ xuv (7)
gu(x) ≤ 0 ∀u ∈ V (8)
xuv ∈ {0, 1} (u, v) ∈ E
xuv ∈ [0, 1] (u, v) ∈ En \ E.

It is clear that |T ′| ≤ m(n− 2) thus the number of triangle inequalities in (RIP) is at most 3m(n− 2). The
continuous relaxation of (RIP) is denoted (RIP). Due to this reduction of the triangle inequalities, (RIP)
will obviously be more interesting than (IP) for LP solvers when applied to sparse graphs.

Given a point x ∈ R|En|, we note xE the restriction of x on R|E| i.e. the components of x whose index
are in E. We will show the following main lemma.

Lemma 3.1. Given a point xr ∈ [0, 1]|En| satisfying the inequalities (5–8). There always exists a point
x ∈ [0, 1]|En| satisfying the inequalities (1–4) such that xE = xrE.

To prove Lemma 3.1, let us specify how to construct x from xr:

Let us consider the graph G = (V,E) where the edges in E are weighted by xrE and let puv denote
the value of the shortest path in G between u and v with respect to weights xrE . Then x ∈ [0, 1]|En| is
defined as: xuv = min{1, puv} for all (u, v) ∈ En.

Before showing that the resulting x is feasible for (IP), let us prove the following proposition.

Proposition 3.2. xuv ≥ xruv for all (u, v) ∈ En.

Proof. Let us consider any pair (u, v) and suppose that {u ≡ u0, . . . , up ≡ v} is the shortest path in G
between (u, v) with respect to weights xrE . Let us consider successively the triangles composed of vertex
u0 and an edge of the shortest path as showed in Fig. 1. Since each of these triangles contains at least
one edge in E, xr satisfies the triangle inequalities (5–7) issued from these triangles. We want to show that
xr|u0up| ≤

p
η=1 x

r
|uη−1uη|. In fact, by induction:

• If p = 1, it is obvious that xr|u0u1| = xr|u0u1|.
• If p = 2, the inequality xr|u0u2| ≤ x

r
|u0u1| + x

r
|u1u2| is one of the triangle inequalities (5–7) for the triple

(u0, u1, u2) that is verified by xr.
• Assume that the inequality was satisfied for p = pr for some pr ≥ 2, i.e. that

xr|u0up| ≤
pr
η=1
xr|uη−1uη|.

We will show that it is also true for p = pr + 1. In fact, one of the triangle inequalities for the triple
(u0, upr , upr+1) gives

xr|u0upr+1| ≤ x
r
|u0upr | + x

r
|uprupr+1|.
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Fig. 1. A example of triangularization for a path uv.

By combining with the induction hypothesis we obtain

xr|u0up| ≤
pr+1
η=1
xr|uη−1uη|.

As u0 = u, up = v and
p
η=1 x

r
|uη−1uη| = puv, we deduce that xruv ≤ min{1, puv} = xuv. �

We are now ready to provide a proof for Lemma 3.1.

Proof of Lemma 3.1. We prove that the point x constructed as above from xr verifies the inequalities (1–4)
and in addition xE = xrE .

We prove first that x satisfies the triangle inequalities (1–3). We only need to prove that x satisfies (1), by
symmetry, x satisfies also (2) and (3). Let us consider any triple (u, v, w) in T and suppose that puv, pvw and
puw are respectively the shortest path lengths in G between (u, v), (v, w) and (u,w) with respect to weights
xrE . Note that the union of two shortest paths between (u, v) and (u,w) is also a path between (v, w), thus
we have puv + puw ≥ pvw. Hence min{1, puv}+ min{1, puw} ≥ min{1, pvw} which implies inequality (1).

We now show that x satisfies the inequalities (4). Indeed, as g is nonincreasing, we have gu(x) ≤ gu(xr) ≤ 0
for all u ∈ V .

Finally, we show that xE = xrE , i.e. we show that if (u, v) is an edge in E, the shortest path in G between
u and v with respect to xrE is xruv. This is shown by contradiction. Suppose that (u, v) is an edge in E and
suppose that the shortest path in G between u and v with respect to xrE is {u ≡ u0, . . . , up ≡ v} ≠ (u, v).
From the construction of x and Proposition 3.2 we have puv =

p
η=1 x

r
|uη−1uη| > x

r
uv. A contradiction. Hence

we conclude that xE = xrE . �

We now show the main result of this section:

Theorem 3.3. (IP) and (RIP) have the same optimal value.
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Proof. The result of the theorem readily follows from Lemma 3.1 using the fact that xE = xrE . �

A similar result holds for (IP) and (RIP) since in the construction of x from xr, xrE ∈ {0, 1}|E| leads
x ∈ {0, 1}|En|.

Corollary 3.4. (IP) and (RIP) have the same optimal value.

4. Extension to the case when the number of clusters is bounded from above

In this section, it will be shown that part of the above results can be extended to the case when the
number of clusters is bounded from above by a given constant. Note that the limitation on the number
of clusters is somewhat conflicting with the monotone nondecreasing property of the cluster constraints in
GPP-SC due to the fact that the number of clusters will increase as the number of nodes in the clusters
is decreased. Therefore Theorem 3.3 seems to be non applicable in this case. Nevertheless, we prove in the
following that the result of Corollary 3.4 is still applicable. To achieve this and exploiting some analogies
with the analysis in [14], we introduce a vector z ∈ {0, 1}|V | that is defined as follows: zi = 1 if and only if
i is the smallest node index in the cluster that contains i, in this case the node i is called a representative.
Therefore z can be computed from x as, for all i ∈ V ,

zi =

1 if


j∈V, j<i
(1− xji) = 0,

0 otherwise.
For a given positive integer k, the Node–Node model for GPP-SC with at most k clusters is then:

(kIP)



min


(u,v)∈E

luvxuv

s.t. ∀(u, v, w) ∈ T
xuv + xuw ≥ xvw
xuv + xvw ≥ xuw
xvw + xuw ≥ xuv
gu(x) ≤ 0 ∀u ∈ V (8)
zu − xvu ≤ 0 ∀u, v ∈ V, v < u (9)

zu +
u−1
v=1

(1− xvu) ≥ 1 ∀u ∈ V (10)
n
u=1
zu ≤ k (11)

xuv ∈ {0, 1} (u, v) ∈ En
zu ∈ [0, 1] u ∈ V.

Constraints (8) are the same as in (IP) and as in (RIP) where gu : {0, 1}n → R+ is a nonincreasing
pseudoboolean function. Constraints (9) ensure that every cluster contains no more than one representative
(i.e. no more than one node i such that zi = 1). Constraints (10) guarantee that a cluster contains at least
one representative. Finally, constraint (11) ensures that the number of clusters is no more than a given
positive integer number k. The reduced programming model (kRIP) is obtained by replacing the set of triples
T with T ′.

Lemma 4.1. Given (xr, zr) ∈ {0, 1}|En| × {0, 1}|V | a feasible point for (kRIP). It is always possible to find a
feasible point (x, z) ∈ {0, 1}|En| × {0, 1}|V | for (kIP) such that xE = xrE.

The main idea of the proof of this lemma is quite similar to the one given in Section 3, except for the
construction of (x, z) from (xr, zr) which is now done as follows:
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Assume that (xr, zr) is a feasible point of (kRIP). We can construct a partition P of V as follows. For
node i from 1 to n = |V |, if zi = 1 (i.e. i is a representative) then for all node j from i + 1 to n, j is
assigned to the same cluster as i if and only if j has not been assigned before and xrij = 0. The point
(x, z) ∈ {0, 1}En × [0, 1]V is then computed from the partition P as:

for all (i, j) ∈ En, xij =


0 if i and j belong to the same cluster,
1 otherwise

and

for all i ∈ V, zi =


1 if i is the smallest node index in the cluster that contains the node i,
0 otherwise.

To show that such a point (x, z) is feasible point for (kIP), we need the following proposition:

Proposition 4.2.

(1) Node j > i is assigned to the same cluster as the representative i if and only if i is the smallest index of
a representative such that xrij = 0.

(2) z = zr.
(3) For every representative i ∈ V (i.e. zi = 1), xji = xrji = 1, for all j ∈ V, j < i and xij ≥ xrij, for all
j ∈ V, j > i.

Proof. The proof directly follows from the construction of (x, z). �

We are now ready to provide a proof for Lemma 4.1.

Proof of Lemma 4.1. We prove that (x, z) constructed as above from (xr, zr) is a feasible point of (kIP) and
in addition that xE = xrE .

The point (x, z) is deduced from the partition construction and thus x satisfies the triangle inequalities
whereas z satisfies the representative constraints (9) and (10). As zr satisfies the constraint (11) in (kRIP)
and z = zr (Proposition 4.2 item (2)), z also satisfies this constraint. For every representative i ∈ V, zi = 1,
Proposition 4.2 item (3) guarantees that constraints (8) are satisfied for i, since gi(xr) ≤ 0 and gi is a
nonincreasing function. For every node u that is not a representative, assume that u belong to the cluster
with the representative i, we have gu(x) = gi(x) ≤ 0 as they are defined on the same cluster. Thus all the
constraints of (kIP) are satisfied by (x, z) and we can conclude that (x, z) is a feasible point for (kIP).

We now show that xE = xrE (i.e. xuv = xruv, for all (u, v) ∈ E). Indeed, for all (u, v) ∈ E:

• if xruv = 1, u and v are not in the same cluster since otherwise, there would exist a cluster with i as
representative such that xriu = xriv = 0, and the triangle inequality xriu + xriv ≥ xruv would be violated.
Hence xuv = xruv = 1.
• if xruv = 0, u and v will be assigned to the same cluster. Indeed, we remark that for any representative
i such that xriu = 0, the triangle inequality xriu + xruv ≥ xriv implies xriv = 0, and reciprocally for any
representative i such that xriv = 0, the triangle inequality xriv + xruv ≥ xriu implies xriu = 0. Due to this
remark, if i is the smallest representative index such that xriu = 0, then i is also the smallest representative
index such that xriv = 0. By Proposition 4.2 item (1), u and v are then assigned to the same cluster with
i as representative and hence xuv = xruv = 0. �
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A similar result as Corollary 3.4 now holds for (kIP) and (kRIP).

Theorem 4.3. (kIP) and (kRIP) have the same optimal value.

Proof. The proof of the theorem follows trivially from Lemma 4.1 by the fact that xE = xrE . �

5. Applications involving special cases of GPP-SC

5.1. Graph partitioning problem under knapsack constraints (GPKC)

The graph partitioning problem under knapsack constraints (GPKC) has been defined in Introduction
section as a special case of GPP-SC. The problem contains knapsack constraints of type


v∈C wv ≤W for

each cluster C in the partition. In the Node–Node model, knapsack constraints can be written as:
v∈V

(1− x|uv|)wv ≤W, ∀u ∈ V. (12)

These constraints express that for all u ∈ V , the total weight of the cluster that contains u is bounded
by a given constant W . Note that the total weight of each cluster is equal to sum of the weights of nodes
contained in it. Note that in our formulation, all pairs in En are ordered thus the nodes u and v are in the
same cluster or not, determined by x|uv|, i.e. xvu if v < u, xuv if v > u and 0 if u ≡ v.

Clearly the left-hand side of knapsack constraints (12) (when being expressed with the sign “≤”) is a
nonincreasing function and therefore the results of Sections 3 and 4 apply.

5.2. Telecommunication network design problem with capacity constraints (GPCC)

For various technological reasons, network operators often want to partition the node set V into clusters
on which a certain network topology is imposed. For instance, in SONET/SDH optical networks, a common
requirement is that every cluster is connected by a local network forming a cycle. Local networks are then
interconnected by a secondary federal network which has one access node in each local network. Access
nodes carry all the traffic internal to their local network and all the traffic exiting it but have a limited
capacity. If we consider the traffic demand t(u,v) as the capacity of the edge (u, v), then the capacity of
a local network (cluster) with node set U ⊂ V follows our definition of capacity. As the topology and the
capacity of local networks are imposed, the cost of these networks is almost fixed (except the cost of physical
cables for building them) once the partition of V is determined. Thus, the objective of the problem could be
focused on minimizing either the number of local networks (clusters) or the cost of the federal network. For
the latter, an objective function often used it to minimize the total length of the edges in the interconnection
with lengths given by the product of the traffic and the distance between nodes.

The SONET/SDH network design problem minimizing the number of local networks has been introduced
in 2003 by Goldschmidt et al. [3] under the name SRAP problem. Bonami et al. [4] modeled this problem
as a variant of the graph partitioning problem that they call graph partitioning under capacity constraints
(GPCC) where the constraints on the weights of the clusters are replaced with constraints related to the
edges incident to the nodes of each cluster. Suppose that, each edge e ∈ E is assigned a capacity te ∈ Z+.
For any subset U ⊆ V , we define the capacity of U as the sum of the capacities of the edges incident to at
least one node of U , i.e. the edges in E(U) ∪ δ(U) where E(U) is the set of the edges with both end nodes
in U and δ(U) is the set of the edges with exactly one end in U . The capacity constraint is to bound the
capacity of each cluster by a given constant T . The objective function we consider is to minimize the total
length of the edges in the interconnection (with weights given by the lengths le) between the clusters.
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Let us rewrite the capacity constraints proposed in [3] in the Node–Node model:
(v,w)∈E

tvwx|uv|x|uw| ≥


(v,w)∈E

tvw − T, ∀u ∈ V. (13)

It expresses the fact that the complement of the capacity of the cluster containing u should be greater than
the total capacity of the graph minus T . This is equivalent to say that the capacity of the cluster containing
u should be bounded by T . This constraint is in quadratic form and its left-hand side (when being expressed
with the sign “≤”) is nonincreasing as the traffic tvw are all positive. This can be thus integrated to the
constraints (4) of (IP) and (IP) and our reduction of triangle inequalities applies.

6. Computational experiments

In this section, we present computational results obtained with the improved compact formulation (RIP)
as compared with the standard compact formulation (IP) for both variants GPKC and GPCC of GPP-SC.
To carry out the computational comparisons, a sufficiently diverse set of test instances of relatively small
size (typically less than 100 nodes) was needed. However (a) such instances for GPKC are only very scarce
in the existing literature (e.g. only four instances with n < 100 can be found in the DIMACS data set [15]);
(b) there is no data set corresponding to the sparse instances for GPCC. Therefore it was decided to generate
the required test set for GPKC and GPCC in the following way:

• For a choice of graph type and for a given number of vertices n and number of edges m, the graph is
firstly generated. To verify our results in the present paper, four well known sparse graph types are chosen
to be generated that are: series–parallel graph, planar grid graph, toroidal grid graph and random graph.
Except the planar grid graphs and the toroidal grid graphs that have fixed structure, the series–parallel
graphs are generated using a generator named Task Graphs For Free (TGFF) [16] and the random graphs
are generated by picking edges uniformly at random until the number of edges reaches m, and testing
connectedness.
• The edge weights tuv, (u, v) ∈ E and the node weights wu, u ∈ V are drawn independently and uniformly

from the interval [1, 1000].
• The upper bounds of the knapsack constraints W and of the capacity constraints T are chosen in such

a way as to ensure that the generated instances will not be “too easy” to solve. More precisely we used
METIS [17] to create an “optimal” partition of the graph with k clusters that we call the initial partition,
we then do 1000 random perturbations of this partition. The bounds W and T are then chosen so that
only 10% of these partitions correspond to feasible solutions.

All experiments are run on a machine with Intel Core i7-3630QM 2.40 GHz processor and 16 GB of
RAM. The solver CPLEX 12.6 is used to solve respectively (IP), (IP), (RIP) and (RIP). CPLEX pre-solve is
switched off as is classically done to avoid possible undesirable side-effects due to the uncontrolled behavior
of this “black-box” procedure. All computation times are CPU seconds and the computation times of (IP)
and (RIP) are subject to a time limit of 12 000 s while the computation times of (IP) and (RIP) are subject
to a time limit of 3600 s.

6.1. Experimental results for GPKC

In Table 1 we report the results obtained for (IP) and (RIP) when applying on GPKC instances, denoted
(IPKC) and (RIPKC) respectively and for their linear relaxations (IPKC) and (RIPKC). In our experiments,
each instance belongs to one of four graph types: series–parallel graphs, planar grid graphs, toroidal grid
graphs and random graphs. Series–parallel graphs are highly sparse while random graphs are denser graphs
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Table 1
Computation results of (IPKC) and (RIPKC) for sparse graphs.

Graph types n,m (IPKC) (IPKC) (RIPKC) (RIPKC) Cont.Rlx
CPU CPU CPU CPU GAP(%)

Series–parallel 22, 38 2.18 0.22 0.65 0.02 6.7
Series–parallel 25, 40 3.43 0.55 0.67 0.04 8.4
Series–parallel 27, 45 6.36 0.63 0.38 0.05 6.1
Series–parallel 30, 50 19.36 1.96 2.12 0.10 5.6
Series–parallel 35, 60 34.25 2.04 3.10 0.13 4.3
Series–parallel 40, 65 114.3 6.40 5.13 0.27 4.5
Series–parallel 45, 75 486.1 11.63 8.28 0.35 7.2
Series–parallel 50, 80 – 23.48 15.32 0.85 4.7
Series–parallel 60, 90 – 186.33 33.61 3.45 4.2
Series–parallel 80, 130 – – 83.38 10.67 5.8
Series–parallel 100, 170 – – 95.66 25.12 4.1
Series–parallel 120, 180 – – 588.58 68.26 5.2
Series–parallel 130, 200 – – 3276.3 98.27 2.7
Series–parallel 140, 210 – – 8783.4 155.66 5.9
Planar grid 4× 10 40, 66 120.3 5.78 5.41 0.36 6.3
Planar grid 5× 10 50, 85 – 26.96 16.8 0.89 6.3
Planar grid 6× 10 60, 104 – 174.31 61.4 1.72 5.7
Planar grid 7× 10 70, 123 – 951.72 123.94 3.26 6.1
Planar grid 8× 10 80, 142 – – 427.7 12.19 7.5
Planar grid 9× 10 90, 161 – – 1478.2 15.77 8.0
Planar grid 10× 10 100, 180 – – 2147.2 26.51 5.4
Planar grid 11× 10 110, 199 – – 8044.8 40.78 7.3
Toroidal grid 4× 10 40, 80 424.4 6.39 18.37 0.44 10.1
Toroidal grid 5× 10 50, 100 – 36.68 117.29 1.03 10.6
Toroidal grid 6× 10 60, 120 – 199.63 431.51 2.08 8.2
Toroidal grid 7× 10 70, 140 – 1233.61 3361.7 3.66 9.7
Toroidal grid 8× 10 80, 160 – – 10 934.5 14.23 11.6
Random graph 22, 120 58.8 0.54 16.75 0.15 9.3
Random graph 25, 150 120.2 1.13 34.34 0.7 12.5
Random graph 27, 150 379.5 1.25 139.7 0.49 10.8
Random graph 30, 200 1436.8 2.79 458.5 0.98 8.4
Random graph 35, 250 – 7.97 945.6 2.65 10.5
Random graph 40, 280 – 14.5 3326.9 4.97 10.2
Random graph 45, 200 – 19.0 3884.2 1.47 12.7
Random graph 50, 200 – 35.88 9024.8 2.32 11.4

with mn ≈ (4–8). As for each value of n,m, we have five instances, the first two columns in this table report
the average CPU time to obtain the solution of (IPKC) and its linear relaxation (IPKC), the third and
fourth columns show the average CPU time to obtain the solution of (RIPKC) and its continuous relaxation
(RIPKC), and the last column gives the average value of the integrality gap.

As can be seen from Table 1, (RIPKC) and (RIPKC) are much better than (IPKC) and (IPKC) in terms
of computation times. The difference becomes more significant as the number of nodes increases. With
series–parallel graphs, the gain of (RIPKC) and (RIPKC) is extremely clear as we report a reduction of
solution time by a factor 10–50 for (RIPKC) as compared with (IPKC) and by a factor 3–60 for (RIPKC)
as compared with (IPKC). The difference naturally decreases as m increases. For instance with random
graphs, we report a reduction of solution time by a factor 3–15 for (RIPKC) as compared with (IPKC) and
by a factor 3 for (RIPKC) as compared with (IPKC). There are also instances for which CPLEX is not even
capable to solve the continuous relaxation with the classical formulation within the prescribed time-limits
but succeeds at finding an optimal integer solution with our reduced formulation (series–parallel (80, 130)
and bigger, planar grid 8 × 10 and larger, toroidal grid 8 × 10). With (RIPKC) we can solve exactly large
instances, e.g., (n = 140) for series–parallel graphs, (n = 110) for planar grid graphs, (n = 80) for toroidal
grid graphs and (n = 50) for random graphs.

Also it can be seen that the continuous relaxation (RIPKC) is rather strong for GPKC, especially for
instances related to series–parallel and planar grid graphs (6.5% on average). For toroidal grid and random
graphs, the gaps is slightly bigger (10.5% on average).
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Table 2
Comparison between (RIPKC) and (kRIPKC) for random sparse graphs. NF indicates non-feasible instances.

n,m Instance number (RIPKC) ((k∗ − 1)RIPKC) ((k∗−2)RIPKC)
CPU k∗ CPU CPU

30, 200

#1 276 3 NF(0.12) NF(0.13)
#2 402 5 NF(0.14) NF(0.12)
#3 452 5 1395 NF(0.15)
#4 507 6 1558 NF(0.17)
#5 558 8 1681 1847

35, 250

#1 733 4 NF(0.22) NF(0.17)
#2 911 5 NF(0.21) NF(0.21)
#3 906 5 3286 NF(0.38)
#4 992 6 NF(0.25) NF(0.20)
#5 1071 7 4492 NF(0.28)

40, 280

#1 2954 4 NF(0.30) NF(0.20)
#2 3038 5 NF(0.29) NF(0.31)
#3 3353 6 9822 NF(0.35)
#4 3827 7 9376 NF(0.35)
#5 4158 9 >12 000 >12 000

45, 200

#1 3535 5 NF(0.39) NF(0.33)
#2 3642 5 NF(0.39) NF(0.30)
#3 3701 7 >12 000 NF(0.43)
#4 3936 9 >12 000 NF(0.41)
#5 4053 10 >12 000 >12 000

Compared efficiency with and without upper bound on the number of clusters

Computation experiments are also made to compare the efficiency of solving GPKC with and without
upper bound on the number of clusters. To highlight the differences between them, the experiments are
done in the following way. For any GPKC instance i, we first solve (RIPKC), the corresponding number
of clusters of the optimal solution is denoted k∗i . We then solve (kRIPKC) (i.e. (kRIP) applying on GPKC
instances) for the same instance i in adding the upper bound on the number of clusters ki. It is obvious
that if ki ≥ k∗i , the solutions of (RIPKC) and (kRIPKC) are identical. Computational results are shown in
Table 2 for ki = k∗i − 1 and ki = k∗i − 2. For each value of n,m, five instances are solved. The third and
the fourth columns in the table report the CPU time to obtain the optimal solution using (RIPKC) and the
number of clusters in the optimal solution, the fifth and the sixth columns report the CPU time to obtain
the optimal solution using ((k∗−1)RIPKC) and ((k∗−2)RIPKC) respectively. The acronym “NF” indicates
a non-feasible instance, and the computation time to prove the infeasibility is shown in parenthesis.

As can be seen from Table 2, while all instances can be solved for (RIPKC), there are only part of
instances can be solved for (kRIPKC) within the time limit of 12 000 s. Moreover, for the instances that can
be solved for both models, (kRIPKC) is from 3 to 6 times slower than (RIPKC). A possible explanation
of this is as follows. From the results in Table 2, it is seen that for all instances considered, the number of
clusters k∗ in the optimal solution to (RIPKC) is close to its minimum possible value. Indeed, for k = k∗−1,
about 50% of the instances become infeasible, and for k = k∗ − 2, about 90% of the instances turn out to
be infeasible. The observed increase in the computation times is thus due at least in part, to the fact that,
when decreasing k, the instances become close to the boundary between feasibility and infeasibility.

6.2. Experimental results for GPCC

In this section we present the computation results for (IP) and (RIP) on GPCC instances, denoted
(IPCC) and (RIPCC) respectively, and for their continuous relaxation (IPCC) and (RIPCC). We observe
that the capacity constraint (13) is in non-convex quadratic form for which CPLEX cannot be used. We
therefore have to transform the capacity constraints to linear form via some linearization techniques. We
note that the results of the present paper remain applicable whatever linearization technique used. In the



D.P. Nguyen et al. / Discrete Optimization 25 (2017) 175–188 187

Table 3
Computation results of (IPCC) and (RIPCC) for random graphs.

n,m (IPCC) (IPCC) (RIPCC) (RIPCC) Cont.Rlx
CPU CPU CPU CPU GAP(%)

22, 120 68.3 0.64 17.8 0.15 15.0
25, 125 156.9 1.1 37.3 0.32 10.4
27, 150 344.5 1.4 107.3 0.55 13.7
30, 200 1944.2 3.64 438.5 1.23 14.8
35, 200 – 9.56 1025.9 3.65 16.2
40, 250 – 20.67 3853.4 6.73 18.1
45, 200 – 28.39 3328.5 1.81 16.7
50, 200 – 45.31 11 038.6 2.88 15.2
60, 150 – 327.63 5291.4 4.36 12.3
70, 140 – – 10 038.2 5.05 11.8
80, 120 – – 8615.7 9.49 14.1

computational experiments presented below, we use the classical Fortet linearization [18], which is both
simple and known to achieve a good compromise between the number of additional variables needed and the
strength of the resulting relaxation. Application of this technique to GPCC leads to introduce new variables
yuvw to represent each product x|uv|x|uw| thus the constraint (13) becomes:


(v,w)∈E

tvwyuvw ≥


(v,w)∈E

tvw − C, ∀u ∈ V

max


0, x|uv| + x|uw| − 1

≤ yuvw ≤ min


x|uv|, x|uw|


.

Hence our quadratic 0-1 formulations for GPCC become a mixed integer linear program that can be
solved more easily by CPLEX. Note that the constraint (13) is the same for (IPCC), (RIPCC), (IPCC) and
(RIPCC) so that the linearization does not influence the comparison between them.

Since usually the traffic matrix for a SONET/SDH optical networks are quite dense, we generate instances
for GPCC with number of edges mn ≈ (1.5–8), the results are shown in Table 3.

As we can see in Table 3, (RIPCC) and (RIPCC) is much better than (IPCC) and (IPCC) in terms of
computation times. We report a reduction of solution time by a factor 3–18 for (RIPCC) as compared with
(IPCC) and by a factor about 4 for (RIPCC) as compared with (IPCC). The difference is even more clear
when increasing the number of nodes. The instances used in this section feature higher density than those
in the previous section thus we can only solve those up to n = 80.

We finally observe that the quality of the continuous relaxation of the Node–Node model for GPCC is
not as good as for the GPKC problem: the value of the gap is observed to be in the range 10.4%–18.1%.

7. Conclusions and perspectives

We have given an improved compact formulation for a wide class of graph partitioning problem using
O(nm) triangle inequalities instead of O(n3) in the classical formulation, while preserving equivalence,
both in the integral version and in the relaxed version. Numerical experiments comparing our improved
formulation with the classical formulation have been presented for two problems: the graph partitioning
problem under knapsack constraints and the graph partitioning problem under capacity constraints. These
numerical results have shown that solution times are reduced drastically from 3 to 50 times with our improved
formulation. There are instances for which the LP solver is not even capable of solving the continuous
relaxation with the classical formulation but succeeds at finding optimal integer solutions with our reduced
formulation.

As a possible direction for future investigation, exhibiting further constraint structures, lending themselves
to significant reduction of the number of triangle inequalities would be worth considering. Also we mention
the search for additional polyhedral results related to the formulations of the present paper, possibly leading
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to improved computational efficiency of branch-and-bound based procedures. Finally we note that carrying
out an extensive comparison in terms of efficiency of Node–Cluster versus Node–Node models remains a
potentially interesting subject for future work in the area.
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