
M
r

R
a

b

a

K
S
S
G
I
S

1

p
t
s
H
s
o
n
g
d
d
c
2
e
s
a
b

s
a
s
I
t

t

0
h

Social Networks 35 (2013) 639– 651

Contents lists available at ScienceDirect

Social  Networks

journa l h om epage: www.elsev ier .com/ locate /socnet

ixed  integer  programming  formulations  for  clustering  problems
elated  to  structural  balance

osa  Figueiredoa,∗,  Gisele  Mourab

CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
Department of Mathematics and Statistics, Rio de Janeiro State University, 20550-900 Rio de Janeiro, Brazil

 r  t i  c  l  e  i  n  f  o

eywords:
tructural balance
igned graph
raph partition

a  b  s  t  r  a  c  t

In this  work,  we  study  graph  clustering  problems  associated  with  structural  balance.  One  of  these  prob-
lems  is known  in computer  science  literature  as the correlation-clustering  (CC)  problem  and  another
(RCC)  can  be  viewed  as its  relaxed  version.  The  solution  of  CC  and  RCC  problems  has  been  previously
nteger programming
ocial network

used  in  the literature  as  tools  for  the evaluation  of  structural  balance  in  a social  network.  Our  aim  is
to  solve  these  problems  to optimality.  We  describe  integer  linear  programming  formulations  for  these
problems  which  includes  the first mathematical  formulation  for the  RCC  problem.  We  also  discuss  alter-
native  models  for the  relaxed  structural  balance  and  the  solution  of  clustering  problems  associated  with
these  new  models.  Numerical  experiments  are  carried  out  with  each  formulation  on  a set of benchmark

 litera
instances  available  in the

. Introduction

Signed digraphs were introduced by Heider (1946) with the pur-
ose of describing sentiment relations between people pertaining
o a same social group and to provide a systematic statement of
ocial balance theory. Cartwright and Harary (1956) formalized
eider’s theory stating that a balanced social group, i.e., a balanced

igned digraph, could be partitioned into two mutually antag-
nistic subgroups each having internal solidarity. Subsequently,
oting that a social group may  contain more than two  hostile sub-
roups, Davis (1967) extended the definition of a balanced signed
igraph to the definition of a clusterable signed digraph. In the last
ecades, signed digraphs have shown to be a very attractive dis-
rete structure for social network researchers (Abell and Ludwig,
009; Adejumo et al., 2008; Doreian and Mrvar, 1996, 2009; Yang
t al., 2007). One challenge in this area is to evaluate balance in a
ocial network: the degree of balance in a social group can be used
s a tool to study whether and how this group evolves to a possible
alance state.

Different criteria can be used for that purpose. The optimal
olution of clustering problems defined on signed digraphs have
lready been used as a criteria to measure the degree of balance in

ocial networks (Doreian, 2008; Doreian and Mrvar, 1996, 2009).
n Doreian and Mrvar (1996), Doreian et al. looked for a parti-
ion of the vertex set that minimizes the number of negative arcs
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ture.
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within clusters, plus the number of positive arcs between clus-
ters. In solving this problem, they aimed to find a vertex partition
closest to a balanced state which could be used as a measure of
imbalance in the signed digraph representing a social network.
Information obtained with the computational experiments were
used to verify theoretical assumptions and to suggest additional
hypothesis about structural balance in social networks. Lately, the
same authors observed in Doreian and Mrvar (2009) that is highly
possible that a network evolves to a state where the elements of
two groups cooperate mutually or to a state where there is a group
whose members are internally hostile. They argued that, in some
contexts, these relations should not be considered as a contribu-
tion to the imbalance of the network. These authors extended the
definition of structural balance on a signed digraph to what they
called relaxed structural balance. The neighborhood search proce-
dure introduced in Doreian and Mrvar (1996) was adapted in order
to deal with this new concept of social balancing and is available
for scientific purposes use (Pajek, 2012). The measures of balance
proposed by Doreian et al. were used in a balance theory approach
proposed to group problem solving (Adejumo et al., 2008) and in a
multiple indicator approach proposed in Doreian (2008).

Clustering problems defined on signed digraphs also arise
in the study of community structures (Macon et al., 2012;
Traag and Bruggeman, 2009), a very prominent area of
network science (Porter et al., 2009), as well as in other
scientific areas, including portfolio analysis in risk manage-

ment (Figueiredo and Frota, 2012; Harary et al., 2003), biological
systems (DasGupta et al., 2007; Huffner et al., 2007), efficient doc-
ument classification (Bansal et al., 2002), detection of embedded
matrix structures (Figueiredo et al., 2011; Gülpinar et al., 2004),

dx.doi.org/10.1016/j.socnet.2013.09.002
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
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For an illustration of these definitions, we  refer the reader to Fig. 1
where negative and positive arcs are represented, respectively, by
red and black arcs.
40 R. Figueiredo, G. Moura / So

nd analysis of similarity or dissimilarity in relationships (Brusco
nd Steinly, 2010). The common element among these applica-
ions is that all of them are defined in a collaborative vs. conflicting
nvironment that can be modeled over a signed digraph. Appear-
ng in very different areas, we can expect that different notations,
efinitions and solution approaches are proposed in the litera-
ure for a same problem. As an example, the problem treated by
oreian et al. in Doreian and Mrvar (1996, 2009) is called cor-

elation clustering problem in Bansal et al. (2002), community
ining in Yang et al. (2007) and K-balance partitioning in Brusco

nd Steinly (2010).
From a practical point of view, in solving the clustering problems

reated in this paper, heuristic approaches are primarily of interest
ince large social networks may  have to be analyzed. However, an
bsolute evaluation of a heuristic approach is only possible if the
ptimal solution is known for a set of instances. Moreover, in some
ases, the social networks used as benchmark instances have only
ens of nodes (Adejumo et al., 2008; Doreian and Mrvar, 1996, 2009)
nd can be solved to optimality by an exact solution approach. A
eep investigation of efficient exact approaches and mathematical
ormulations to clustering problems related with structural balance
s a missing point. Recently, this gap was filled by the works Brusco
nd Steinly (2010) and Brusco et al. (2011) where branch-and-
ound procedures were presented, respectively, for the problems
tudied in Doreian and Mrvar (2009) and Doreian and Mrvar (1996).

This paper focus on the study of integer linear programming
ILP) formulations (Wolsey, 1998) for different clustering problems
elated with structural balance. Our contribution is threefold. First,
e formalize and describe a set of clustering problems defined on

igned digraphs that can be used in the evaluation of structural
alance in social networks. In doing so, we establish a common
otation for these problems since, as we have mentioned before,

 same problem appears in the literature under different names.
econd, we introduce an ILP formulation for the clustering prob-
em proposed in Doreian and Mrvar (2009) as a model for the
elaxed structural balance. We  discuss the advantages and limi-
ations of this formulation by presenting extensive computational
xperiments. Third, we discuss alternative models for the relaxed
tructural balance and also present ILP formulations and numerical
esults.

ILP formulations have been successfully used to solve graph
lustering problems (Agarwal and Kempe, 2008; Brusco and
teinley, 2009; Hansen and Jaumard, 1997; Johnson et al., 1993;
ehrotra and Trick, 1996); some of them related with social net-
ork analysis. In Brusco and Steinley (2009), a collection of ILP

ormulations was presented for blockmodeling of social networks
ith only positive relations while in Agarwal and Kempe (2008),

 rounding algorithm of an ILP formulation was  proposed for
odularity-maximization of graph communities. Another advan-

age of applying ILP formulations to the evaluation of structural
alance is that little effort is required to implement an ILP for-
ulation by using one of the available commercial packages (FICO,

009). Thus, even a nonspecialist in mathematical modeling is capa-
le of implementing an ILP formulation as well as of adapting an
xistent formulation for accommodating the characteristics of a
pecific problem. Unfortunately, that is not the case for ad-hoc
ranch-and-bound procedures as the ones presented in Brusco et al.
2011), Brusco and Steinly (2010).

The remainder of the paper is structured as follows. In Section 2,
e give some notations and definitions to be used throughout

his text. We  establish a common notation for clustering prob-
ems treated in this paper and we present a literature review on

ts applications and solution approaches. We  also discuss the com-
utational complexity of the problem introduced in Doreian and
rvar (2009) (a proof that this problem is NP-hard is given in

ppendix A). ILP formulations are presented in Section 3 for the
Fig. 1. (a) A balanced signed digraph: S = {1, 2, 6} and V \ S = {3, 4, 5}. (b) A k-balanced
signed digraph for any k ∈ {3, 4, 5, 6}. Sets S1 = {1, 2}, S2 = {3, 4, 5} and S3 = {6} define
a  3-partition of this graph. (c) A non-clusterable signed digraph.

problems stated in the previous section. Computational results are
reported for test problems available in the literature and for a set
of random instances. In Section 4, alternative models are presented
for the relaxed structural balance: a symmetric version of the model
presented in Doreian and Mrvar (2009) and a model that looks
primarily for mediation process in social networks. Again, com-
putational results are reported for literature instances. Finally, in
Section 5, we  present concluding remarks and discuss directions
for further investigation.

2. Notation and problem definition

Let D = (V, A) be a digraph where V = {1, 2, . . .,  n} is the set of
vertices and A is a set of arcs connecting pairs of vertices. In this
text, a digraph is assumed to have no loops. For a vertex set S ⊆ V, let
A[S] = {(i, j) ∈ A | i, j ∈ S} denote the subset of arcs induced by S. For two
vertex sets S, W ⊆ V, let A[S : W]  = {(i, j) ∈ A | i ∈ S, j ∈ W}. One observes
that, by definition, A[S : S] = A[S]. A partition of V is a division of V
into non-overlapping and non-empty subsets. A partition of V into
l subsets is called here a l-partition.

Consider a function s : A → { + , − } that assigns a sign to each arc
in A. A digraph D together with a function s is called a signed digraph.
Let D = (V, A, s) denote a signed digraph. An arc a ∈ A is called negative
if s(a) =− and positive if s(a) =+. Let A− and A+ denote, respectively,
the set of negative and positive arcs in a signed digraph. Notice that,
according to the definitions above, A = A− ∪ A+.

A signed digraph D = (V, A, s) is balanced if its vertex set V can
be divided into sets S (possibly empty) and V \ S in such a way that
A[S] ∪ A[V \ S] = A+. An extension of this definition is given next.

Consider an integer parameter k with 1 ≤ k ≤ n. A signed digraph
D = (V, A, s) is k-balanced if its vertex set V can be divided into sets S1,
S2, . . ., Sk, some of them possibly empty, such that ∪1≤i≤kA[Si] = A+.
This definition can be equivalently stated as follows. A signed
digraph D = (V, A, s) is k-balanced if there exists a l-partition P = {S1,
S2, . . .,  Sl} of V, with l ≤ k, such that ∪1≤i≤lA[Si] = A+. A signed digraph
is clusterable if it is n-balanced.1 A clusterable signed digraph is
called a colorable signed digraph in Cartwright and Harary (1967).
1 The definition of a k-balanced signed digraph is slight different in Davis (1967),
Doreian and Mrvar (1996). In these works, the value k is not a fixed parameter and
the  concepts of a clusterable and a k-balanced signed digraph are the same.
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Consider a l-partition P = {S1, S2, . . .,  Sl} of V. The cut arcs and the
ncut arcs related with this partition are defined, respectively, as
he arcs in sets ∪1≤i /=  j≤lA[Si : Sj] and ∪1≤i≤lA[Si]. Let wa be a nonneg-
tive arc weight associated with arc a ∈ A. Also, for 1 ≤ i /= j ≤ l,let

+(Si, Sj) =
∑

a∈A+∩A[Si:Sj]

wa

nd

−(Si, Sj) =
∑

a∈A−∩A[Si:Sj]

wa.

he imbalance I(P) of a partition P is defined as the total weight of
egative uncut arcs and positive cut arcs, i.e.,

(P) =
∑
1≤i≤l

�−(Si, Si) +
∑

1≤i /=  j≤l

�+(Si, Sj). (1)

ikewise, the balance B(P) of a partition P is defined as the total
eight of positive uncut arcs and negative cut arcs. Clearly, B(P) +

(P) =
∑

a∈Awa.
Next, we define a clustering problem whose optimal solution is

sed in Doreian and Mrvar (1996) as a measure for the degree of
alance in a social network.

roblem 2.1 (CC problem). Let D = (V, A, s) be a signed digraph and
a be a nonnegative arc weight associated with each arc a ∈ A. The

orrelation clustering problem is the problem of finding a partition
 of V such that the imbalance I(P) is minimized. Let us denote this
inimal value by CC(D).

For the best of our knowledge, the CC problem was addressed for
he first time in Doreian and Mrvar (1996) (but not under this name)
here a heuristic solution of this problem was used as a criteria

or analyzing structural balance on social networks. The heuris-
ic approach proposed by the authors is a greedy neighborhood
earch procedure that assumes a prior knowledge of the number
f clusters in the solution. Lately, in Bansal et al. (2002), motivated
y the solution of a document clustering problem, the CC prob-

em was formalized under this name. Due to the applications of
his problem in the area of machine learning, it has been largely
nvestigated but from the point of view of approximation algo-
ithms (Charikara et al., 2005; Demaine et al., 2006). In Yang et al.
2007) the CC problem is called community mining.  The authors
roposed an agent-based heuristic to the problem where no prior
nowledge on the graph structure (the number of groups or a good
nitial solution) is required. Computational experiments were car-
ied out over signed digraphs with tens of nodes available in the
iterature as well as over large random graphs for which the number
f nodes range from 64 to 256. For the best of our known, the only
xact approach for the CC problem is a branch-and-bound proce-
ure proposed in Brusco and Steinly (2010) where the CC problem is
alled K-balance partitioning problem. This solution approach also
ssumes a prior knowledge of the number of clusters. Computa-
ional results were reported over up to 21 vertices.

In Doreian and Mrvar (2009), the definition of a k-balanced
igned digraph was informally extended in order to include rele-
ant processes (polarization, mediation, differential popularity and
ubgroup internal hostility) that originally were viewed as viola-
ions of structural balance. Next, we formalize this definition. A
igned digraph D = (V, A, s) is k-relaxed balanced if its vertex set V
an be partitioned into sets S1, S2, . . .,  Sl, with l ≤ k, such that: all the

rcs within a set have the same sign and all the arcs going between
wo sets have the same sign. That means, for each 1 ≤ i ≤ l,

[Si] ⊆ A− or A[Si] ⊆ A+,
tworks 35 (2013) 639– 651 641

and for each 1 ≤ i /= j ≤ l,

A[Si : Sj] ⊆ A− or A[Si : Sj] ⊆ A+.

Using this new definition, the structural balance was general-
ized to a version labeled relaxed structural balance (Doreian and
Mrvar, 2009). This generalization gives rise to a new definition
for the imbalance of a vertex partition. Let P = {S1, S2, . . .,  Sl} be
a l-partition of V. The relaxed imbalance RI(P) of P is defined as

RI(P) =
∑
1≤i≤l

min{�+(Si, Si), �−(Si, Si)}

+
∑

1≤i /= j≤l

min{�+(Si, Sj), �−(Si, Sj)}. (2)

Again, the relaxed balance RB(P) is defined in such a way that
RB(P) + RI(P) =

∑
a∈Awa. Consider a partition P and a cut (uncut)

arc (i, j). The contribution of arc (i, j) for the relaxed imbalance I(P)
depends on the sign of other cut (uncut) arcs. On the other hand,
the contribution of arc (i, j) for the imbalance I(P) depends only on
its own sign. The two measures of imbalance are related as follows.

Remark 2.2. RI(P) ≤ I(P) for each partition P of V.

This new definition of imbalance defines a new criteria to eval-
uate balancing in a signed digraph and gives rise to another graph
clustering problem.

Problem 2.3 (RCC problem). Let D = (V, A, s) be a signed digraph, wa

be a nonnegative arc weight associated with each arc a ∈ A and k be
an integer value satisfying 1 ≤ k ≤ n. The relaxed correlation cluster-
ing problem is the problem of finding a l-partition P of V, with l ≤ k,
such that the relaxed imbalance RI(P) is minimized. Let us denote
this minimal value by RCC(D,k).

The RCC problem is closely related with the CC problem but it is
not a particular case nor a generalization of the CC problem. Actu-
ally, each feasible solution (a graph partition) of the RCC problem
is also a feasible solution of the CC problem but the problems have
different cost functions, i.e., different ways of evaluating the imbal-
ance of a partition. The RCC problem is intuitively as hard as the CC
problem. We  next establish that this problem is NP-hard; a formal
proof is given in Appendix A.

Lemma  2.4. The RCC problem is NP-hard.

Given a signed digraph D and an arc weight vector w ∈ R
|A|, only

one instance of the CC problem is defined for D and w. On the other
hand, for each value of 1 ≤ k ≤ n, a different instance of the RCC prob-
lem is defined over D and w.  The optimal solution of each of these
instances determines an ideal partition (in at most k sets) of the
signed network associated with D that includes social psycholog-
ical processes like polarization, mediation, differential popularity
and subgroup internal hostility (see Brusco et al., 2011; Doreian and
Mrvar, 2009). The optimal values of these n problems are related
as follows.

Remark 2.5. RCC(D,2)≥ RCC(D,3)≥ . . .≥ RCC(D,n)=0.

To the best of our knowledge, the RCC problem has been applied
only for the evaluation of structural balance in social networks.
However, as it is mentioned in Porter et al. (2009) “scientists study-
ing community detection and those studying data clustering are
obviously looking at the same coin”. Hence, the RCC problem could
be also used as an approach to efficient community detection. Two

solution methods were proposed in the literature for the RCC prob-
lem: a greedy heuristic approach (Doreian and Mrvar, 2009) and a
branch-and-bound procedure (Brusco et al., 2011). Computational
experiments with both procedures were reported over literature
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nstances with up to 29 vertices and for random instances with
V| ∈ {20, 40}  (see Brusco et al., 2011; Doreian and Mrvar, 2009). For
he branch-and-bound procedure, the values considered for k were

 ≤ 7 for literature instances and k ∈ {3, 5} for the set of random
nstances.

. Integer linear programming formulations

In this section, we describe ILP formulations for the problems
efined in Section 2.

The classical formulation for the CC problem is an ILP model pro-
osed to uncapacitated clustering problems (Demaine et al., 2006)

n which a binary decision variable xij is assigned to each pair of
ertices i, j ∈ V, i /= j, and defined as follows.

ij =
{

0 if vertex i and j are in a common set,

1 otherwise.

This ILP formulation minimizes the total imbalance and is
escribed in the following.

inimize
∑

(i,j)∈A−
wij(1 − xij) +

∑
(i,j)∈A+

wijxij (3)

ubject to xip + xpj≥xij, ∀ i, p, j ∈ V, (4)

ij = xji, ∀ i, j ∈ V, (5)

ij ∈ {0, 1}, ∀ i, j ∈ V. (6)

The triangle inequalities (4) say that if vertices i and p are in a
ame cluster as well as vertices p and j, then vertices i and j are also
n a same cluster. Constraint (5) written to i, j ∈ V establishes that
ariables xij and xji assume always the same value in this formu-
ation. Constraints (6) impose binary restrictions to the variables

hile the objective function (3) minimizes the total imbalance
efined by Eq. (1). Let us refer to this formulation as IP(CC).

To the best of our knowledge, the RCC problem has not been
ormulated as an ILP problem in the literature before. The authors
n Brusco et al. (2011) presented a model that tries to describe this
ptimization problem but that, in fact, do not provide a mathe-
atical description of a vertex partition. We  use a representatives

ormulation to describe a feasible solution for the RCC problem,
hich means a partition of vertex set V. Representatives formula-

ions have been successfully applied to the solution of other graph
lustering problems (Bahiense et al., 2009; Campêlo et al., 2008;
ampelo et al., 2004; Frota et al., 2010) including one balancing
roblem defined over a signed graph (Figueiredo et al., 2012). The
ain idea behind a representatives formulation is the unique rep-

esentation of a cluster by its vertex with the lowest index. In our
ormulation, we use binary decision variables defined as follows.
or each vertex i ∈ V we define

i
i =

{
1 if i is a representative vertex,

0 otherwise.

or each pair of vertices i, j ∈ V, we define

i
j =

{
1 if i < j and vertex j is represented by vertex i,

0 otherwise.

lso, a set of binary variables is used to describe the set of uncut

rcs. For a vertex i ∈ V and an arc (p, q) ∈ A, we define

i
pq =

{
1 if i ≤ p, i ≤ q and vertices p and q are both represented by i,

0 otherwise.
tworks 35 (2013) 639– 651

Finally, a set of binary variables is used to describe the set of cut
arcs. For each pair of vertices i, j ∈ V and for each arc (p, q) ∈ A, we
define

yij
pq =

{
1 if i ≤ p, j ≤ q, p is represented by i and q is represented by

0 otherwise.

From now on, let Si be a set of vertices represented by vertex
i ∈ V; we assume that Si =∅ whenever i is not a representative vertex.
Notice that, ti

pq = 1 whenever (p, q) ∈ A[Si] and yij
pq = 1 whenever (p,

q) ∈ A[Si : Sj]. Although in the representatives formulation a clus-
ter is represented by its vertex with the lowest index, for the sake
of keeping the formulation presented here as simple as possible,
binary variables were defined for each combination of vertices i,
j ∈ V and arc (p, q) ∈ A. A simple pre-processing procedure can be
used to eliminate all the binary variables not satisfying this condi-
tion.

A set of continuous variables is used to describe functions �+ and
�− appearing in the definition of the relaxed imbalance given by Eq.
(2). For each vertex i ∈ V we  define ci = min{�+(Si, Si), �−(Si, Si)} ∈
R. Likewise, we define dij = min{�+(Si, Sj), �−(Si, Sj)} ∈ R  for each
pair of vertices i, j ∈ V. The formulation follows.

minimize
∑
i∈V

ci +
∑
i,j∈V

dij (7)

subject to
∑

i∈V :i≤j

xi
j = 1, ∀ j ∈ V, (8)

xi
j ≤ xi

i, ∀ i, j ∈ V : i < j, (9)

∑
i∈V

xi
i ≤ k, (10)

xi
j ∈ {0, 1}, ∀ i, j ∈ V : i ≤ j, (11)

ti
pq = xi

pxi
q, ∀ i ∈ V, (p, q) ∈ A, (12)

yij
pq = xi

pxj
q, ∀ i, j ∈ V, (p, q) ∈ A, (13)

where,

ci = min{
∑

(p,q)∈A+
w(p,q)t

i
pq,

∑
(p,q)∈A−

w(p,q)t
i
pq}, ∀ i ∈ V, (14)

dij = min{
∑

(p,q)∈A+
w(p,q)y

ij
pq,

∑
(p,q)∈A−

w(p,q)y
ij
pq}, ∀ i, j ∈ V. (15)

Constraints (8) establish that vertex j must be represented by
exactly one vertex. Constraints (9) forbid vertex j to be represented
by vertex i unless i is a representative vertex. These constraints,
together with (10) and integrality constraints (11), define a par-
tition of V in at most k clusters. Constraints (12) define the set
of arcs linking vertices within a same cluster. Notice that, we do
not need to impose integrality constraints on variables ti

pq since
constraints (12) together with integrality constraints (11) ensure
that ti

pq ∈ {0, 1}. In a similar way, constraints (13) define the set of
arcs linking vertices in two different clusters. Finally, Eqs. (14) and
(15) define, respectively, the first and second sums in Eq. (2) while
the objective function (7) looks for a partition that minimizes the
relaxed imbalance.
The quadratic constraints (12) and (13) can be lin-
earized (Wolsey, 1998) as follows.

xi
p + xi

q − ti
pq ≤ 1, ∀ i ∈ V, (p, q) ∈ A, (16)
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i
pq ≤ xi

p, ∀ i ∈ V, (p, q) ∈ A, (17)

i
pq ≤ xi

q, ∀ i ∈ V, (p, q) ∈ A, (18)

 ≤ ti
pq ≤ 1, ∀ i ∈ V, (p, q) ∈ A, (19)

i
p + xj

q − yij
pq ≤ 1, ∀ i, j ∈ V, (p, q) ∈ A, (20)

ij
pq ≤ xi

p, ∀ i, j ∈ V, (p, q) ∈ A, (21)

ij
pq ≤ xj

p, ∀ i, j ∈ V, (p, q) ∈ A, (22)

 ≤ yij
pq ≤ 1, ∀ i, j ∈ V, (p, q) ∈ A. (23)

Constraints (16) ensure that ti
pq = 1 whenever xi

p = xi
q = 1. On

he other hand, constraints (17) and (18) impose ti
pq = 0 when-

ver xi
p = 0 or xi

q = 0. In a similar way, constraints (20) ensure that
ij
pq = 1 whenever xi

p = xj
q = 1 while constraints (21) and (22) are in

harge of setting yij
pq = 0.

Since the RCC problem is a minimization problem, Eqs. (14) and
15) can be replaced by the following disjunctions.⎛

⎝ci =
∑

(p,q)∈A+
w(p,q)t

i
pq

⎞
⎠∨

⎛
⎝ci =

∑
(p,q)∈A−

w(p,q)t
i
pq

⎞
⎠ , ∀ i ∈ V,

(24)

⎛
⎝dij =

∑
(p,q)∈A+

w(p,q)y
ij
pq

⎞
⎠∨

⎛
⎝dij =

∑
(p,q)∈A−

w(p,q)y
ij
pq

⎞
⎠ , ∀ i, j ∈ V.

(25)

A disjunction of linear constraints can be equivalently replaced
y a set of linear inequalities written over a set of additional binary
ariables (Wolsey, 1998). Thus, (24) can be replaced by the follow-
ng linear inequalities with M+ =

∑
a∈A+ wa and M− =

∑
a∈A− wa.

i ≤
∑

(p,q)∈A+
w(i,j)t

i
pq, ∀ i ∈ V, (26)

i ≤
∑

(p,q)∈A−
w(i,j)t

i
pq, ∀ i ∈ V, (27)

i −
∑

(i,j)∈A+
w(i,j)t

i
pq − M+ri≥ − M+, ∀ i ∈ V, (28)

i −
∑

(i,j)∈A−
w(i,j)t

i
pq − M−(1 − ri)≥ − M−, ∀ i ∈ V, (29)

i ∈ {0, 1}, ∀ i ∈ V, (30)

i≥0, ∀ i ∈ V. (31)
If ri = 1, constraint (29) becomes redundant and constraints (26)
nd (28) force ci to be equal to the rhs of (26). On the other hand,
f ri = 0, constraint (28) becomes redundant and constraints (27)
nd (29) force ci to be equal to the rhs of (27). Hence, if the rhs
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of (26) is smaller than the rhs of (27), ri will be forced to be zero.
In the opposite case, i.e., if the rhs of (27) is smaller than the rhs
of (26), ri will be forced to be one. Likewise, (25) can be replaced by
the following linear inequalities.

dij ≤
∑

(p,q)∈A+
w(p,q)y

ij
pq, ∀ i, j ∈ V, (32)

dij ≤
∑

(p,q)∈A−
w(p,q)y

ij
pq, ∀ i, j ∈ V, (33)

dij −
∑

(p,q)∈A+
w(p,q)y

ij
pq − M+sij≥ − M+, ∀ i, j ∈ V, (34)

dij −
∑

(p,q)∈A−
w(p,q)y

ij
pq − M−(1 − sij)≥ − M−, ∀ i, j ∈ V, (35)

sij ∈ {0, 1}, ∀ i, j ∈ V, (36)

dij≥0, ∀ i, j ∈ V. (37)

The RCC problem is equivalent to the following ILP problem:

minimize
∑
i∈V

ci +
∑

i,j∈V :i<j

dij

subject to (8) − (11), (16) − (23) and (26) − (37).

Let us refer to this formulation as IP(RCC). The linear programming
(LP) relaxation of this formulation is obtained by dropping all its
binary constraints. Besides having a large number of binary vari-
ables, formulation IP(RCC) also has many “big-M” constraints. It is
well known that these are factors that lead, in general, to weak LP
relaxations and make the solution of the formulation numerically
difficult.

Since the relaxed imbalance (2) is a minimization function, the
RCC problem can naturally be seen as a mixed integer bilevel linear
programming (MIBL) problem (Moore and Bard, 1990). The solution
of the RCC problem involves the solution of optimization prob-
lems at different levels, each one solved in a non-cooperatively and
sequential way. The first-level optimization problem is in charge
of choosing a partition of vertex set V. As an answer, the second-
level optimization problem chooses the way the relaxed imbalance
associated with that partition is calculated. For that reason, the
RCC problem could also have been written as MIBL problem that
becomes the formulation IP(RCC) after applying classical bilevel
reformulation ideas.

3.1. Computational experiments with the ILP formulations

We report computational experiments carried out with the for-
mulations described in this section. We  evaluate each formulation
on a set of 22 benchmark instances from the literature. For formu-
lation IP(CC), we  also present numerical results obtained with a set
of random instances. The formulations are coded in Xpress Mosel
3.2.0 with solver Xpress Optimizer 21.01.00 on a Sony Vaio com-
puter with a processor Intel Core 2 Duo of 2.10 GHz and 3 GB of
RAM memory. The CPU time limit was  set to 1h for all instances
and procedures. Before presenting the obtained results, we  briefly
describe the set of instances used in our experiments.

3.1.1. Benchmark instances from the literature

Table 1 describes the signed graphs associated with these 22

instances. Besides the name of each instance, this table exhibits
the number of vertices |V|, the graph density d = |A|/(|V|2 − |V|) and
the total number of positive and negative arcs, |A+| and |A−|. Also,



644 R. Figueiredo, G. Moura / Social Networks 35 (2013) 639– 651

Table 1
Literature instances.

Name |V| d |A+| |A−| sum wa

House A
Date 21 0.300 63 63 126
Friend 21 0.300 63 63 126
Roomate 21 0.300 63 63 126
Weekend 21 0.300 63 63 126
Sum 21 0.502 92 119 504

House B
Date 17 0.375 51 51 102
Friend 17 0.375 51 51 102
Roomate 17 0.375 51 51 102
Weekend 17 0.375 51 51 102
Sum 17 0.591 78 83 406

House C
Date 20 0.315 60 60 120
Friend 20 0.315 60 60 120
Roomate 20 0.315 60 60 120
Weekend 20 0.315 60 60 120
Sum 20 0.521 93 105 466

MonkT2 18 0.339 55 49 207
MonkT3 18 0.343 57 48 207
MonkT4 18 0.336 56 47 205
MonkT4 Sum 18 0.503 78 76 612

Manning Shofner 21 0.990 78 338 33,440
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Table 2
CC problem – results obtained for literature instances.

Instance IP(CC) Pajek B&B

Name |V| I(P) Time |K| I(P) Time I(P) Time

House A
Date 21 17 0.14 4 17 1.00 17 0.01
Friend 21 15 0.13 4 15 1.00 15 0.01
Roommate 21 13 0.09 4 13 1.00 13 0.01
Weekend 21 14 0.12 5 14 1.00 14 0.01
Sum 21 64 0.08 4 64 1.00 64 0.01

House B
Date 17 18 0.11 4 18 1.00 18 0.02
Friend 17 18 0.10 4 18 1.00 18 0.06
Roommate 17 17 0.14 4 17 1.00 17 0.06
Weekend 17 19 0.18 4 19 1.00 19 0.06
Sum 17 81 0.14 4 81 1.00 81 0.06

House C
Date 20 13 0.20 3 13 1.00 – –
Friend 20 14 0.22 4 14 1.00 – –
Roommate 20 18 0.35 4 18 1.00 – –
Weekend 20 14 0.23 3 14 1.00 – –
Sum  20 59 0.17 3 59 1.00 – –

MonkT2 18 35 0.07 3 35 1.00 35 0.01
MonkT3 18 22 0.05 3 22 1.00 22 0.01
MonkT4 18 21 0.05 3 21 1.00 21 0.01
MonkT4 Sum 18 62 0.12 3 62 1.00 62 0.02
McKinney 29 0.337 246 28 264
NewComb 17 0.437 68 51 119

he last column in this table gives us the sum of all arc weights in
he signed digraph,

∑
a∈Awa.

.1.2. House instances
These instances were generated in 1952 by Lemann and

olomon (1952) in a sociometric study. This set of networks repre-
ents information obtained from students living in three different
ormitories labeled as Houses A, B and C. Originally, four signed
etworks were defined, each one associated with one indicator
denoted Date, Friend, Roommate and Weekend). A fifth signed net-
ork (denoted Sum) was defined in Doreian (2008) by adding up

rc weights from these four signed networks. This set of instances
as been analyzed in Doreian (2008) where a multiple indicator
pproach is proposed to blockmodeling of signed networks and
n Brusco et al. (2011) where a branch-and-bound procedure is
roposed to the RCC problem.

.1.3. Monastery instances
The next four instances are the very known Sampson monastery

ata defined in 1968 (Sampson, 1968). Sampson collected data on
our signed relationships (affect, esteem, influence and sanction)
or a group of young men  who were either postulants or novices
t a monastery in different time periods. A signed network can
e defined for each combination of signed relationship and time
eriod. The first three signed networks (denoted Monk T2, T3 and
4) describes the affect relationship for three different time periods.
he instance MonkT4 Sum was defined in Doreian (2008) by adding
p arc weights from the four signed networks relationships on time
eriod T4. These instances have been used in the evaluation of
olution approaches proposed to the CC problem and to the RCC
roblem (Brusco et al., 2011; Brusco and Steinly, 2010; Doreian and
rvar, 1996).

.1.4. Manning and Shofner’s lipread consonants data
The next instance do not come from the structural balance litera-
ure but from a study of 21 lipread consonants similarity performed
y Manning and Shofner (1991). In this study, individuals were
sked to rate on a given scale the similarity between pairs of con-
onants. The average over all ratings was calculated to produce a
Manning Shofner 21 770 0.09 9 770 1.00 770 0.01
McKinney 29 12 0.56 2 12 1.00 12 1.00
NewComb 17 20 0.09 4 20 1.00 20 0.03

similarity matrix with values in the interval [− 2, 2]. This data has
been used in the evaluation of a branch-and-bound procedure pro-
posed to the solution of the CC problem (Brusco and Steinly, 2010).
This is a very dense digraph with most negative arcs, which means
most consonant pairs were judged as dissimilar by the respondents.

3.1.5. McKinney instance
This instance was introduced in the literature of computa-

tional methods for structural balance by Brusco et al. (2011) which
intended to test their methodology on a large and dense signed
social network. This signed digraph was defined based on the data
collected by McKinney (1948) during a study about relationships
among children in a same classroom. In a sociometric test, students
were asked to chose among “willing to serve with other children”,
rated as +1, “not being willing to serve”, rated as −1, and “indif-
ferent”, rated as 0, as a definition to their behavior in a discussion
group with the other members of the class.

3.1.6. Newcomb instance
The last instance is a very known signed social network that

has been analyzed in some works cited here (Brusco et al., 2011;
Doreian and Mrvar, 1996, 2009). The original data is from 1961 and
comes from a sociometric study with students in a dormitory at
a university that lasted several weeks (Newcomb, 1961). This data
has been slightly changed by Doreian and Mrvar (2009) and here
we consider this modified version of the instance.

For additional details on the definition of these 22 instances, we
refer the interested reader to the works we  have cited. From Table 1
we see that, these signed digraphs vary from low-density (0.3) to
high-density (0.99) with the number of vertices varying from 17
to 29 which makes this set, in some sense, a heterogeneous set of
instances. However, for most digraphs, the negative density |A−|/|A|
is around 0.5 with only instance “Manning Shofner” having a high
negative density equal to 0.8125.
3.1.7. Random instances
We generated random signed digraphs by varying the number

of vertices |V|, the graph density d = |A|/(|V|2 − |V|) and the negative
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raph density defined here as d− = |A−|/|A|. We  considered a set of
8 random instances having |V|, d and d− ranging, respectively, in
he sets {20, 30, 40, 50}, {0.1, 0.2, 0.5, 0.8} and {0.2, 0.5, 0.8}.

Table 2 presents the results obtained on solving the CC problem
n the set of literature instances. The first multicolumn on this table
dentify the instances. The second multicolumn gives us informa-
ion about the solution process with IP(CC)  formulation: I(P) is the
mbalance of the optimal solution, Time is the time (in seconds)
pent to solve the instances to optimality, and |K| is the number
f clusters in the optimal solution. We also solved these instances
y using: the branch-and-bound procedure described in Brusco
nd Steinly (2010); and the Doreian-Mrvar heuristic (Doreian and
rvar, 1996, 2009) available in Pajek software (version 2.0 with

umber of iterations set to 103). Pajek software (Pajek, 2012) is a
owerful program for analysis and visualization of large networks

hich is freely available for noncommercial use. We  used a For-

ran implementation of the branch-and-bound code made available
y the authors. This Fortran implementation works with a limita-
ion of 10 clusters. Remember that, as we have mentioned before,

able 3
C problem – results obtained for random instances.

Instance IP(CC) 

|V| d d− I(P) Time Nodes 

20 0.1 0.2 5 0.22 1 

0.5  6 0.50 2 

0.8 1  0.08 1 

0.2  0.2 14 0.1 1 

0.5  16 0.15 1 

0.8  6 0.11 1 

0.5  0.2 38 0.07 1 

0.5  59 1.58 19 

0.8  23 0.06 1 

0.8 0.2  61 0.06 1 

0.5  104 0.20 1 

0.8  48 0.07 1 

30  0.1 0.2 14 0.83 1 

0.5  16 5.51 5 

0.8  3 1.73 1 

0.2 0.2 33  0.56 1 

0.5  43 8.97 24 

0.8  16 2.26 1 

0.5  0.2 87 0.23 1 

0.5  154 268.35 18,823 

0.8  64 0.73 1 

0.8  0.2 140 0.20 1 

0.5  258 83.47 2971 

0.8  114 1.41 8 

40  0.1 0.2 32 2.79 1 

0.5  32 41.33 65 

0.8  8 0.87 1 

0.2  0.2 63 2.38 1 

0.5  83 91.19 563 

0.8  33 4.35 17 

0.5  0.2 156 0.71 1 

0.5  315 – 26,950 

0.8  120 4.63 69 

0.8  0.2 250 0.56 1 

0.5  512 – 3124 

0.8  209 7.08 68 

50  0.1 0.2 48 6.17 1 

0.5 55  550.91 1377 

0.8  18 2.75 1 

0.2  0.2 98 6.08 1 

0.5  159 – 1028 

0.8  58 10.67 73 

0.5  0.2 245 1.44 1 

0.5  523 – 2004 

0.8  196 766.40 60,349 

0.8  0.2 392 1.31 1 

0.5  879 – 901 

0.8  334 74.13 2911 
tworks 35 (2013) 639– 651 645

both methods need as an input the number of clusters in the out-
put solution. We  fed these methods with the number of clusters
in the solution obtained by the IP(CC)  formulation. The next two
multicolumns in Table 2 give us information about these solution
processes. We do not report the solution obtained for House C
instances by the branch-and-bound procedure since the Fortran
code failed to solve this instance. We  can see that these instances
are very easy instances of the CC problem solved to optimality in
some seconds by the exact approaches. Pajek was  able to find the
optimal solution for all instances.

In order to identify the limitation of the IP(CC)  formulation,
we solved the CC problem on a set of random instances. Table 3
presents the obtained results. The notations in this table are the
same as in Table 2 except for columns Nodes and I(P): Nodes informs
us the number of nodes in the enumeration tree; I(P) informs us

the imbalance of the best solution found by each method. Also, in
this table “–” means the instance was  not solved within the time
limit and “*” means the number of clusters in the IP(CC)  solution
exceeds the software limitation. Notice that, in multicolumn IP(CC),

Pajek B&B

|K| I(P) Time I(P) Time

2 5 1.00 5 0.08
5 6 9.00 6 4.63
4 1 11.00 1 0.02
2 14 1.00 14 0.01
5 16 1.00 16 280.63
5 6 3.00 6 53.59
1 38 1.00 38 0.01
5 59 2.00 59 1131.24
8 23 1.00 23 307.93
1 61 2.00 61 0.01
4 104 3.00 104 833.24

13 48 1.00 * *

3 14 2.00 14 0.77
5 16 2.00 – –
8 3 20.00 – –
2 33 2.00 33 0.28
5 43 8.00 – –

11 16 88.00 * *
1 87 3.00 87 0.01
5 154 7.00 – –

10 64 7.00 – –
1 140 1.00 140 0.01
5 258 5.00 – –

11 114 56.00 * *

1 32 1.00 32 0.01
6 32 2.00 – –

18 8 3.00 * *
1 63 1.00 63 0.01
5 83 64.00 – –

13 34 5.00 * *
1 156 1.00 156 0.01
7 285 23.00 – –

15 120 23.00 * *
1 250 2.00 250 0.01
8 497 47.00 – –

17 209 30.00 * *

2 48 3.00 – –
8 56 551.00 – –

21 19 6.00 * *
1 98 1.00 98 0.01
6 151 8.00 – –

18 60 11.00 * *
1 245 1.00 245 0.01

10 468 30.00 – –
15 197 767.00 * *

1 392 2.00 392 0.01
11 788 46.00 * *
18 334 55.00 * *
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Table 4
RCC problem – results obtained for instances house.

Name k I(P) Gap Time Nodes

House A Sum 2 96 0.00 59 1579
3 57 78.94 – 31,737

13 12 83.33 – 20,945
14 2 0.00 1555 16,703
15 0 0.00 3585 30,208
16 0 0.00 1162 7358
17 0 0.00 601 2319
18 0 0.00 599 2634
19 0 0.00 23 1
20 0 0.00 0 1

House B Sum 2 84 0.00 22 1115
3 75 47.52 – 90,640

12 5 60.00 – 80,375
13 2 0.00 715 13,538
14 1 0.00 279 3761
15 0 0.00 85 584
16 0 0.00 0 1

House C Sum 2 64 0.00 26 615
3 60 82.97 – 42,981

15 3 66.66 – 35,179
16 1 0.00 2097 12,517
17 0 0.00 118 383
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Table 5
RCC problem – results obtained for instances Monk.

Name k I(P) Gap Time Nodes

MonkT2 2 43 0.00 13 733
3 25 0.00 2238 70,771
4 20 85.00 – 121,561

11 2 100.00 – 176,063
12 0 0.00 2369 102,937
13 0 0.00 222 8881
14 0 0.00 48 593
15 0 0.00 15 69
16 0 0.00 7 1
17 0 0.00 0 1

MonkT3 2 32 0.00 6 243
3 21 0.00 193 4765
4 13 0.00 2269 54,227
5 8 0.00 3325 85,056
6 7 71.37 – 100,613
7 5 60.00 – 140,597
8 2 0.00 2837 67,250
9 1 0.00 438 11,577

10 0 0.00 1182 44,984
11 0 0.00 251 8439
12 0 0.00 519 21,543
13 0 0.00 103 5335
14 0 0.00 49 1120
15 0 0.00 30 455
16 0 0.00 18 119
17 0 0.00 0 1

MonkT4 2 25 0.00 5 149
3 21 0.00 119 3381
4 10 0.00 563 13,945
5 6 0.00 1463 42,782
6 4 0.00 2391 68,659
18 0 0.00 96 153
19 0 0.00 0 1

(P) informs us the optimal value if the instance was  solved in the
ime limit, otherwise it gives us an upper bound for the optimal
alue. We  can see that the branch-and-bound code fails (within
he time limit of 1h) for instances with more the 20 vertices and
egative density 0.5 and 0.8. The IP(CC)  formulation was  able to
olve all instances with 20 and 30 vertices and starts to fail with
nstances of 40 vertices and negative density equal to 0.5. In the
econd multicolumn, the eight instances marked in bold were not
olved to optimality by Pajek after 103 iterations. For each instance
n this subset, if the time spent by Pajek was smaller than the time
pent by IP(CC),  we run again Pajek with number of iterations of
oreian–Mrvar heuristic set to 106 but imposing a time limit equal

o the number of seconds spent by IP(CC).  Pajek was able to find
he optimal solution for almost all random instances except for six;
he number of instances not optimally solved increases with the
umber of vertices.

Now we turn our attention to the solution of the RCC problem
ith the ILP formulation IP(RCC). We  run this formulation on 9 lit-

rature instances from Table 1. For the House instances, we  restrict
ur experiments only to the instances House Sum that have also
een used in Brusco et al. (2011) for evaluating the branch-and-
ound procedure. We  run the experiments with this formulation

n the following way. We  started by setting k = 2 and run the formu-
ation. If the formulation solves the problem to optimality within
he time limit, we increment the value of k and repeat the process.
f it is not the case, we do not increment k. Now, we set k = n − 1
nd run the formulation. The same process is repeated but now
ecrementing the value of k until the formulation is not able to
olve the problem within the time limit. Notice that, according to
emark 2.5, the optimal solution of RCC(D, k) can be used as a lower
ound when solving the problem RCC(D, k − 1). The obtained results
re registered in Tables 4–6. The notations in these tables are the
ame as in the previous ones except for column Gap that presents
he gaps calculated between the best integer solution found and
he final lower bound. Since we do not have access to the code of
he branch-and-bound procedure described in Brusco et al. (2011),

e do not report results for this method. In Brusco et al. (2011),

esults were reported for the branch-and-bound procedure with
 ≤ k ≤ 7 and, according to the authors, the number of cluster had

 strong effect on the computation time, which is totally expected.
7 1 0.00 683 19,452
8 0 0.00 414 12,469

From the results in Tables 4–6 we  see that the same happens with
the ILP formulation, but in a different way. Roughly speaking, the
IP(RCC) formulation presented its best results for k = 2, k = 3 (for
some instances) and for high values of k. For the other values of
k, the representatives formulation had poor LP relaxations (result-
ing from both the linearization of 0–1 variable products and the
big-M constraints) leading to poor convergence of the enumeration
solution process.

4. Alternative models for generalized structural balance

The main idea of generalized structural balance, proposed by
Doreian and Mrvar (2009), is to take into account more complex
structures when evaluating balance in a social network. These
authors have modeled this new concept as an instance of the RCC
problem: the solution of the RCC problem is proposed as a method-
ology to analyze balance in social networks. In this section, we
propose alternative ways to model the generalized structural bal-
ance.

4.1. A symmetric version of RCC problem

Consider a signed digraph D with arc weights w ∈ R
|A| and let P

be a partition of its vertex set. The definition of relaxed imbalance
RI(P) given by Eq. (2), and associated with the relaxed structural
balance, has its roots in blockmodeling approaches (Brusco et al.,
2011; Doreian and Mrvar, 2009). If we  consider the arc weight
matrix associated with the signed graph and we divide its lines and

columns according to the sets in P, the imbalance RI(P) is in fact the
sum of the imbalance in the different blocks of this matrix. Con-
sider the signed networks depicted in Fig. 2 where negative and
positive arcs are represented, respectively, as red and black arcs.
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ig. 2. (a) Partition P = {S1, S2, S3} with S1 = {A, B, C, D, E, F}, S2 = {G, H, I, J} and S3 = {K
,  F, G, H} and S3 = {D, I, E} has RI(P) = 7 and SRI(P) = 7.

ig. 2(a) exhibits the optimal solution of the RCC problem when
 = 3: a partition P = {S1, S2, S3} with S1 = {A, B, C, D, E, F}, S2 = {G,
, I, J} and S3 = {K, L, M}  and having the relaxed imbalance RI(P) = 0.
otice that, there are ten negative arcs going from S1 to S2 that char-

cterize ten negative relations from elements in cluster S1 toward
lements in cluster S2. However, there are eight positive relations
n the other sense, i.e., from elements in S1 toward elements in S2.
n some contexts, this can be viewed as a degree of imbalance. Thus,

able 6
CC problem – results obtained for instances McKinney and NewComb.

Name k I(P) Gap Time Nodes

MonkT4 Sum 2 86 0.00 14 347
3 54 0.00 1539 25,379
4 43 72.21 – 74,830
9 6 99.95 – 61,861

10  2 0.00 2582 51,491
11 0 0.00 1740 25,094
12 0 0.00 925 11,838
13 0 0.00 58 240
14 0 0.00 300 3389
15 0 0.00 7 1
16 0 0.00 1 1
17 0 0.00 0 1

McKinney 2 8 0.00 118 6531
3 6 100.00 – 43,762

16 2 100.00 – 33,562
17 0 0.00 81 169
18 0 0.00 2 1
19 0 0.00 19 1
20 0 0.00 1 1
21 0 0.00 16 1
22 0 0.00 2 1
23 0 0.00 5 1
24 0 0.00 6 1
25 0 0.00 1 1
26 0 0.00 95 49
27 0 0.00 2 1
28 0 0.00 0 1

NewComb 2 10 0.00 4 167
3 7 0.00 475 9869
4 5 34.64 – 90,604
8 1 100.00 – 146,619
9  0 0.00 172 9807

10  0 0.00 123 5969
11 0 0.00 27 405
12 0 0.00 37 162
13 0 0.00 8 1
14 0 0.00 0 1
15 0 0.00 0 1
16 0 0.00 0 1
 has RI(P) = 0 and SRI(P) = 8. (b) Partition P = {S1, S2, S3} with S1 = {A, J, K, L, M}, S2 = {B,

we propose a redefinition for the relaxed imbalance of a partition
P taking into account now symmetric relationships, as follows.

SRI(P) =
∑
1≤i≤l

min{�+(Si, Si), �−(Si, Si)}

+
∑

1≤i<j≤l

min{�+(Si, Sj) + �+(Sj, Si), �−(Si, Sj) + �−(Sj, Si)}.

The new definition for the relaxed imbalance gives rise to a sym-
metric version of the RCC problem that can be modeled as an ILP
formulation by replacing inequality (15) with

dij = min{
∑

(p,q)∈A+
w(p,q)(y

ij
pq + yji

pq),

∑
(p,q)∈A−

w(p,q)(y
ij
pq + yji

pq)}, ∀ i, j ∈ V : i < j,

and the objective function (7) with∑
i∈V

ci +
∑

i,j∈V :i<j

dij.

The partition P depicted in Fig. 2(a) has SRI(P) = 8. On the other
hand, the partition P = {S1, S2, S3}, depicted in Fig. 2(b), with S1 = {A,

J, K, L, M}, S2 = {B, C, F, G, H} and S3 = {D, E, I}, has SRI(P) = 7 and is
the optimal solution for the Symmetric RCC problem.

Tables 8–10 display the results obtained for the Symmet-
ric RCC problem over the 9 literature instances used in the

Table 7
CCPM and CCNM problems – results obtained for literature and random instances.

Instance IP(CCMN) CCMP

I(P) Time |K| Med  I(P) Time |K| Med

MonkT3 16 0.07 4 1 16 0.06 4 1
MonkT4 19 0.06 4 1 19 0.05 4 1
McKinney 6 6.69 4 4 0 0.04 4 17
20  0.1 0.2 2 1.21 5 7 4 0.04 3 8
20  0.1 0.5 2 0.31 4 4 2 0.07 6 5
20  0.1 0.8 1 0.17 4 – 1 0.12 5 1
20  0.2 0.2 13 0.32 3 2 13 0.10 3 4
30  0.1 0.2 9 6.27 5 5 7 0.20 4 10
30  0.1 0.5 12 1.59 5 3 12 0.74 5 3
30  0.2 0.2 31 3.44 3 2 30 0.55 3 3
40  0.1 0.2 24 38.56 5 9 25 12.84 4 10
40  0.1 0.5 29 33.03 6 1 29 32.23 6 1
40  0.2 0.2 63 3.58 1 – 63 3.18 2 2
50  0.1 0.2 45 227.51 5 7 43 78.52 5 10
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Table 8
Symmetric RCC problem – results obtained for instances house.

Name k I(P) Gap Time Nodes

House A Sum 2 97 0.00 600 10,853
3  80 80.0 – 33,859

17 19 15.7 – 26,772
18 16 0.00 316 2909
19 16 0.00 136 994
20 16 0.00 26 645
21 16 0.00 0 1

House B Sum 2 103 0.00 30 823
3 84 5.70 – 87,855

14 25 8.00 – 73,436
15 23 0.00 810 18,285
16 21 0.00 17 767
17 21 0.00 0 1

House C Sum 2 64 0.00 50 571
3 56 58.50 – 40,521

17 10 11.10 – 47,521
18 9 0.00 920 18,606
19 9 0.00 7 147
20 9 0.00 0 1

Table 9
Symmetric RCC problem – results obtained for instances Monk.

Name k I(P) Gap Time Nodes

MonkT2 2 43 0.00 13 211
3 34 0.00 1418 53,921
4 20 59.50 – 87,185
9 3 33.30 – 123,378

10 2 0.00 1566 56,365
11 1 0.00 348 15,476
12 1 0.00 109 4147
13 1 0.00 108 3636
14 1 0.00 48 1246
15 1 0.00 18 216
16 1 0.00 6 25
17 1 0.00 0 1
18 1 0.00 0 1

MonkT3 2 32 0.00 7 65
3 22 0.00 96 3079
4 16 0.00 2055 63,227
5 11 54.40 – 113,666

10 4 25.00 – 156,306
11 3 0.00 58 3270
12 3 0.00 96 5276
13 3 0.00 90 4467
14 3 0.00 60 2892
15 3 0.00 19 630
16 3 0.00 9 101
17 3 0.00 1 33
18 3 0.00 0 1

MonkT4 2 25 0.00 7 79
3 21 0.00 174 5813
4 15 82.20 – 131,117
5 6 0.00 1639 51,667
6 4 0.00 2352 80,785
7 3 0.00 3224 110,458
8 2 0.00 652 20,576
9 2 0.00 13 299

10 2 0.00 1313 28,510
11 2 0.00 14 278
12 2 0.00 8 122
13 2 0.00 7 110
14 2 0.00 9 132
15 2 0.00 4 36
16 2 0.00 5 50
17 2 0.00 1 1
18 2 0.00 0 1

Table 10
Symmetric RCC problem – results obtained for instances McKinney and NewComb.

Name k I(P) Gap Time Nodes

MonkT4 Sum 2 86 0.00 20 133
3 62 0.00 1329 28,531
4 45 64.44 – 89,039

12 8 50.00 – 116,597
13 4 0.00 1001 32,722
14 4 0.00 365 10,405
15 4 0.00 103 2763
16 4 0.00 51 1135
17 4 0.00 2 3
18 4 0.00 0 1

McKinney 2 8 0.00 2463 25,539
3 8 100.00 – 81,747

14 2 100.00 – 71,175
15 0 0.00 44 537
16 0 0.00 35 299
17 0 0.00 5 1
18 0 0.00 5 1
19 0 0.00 2 1
20 0 0.00 4 1
21 0 0.00 1 1
22 0 0.00 3 1
23 0 0.00 3 1
24 0 0.00 3 1
25 0 0.00 2 1
26 0 0.00 2 1
27 0 0.00 2 1
28 0 0.00 0 1
29 0 0.00 0 1

NewComb 2 21 0.00 14 285
3 19 0.00 1635 55,667
4 18 77.52 – 109,985

12 10 10.00 – 159,455
13 9 0.00 514 21,157
14 9 0.00 56 1369
15 9 0.00 16 838
16 9 0.00 5 269

17 9 0.00 0 1

numerical experiments with the RCC problem. As we expected,
for a given k, the imbalance associated with the optimal solution
increased in most cases when we  compare these results with the
results obtained for the RCC problem. Moreover, many optimal par-
titions evaluated with no imbalance when solving the RCC problem
were evaluated with an imbalance bigger than zero in the sym-
metric version. We  also noticed that the ILP formulation becomes
numerically more difficult to solve with the symmetric definition.

4.2. Negative and positive mediation

As we have already mentioned, one of the ideas behind the defi-
nition of the relaxed structural balance given in Doreian and Mrvar
(2009) is the possible existence of mediators in social networks (see
Figs. 1 and 2 in Doreian and Mrvar (2009)). The actors in a media-
tion group could be mutually hostile or mutually favorable, what
we call here, negative mediation and positive mediation,  respectively.
Motivated specially by this social process, we  propose two  new
variations of the CC problem. Our intention is to define problems
that are numerically easier to solve than the RCC problem and
whose optimal solution can help to identify the mediation pro-
cess in social networks. Additionally, in other contexts, finding the
best mediation group in a network can be a useful information. For
example, in a political group (such as a parliament, a set of political
parties or any group responsible for public decision-making), one

may  wants to define a group of negotiators mutually hostile accord-
ing to a specific subject but that maximizes the positive relation
with non mediators in this same political group.
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Additional notation will be necessary before we can proceed.
et S ⊆ V be a subset of vertices such that (i, j) /∈ A−, for each pair of
ertices i, j ∈ S. The subset S is called a positive mediation set in D. On
he other way, let S ⊆ V be a subset of vertices such that, (i, j) /∈ A+, for
ach pair of vertices i, j ∈ S, and such that, (i, j) /∈ A−, for each pair of
ertices i ∈ S and j ∈ V \ S. The subset S is called a negative mediation
et in D. The next two problems look for a signed graph partition
here mediation groups are not considered as a contribution to the

mbalance of the network.

roblem 4.1 (CCNM problem). Let D = (V, A, s) be a signed digraph
nd wa be a nonnegative arc weight associated with each arc a ∈ A.
he correlation clustering problem with negative mediation is the
roblem of finding a partition P = {S1, S2, . . . } of V such that S1 is a
egative mediation set in D and the imbalance I(P \ S1) is minimized.
et us denote this minimal value by CCNM(D).

roblem 4.2 (CCPM problem). Let D = (V, A, s) be a signed digraph
nd wa be a nonnegative arc weight associated with each arc a ∈ A.
he correlation clustering problem with positive mediation is the
roblem of finding a partition P = {S1, S2, . . . } of V such that S1 is a
ositive mediation set in D and the imbalance I(P \ S1) is minimized.
et us denote this minimal value by CCPM(D).

Notice that, again, the CCNM and CCPM problems are neither
eneralizations nor particular cases of the CC problem. In fact, like
he RCC problem, each one of these problems proposes a differ-
nt way of evaluating the imbalance in a signed digraph. The next
emark states how the optimal values of these problems are related.

emark 4.3. Let D = (V, A, s) be a signed digraph and wa be a non-
egative arc weight associated with each arc a ∈ A. The optimal
alues of the CC, CCPM and CCNM problems are such that

CPM(D) ≤ CC(D),

CNM(D) ≤ CC(D).

ow, let CC(D,k′), CCPM(D,k′) and CCNM(D,k′), denote, respectively,
he optimal values of the CC, CCPM and CCNM problems if we
estrict each problem’s feasible set to the set of partitions with at
ost k′ clusters. Then we have,

CC(D, k′) ≤ CCPM(D, k′) ≤ CC(D, k′),

CC(D, k′) ≤ CCNM(D, k′) ≤ CC(D, k′).

Now, we discuss the solution of the CCPM and CCNM problems.
ccording to the definition of positive mediation, a vertex can be a
ositive mediator no matter the role of its adjacent vertices. Thus,
he CCPM problem is solved by applying a simple preprocessing
rocedure to generate S1 (the unique maximal set S1 of positive
ediators in the digraph) and solving the CC problem defined over

he digraph (V \ S1, A[V \ S1]).
The optimal solution of the CCNM problem is not so simple since,

or each positive arc, at most one adjacent vertex can be a negative
ediator. As a consequence, there can exist more than one maximal

et of negative mediators. Thus, we describe an ILP formulation to
he CCNM problem.

We use the set of binary decision variables xij, i, j ∈ V, as defined
efore in formulation IP(CC). Additionally, we define a new set of

inary variables as follows. For each vertex i ∈ V, we  define

i =
{

1 if vertex i plays a negative mediation role,
0 otherwise.
tworks 35 (2013) 639– 651 649

The formulation follows.

minimize
∑

(i,j)∈A−
wij(1 − xij) +

∑
(i,j)∈A+

wij(xij − mi − mj) (38)

subject to (4), (5) and (6),

mi + mj ≤ 1, ∀ (i, j) ∈ A+, (39)

mi − mj = 0, ∀ (i, j) ∈ A−, (40)

mi ≤ xij, ∀ i, j ∈ V, (41)

mi ∈ {0, 1}, ∀ i ∈ V. (42)

Constraints (39) say that vertices i and j cannot be negative medi-
ators at the same time if they are linked by a positive arc.
Constraints (40) ensure that, if (i, j) ∈ A− then either both vertices
or none are mediators, thus we do not have a negative arc link-
ing a mediator vertex to a non mediator vertex. Constraints (41)
establish that, if vertex i is a mediator then it is considered as an
isolated vertex in the graph. In our ILP formulation, the set of all
isolated vertices defines the negative mediation set. The objective
function (38) keeps the idea of searching for a partition that mini-
mizes the imbalance. Notice that, in the second sum, due to (39)
and (41), xij − mi − mj is either equal to one or equal to zero: the
first case happens whenever i and j are not mediators and belong
to different clusters. Let us refer to this formulation as IP(CCNM).

We solved the CCPM and CCNM problems on all instances
described in Section 3.1. In our experiments, we observed that the
numerical complexity for solving these problems was the same as
the one for solving the CC problem: time spent to solve an instance
was almost the same and the same instances remained unsolved.
For most instances, the optimal solution for these problems was
a partition with no mediation group, which means, the optimal
solution of CC problem. Table 7 exhibits the results obtained for
the instances where a mediation group was  found. For instance
McKinney, a partition was found with a positive mediation group
with 17 elements. This partition is also an optimal solution for the
RCC problem defined on this instance with k = 4. The positive medi-
ation group is the reason why  the relaxed imbalance for the optimal
solution with k = 4 is equal to zero.

5. Concluding remarks

This work addressed clustering graph problems related with the
structural balance. We  were primarily interested in the exact solu-
tion of these problems. The CC and RCC problems have already been
used in the literature as tools for evaluating the structural balance
of social networks. Branch-and-bound procedures (Brusco et al.,
2011; Brusco and Steinly, 2010) have been proposed for their exact
solution. We  described ILP formulations to CC and RCC problems.
The benchmark instances for the CC problem were easily solved
to optimality by an ILP formulation (denoted IP(CC)) usually used
in the literature for graph clustering problems. Formulation IP(CC)
does not need to be fed by the number of clusters in the optimal
solution and this characteristic seems to be an advantage for this
approach: the branch-and-bound procedure starts to fail before
formulation IP(CC). We  presented the first mathematical formula-
tion for the RCC problem: a representatives formulation (denoted
IP(RCC)). Formulation IP(RCC) is harder to solve than formulation
IP(CC). For the set of benchmark instances, IP(RCC) was able to

solve the problem when k = 2, k = 3 (for some instances) and for
high values of k. The results presented for the branch-and-bound
procedure in Brusco et al. (2011) showed that this approach was
efficient in the solution of RCC instances with k ≤ 8. For now, it
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eems that formulation IP(RCC) and the branch-and-bound pro-
edure are complementary approaches for the efficient solution of
he RCC problem.

We also discussed alternative models for the relaxed structural
alance. The first model is a symmetric version of the RCC problem
otivated by the idea that the RCC problem can underestimate

he imbalance of a network partition. The relaxed structural bal-
nce is based in the identification of complex structures that must
ot be evaluated as imbalance and our second alternative model
ries to identify one of these structures: the mediation process. One
dvantage of this model is that the definition of the problem focus
n the structure we want to identify. As a consequence, the num-
er of clusters is not a parameter of the problem (as it happens
or the RCC problem) and the associated graph clustering problem
ecomes numerically easier.

In forthcoming studies, each ILP formulation discussed
ere could be strengthened by families of valid and facet-
efining inequalities and branch-and-cut procedures could
e implemented for the efficient solution of the associ-
ted clustering problem. A branch-and-cut procedure has
een successfully applied to the solution of a related prob-

em (Figueiredo and Frota, 2012; Figueiredo et al., 2011). Moreover,
ther mediation models could be tried by slightly changing the
efinition of the mediation group. Our definition for the negative
positive) mediation group do not accept the existence of positive
negative) relations inside the group. This could be relaxed and the
ositive (negative) relations could be counted as an imbalance in
he objective function. Also, the existence of more than one medi-
tion group could be included in the problem definition. However,
he possibility of having more mediation groups would make the
ssociated problem harder to solve.
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ppendix A.

Lemma  2.4. The RCC problem is NP-hard.

roof. To show that the RCC problem is NP-hard, we will reduce
olynomially the CC problem to an instance of the RCC prob-

em (Garey and Johnson, 2003). Consider an arbitrary instance of
C problem defined over a signed digraph D = (V, A, s) and an arc
eight vector w ∈ R

|A|. Let D′ = (V′, A′, s′) be a signed digraph and
′ ∈ R

|A′ | be an arc weight vector defined as follows:

V′ = V ∪ {n + i | i = 1, . . .,  2n};
A′ = A ∪ A′

1 ∪ A′
2 with A′

1 = {(n + (2k  − 1),  n + 2k) | k = 1, . . .,  n}
and A′

2 = {(n + (2k  − 1),  n + i), (n + 2k, n + i) | k = 1, . . .,  n; i =
2k + 1, . . .,  2n};

s′
a =

{
sa, a ∈ A,
+, a ∈ A′

1,
′
−, a ∈ A2;

w′
a =

{
wa, a ∈ A,
M,  a ∈ A′

1,
M, a ∈ A′

2,
where M =

(∑
a∈Awa

)
+ 1.
Fig. 3. Example of the graph construction used in the proof of Lemma  2.4. V = {1, 2,
3} and V′ = V ∪ {4, 5, 6, 7, 8, 9}.

See Fig. 3 for an illustration. Let P′ = {S1, . . .,  Sn} be the optimal
solution for the RCC problem defined over the signed digraph D′

with k = n. Clearly, we  have vertices n + (2k  − 1), n + 2k ∈ Sk, for each
k ∈ {1, . . .,  n}. So, the imbalance inside each cluster will be given by
the negative arcs and the imbalance between different clusters will
be given by positive arcs. As a consequence, P = {S1 \ V′, . . .,  Sn \ V′}
is an optimal solution of the CC problem defined over the signed
digraph D.�
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