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In the locomotive-scheduling problem (or the locomotive-assighment problem), we must assign a consist (a set
of locomotives) to each train in a preplanned train schedule so as to provide each train with sufficient loco-

motive power to pull the train from its origin to its destination. Locomotive-scheduling problems are among
the most important problems in railroad scheduling. In this paper, we report the results of a study on the
locomotive-scheduling problem as it is faced by CSX Transportation, a major U.S. railroad company. We con-
sider the planning version of the locomotive-scheduling model (LSM) in which multiple types of locomotives
exist, and we need to decide which set of locomotives should be assigned to each train. We present an inte-
grated model that determines: the set of active and deadheaded locomotives for each train; the light-traveling
locomotives from power sources to power sinks; and train-to-train connections (for which we specify which
inbound trains and outbound trains can directly connect). An important feature of our model is that we explic-
itly consider consist bustings and consistency. A consist is said to be busted when a set of locomotives coming on
an inbound train is broken into subsets to be reassigned to two or more outbound trains. A solution is consistent
over a week if a train receives the same locomotive assignment each day that it runs. We will provide a mixed-
integer programming (MIP) formulation of the locomotive-assignment problem. However, an MIP of this size
cannot be solved to optimality or near optimality in acceptable running times using commercially available soft-
ware. Using problem decomposition, integer programming, and very large-scale neighborhood search, we have
developed a solution technique to solve this problem within 30 minutes of computation time on a Pentium III
computer. Our solution obtained a potential savings of over 400 locomotives over the solution obtained by the
in-house software developed by CSX.

Key words: rail transportation; integer programming; network optimization; train scheduling
History: Received: April 2002; revisions received: August 2003, September 2004; accepted: September 2004.

1. Introduction

Railroad transportation of goods plays an integral
part in the U.S. economy, particularly in multimodal
and container transportation. The rail transportation
industry offers great potential for employing math-
ematical optimization techniques to solve the many
problems that it currently faces. However, research in
railroad scheduling has experienced a slow growth.
Until recently, most contributions relied on simpli-
fied models or only applied to small instances, failing
to incorporate the characteristics of real-life applica-
tion. The intense competition that rail carriers face
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(most notably from trucking companies) and the ever-
increasing speed of computers have motivated the use
of optimization models at various levels in railroad
organizations. In addition, recently proposed models
tend to exhibit an increased level of realism. As a
result, there is a growing interest in utilizing opti-
mization techniques for railroad problems. In the last
few years, many advances in rail freight and pas-
senger transportation have appeared in operations
research literature. (See, for example, Cordeau, Toth,
and Vigo 1998.) This paper concerns the development
of new models and algorithms for solving real-life
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locomotive-scheduling problems faced by U.S. rail-
road companies.

For the locomotive-scheduling problem (or the
locomotive-assignment problem), we must assign a
consist (a set of locomotives) to each train in a pre-
planned train schedule so as to provide each train
with sufficient power to pull the locomotives from its
origin to its destination. Generally, a consist is cho-
sen from a set of different fleet types (such as AC44,
AC60, SD40, etc.). For example, a train’s consist may
be composed of two locomotives of types AC44 and
one locomotive of type AC60.

Locomotive-scheduling problems are among the
most important problems in railroad scheduling
(Florian et al. 1976; Smith and Sheffi 1988; Chih
et al. 1990; Forbes, Holt, and Watts 1991; Fischetti
and Toth 1997, Nou, Desrosiers, and Soumis 1997;
and Ziarati et al. 1997, 1999). Often, locomotive avail-
ability determines whether a train departs on time.
With new locomotives costing in excess of $1.8 mil-
lion, it is paramount to the railroad business that
they be managed efficiently. The variety of locomo-
tives and trains and the diverse geographic networks
create very difficult combinatorial optimization prob-
lems. There are no satisfactory algorithms available to
solve these problems. As a result, there are inefficien-
cies in locomotive management. However, through
the development of better models and algorithms,
substantial savings can be achieved. CSX Transporta-
tion has over 3,000 locomotives, which translates into
a capital investment of over $5 billion, as well as
over $1 billion in yearly maintenance and opera-
tional costs. Even a small percentage of savings in
locomotive utilization could translate into substantial
savings.

Locomotive-scheduling problems can be studied at
the planning level or at the operational level. At the
planning stage of the locomotive-scheduling prob-
lem, we assign locomotive types to various trains.
The operational locomotive-scheduling model addi-
tionally takes into account the fueling and mainte-
nance needs of the locomotives, which are ignored
in the planning model. In this paper, we consider
the planning version of the locomotive-scheduling
model (LSM). We will now summarize the features of
the LSM to provide the reader with a better under-
standing of the problem. A large railroad company
has a train schedule that consists of several hundred
trains with different weekly frequencies. Some trains
run every day in a week, whereas others run less
frequently. At CSX, there are several thousand train
departures per week (assuming that we may count
the same train running on different days multiple
times). Many trains have long distances to travel and
take several days to go from their origins to their des-
tinations. To power these trains, CSX owns several

thousand locomotives of different types with differ-
ent horsepower and pulling capacities. In the LSM,
we assign a set of locomotives to each train in the
weekly train schedule so that each train receives suf-
ficient tractive effort, or pulling power, and sufficient
horsepower, or speed, and so that the assignment can
be repeated indefinitely every week. At the same time,
assigning a single locomotive to a train is undesirable
because if that locomotive breaks down, the train gets
stranded on the track and blocks the movement of
other trains.

An additional feature of the LSM is that some loco-
motives may deadhead on trains. Deadheaded locomo-
tives do not pull the train; rather, they are pulled
by active locomotives from one place to another.
Deadheading plays an important role in locomotive-
scheduling models because it allows extra locomo-
tives to be moved from locations where they are in
surplus to those where they are in short supply. Loco-
motives also light travel; that is, they travel on their
own between different stations to reposition them-
selves between two successive assignments to trains.
A set of locomotives in light travel forms a group,
and one locomotive in the group pulls the others
from an origin station to a destination station. Light
travel is different from deadheading because it is not
limited by the train schedule. In general, light travel
is faster than deadheading. However, light travel is
more costly, as a crew is required to operate the
pulling locomotive, and the transportation does not
generate any revenue because no cars are attached.

Because we assign a set of locomotives (or a con-
sist) to trains, we need to account for consist busting.
Whenever a train arrives at its destination, its consist
is either assigned to an outbound train in its entirety,
or it goes to the pool of locomotives where new con-
sists are formed. In the first case, we say that there
is a train-to-train connection between the inbound and
outbound trains and no consist busting takes place. In
the second case, consist busting takes place. Consist
busting entails merging locomotives from inbound
trains and regrouping them to make new consists.
This is undesirable from several angles. First, consist
busting requires additional locomotive and crew time
to execute the moves. Second, consist busting often
results in outbound trains getting their locomotives
from several inbound trains. If any of these inbound
trains is delayed, the outbound train is also delayed,
leading to further delays down the line. In an ideal
schedule, we try to maximize the train-to-train con-
nections of locomotives, and thus minimize consist
bustings.

Another important feature of the locomotive-
scheduling model is that we want a solution that is
consistent throughout the week in terms of the loco-
motive assignment and train-to-train connections. If
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a train runs five days a week, we want it to be
assigned the same consist each day it runs. If we make
a train-to-train connection between two trains and if
on three days in a week both trains run, then we want
them to have the same train-to-train connection on all
three days. Consistency of the locomotive assignment
and train-to-train connections is highly desirable from
an operational point of view. Consistency of the solu-
tion translates into rule-based dispatching and makes
the job of a locomotive dispatcher relatively easy. For
example, if a train is assigned three AC44 locomotives
on each day it runs, the dispatcher can remember this
rule and enforce it. If the train is assigned a different
set of locomotives on different days, the assignments
are harder to implement.

Our LSM model is substantially different from
locomotive-scheduling models previously studied.
Single-locomotive models have been studied by
Forbes, Holt, and Watts (1991) and by Fischetti and
Toth (1997). Multicommodity flow-based models for
planning decisions have been studied by Florian et al.
(1976), Smith and Sheffi (1988), and Nou, Desrosiers,
and Soumis (1997). Multicommodity flow-based mod-
els for operational decisions have been developed by
Chih et al. (1990) and by Ziarati et al. (1997, 1999).
Our multicommodity flow-based model for planning
decisions offers more features than any of the existing
planning models.

The locomotive-scheduling problem is a very
large-scale combinatorial optimization problem. We
formulate it as a mixed-integer programming (MIP)
problem, which is essentially an integer multicom-
modity flow problem with side constraints. We con-
sidered the locomotive-scheduling problem for CSX
Transportation, which consisted of 3,324 trains orig-
inating from and terminating at 119 stations weekly
and 3,316 locomotives of five locomotive types.
Our formulation contains about 197,000 integer vari-
ables and 67,000 constraints, and is too large to
be solved to optimality or near optimality using
existing commercial-level MIP software. We there-
fore developed a heuristic methodology to solve
the locomotive-scheduling problem. By using lin-
ear programming, mixed-integer programming, and
very large-scale neighborhood search techniques, we
have attempted to obtain very good solutions for the
locomotive-scheduling problem. We solved the LSM
in two stages. In the first stage, we modified the
original problem so that all trains run seven days
a week. This approximation of the original problem
allows us to handle consistency constraints satisfac-
torily. In the second stage, we modified the solution
of the first stage to solve the original problem so
that trains do not run all seven days a week. We
developed prototype software for our algorithms and
compared our software with the in-house software
used by CSX. In one representative instance for which

CSX software required 1,614 locomotives to satisfy
the train schedule, our software required only 1,210
locomotives, thereby achieving a savings of over 400
locomotives. We obtained similar improvements for
other benchmark instances. In the solutions obtained
by the CSX software, locomotives actively pull a train
about 31.3% of the time, deadhead about 19.6% of the
time, and idle at stations about 49.1% of the time. In
the solutions obtained by our software, locomotives
actively pull the train about 44.4% of the time, dead-
head about 8.1% of the time, light travel about 0.8% of
the time, and idle at stations about 46.7% of the time.

Though this research demonstrates that on the plan-
ning level significant reduction in the number of loco-
motives is possible, realizing these savings in practice
requires additional work. Our research assumes that
all trains run on time, and we assigned locomotive
types to each train to minimize the systemwide costs.
However, while assigning locomotives to trains in a
real-time environment, we need to assign locomotive
tail numbers (which are unique for each locomotive) to
trains. For example, suppose that the planning model
suggests that we assign two AC44s to train A. There
may be six AC44 locomotives available for the assign-
ment. Out of these six locomotives (with the same
locomotive type but different tail numbers), we need
to decide which two locomotives should be assigned
to train A. To do so, we need to take into account
the fueling requirement of locomotives. For exam-
ple, a locomotive may have the fuel to go another
300 miles, but train A would not encounter any fuel-
ing station for the next 400 miles; clearly, we cannot
assign this locomotive to train A. Another important
issue is the maintenance of locomotives. Each loco-
motive needs to undergo periodic maintenance; reg-
ular maintenance is due every 3,000 miles and major
maintenance is due every 10,000 miles. This mainte-
nance can be done only at some locations, which are
called shops. Thus, if a locomotive is due for regu-
lar maintenance, then we cannot assign it to a train
that takes it too far from a shop, as it cannot return
before its due maintenance. We therefore observe
that a locomotive-assignment plan may have several
corresponding locomotive schedules, some of which
may satisfy fueling and maintenance requirements
while others may not. Another factor that our orig-
inal research ignored was train time uncertainty. We
assumed that all trains run on time, whereas, in prac-
tice, trains are often late. How to account for delayed
trains and how to update locomotive assignment with
minimum-cost impact are central issues we need to
resolve before our planning model can be applied. We
are currently doing research to resolve these issues,
and when successful, our planning model will prove
itself quite valuable.
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2. Problem Details

In this section, we will provide the details and nota-
tion of the locomotive-scheduling problem that we
used for CSX.

Locomotive Data. A railroad company typically
has several different types of locomotives with differ-
ent pulling and cost characteristics and different num-
bers of axles (often ranging from four to nine). We
denote by K the set of all the locomotive types and
use the index k to represent a particular locomotive
type. We associate the following data with each loco-
motive type k € K: (i) h*: the horsepower provided by
a locomotive of type k; (ii) A*: the number of axles
in a locomotive of type k; (iii) G*: the weekly owner-
ship cost for a locomotive of type k; and (iv) B': fleet
size of locomotives of type k, that is, the number of
locomotives available for assignment.

Train Data. Locomotives pull a set L of trains from
their origins to their destinations. Trains have differ-
ent weekly frequencies; some trains run every day,
while others run less frequently. We will consider
the same train running on different days as differ-
ent trains; that is, if a train runs five days a week,
we will consider it as five different trains. We use
the index I to denote a specific train. We associate
the following data for each train: (i) dep-time(l): the
departure time for the train [; (ii) arr-time(l): the
arrival time for train / (in the same format as the dep-
time(l)); (iii) dep-station(l): the departure station for
train [; (iv) arr-station(l): the arrival station for train /;
(v) T;: tonnage requirement of train [; (vi) B;: horse-
power per tonnage needed for train [; (vii) H;: horse-
power requirement of train /, which is defined as H, =
B,1;; and (viii) E;: the penalty for using a single loco-
motive consist for train /.

Locomotive-Train Combinations. We need the fol-
lowing data for train-locomotive type combinations:
(i) cf: the cost incurred in assigning an active loco-
motive of type k to train [; (ii) df: the cost incurred
in assigning a deadheaded locomotive of type k to
train [; and (iii) #: the tonnage pulling capability pro-
vided by an active locomotive of type k to train I
Also specified for each train [ are three disjoint sets
of locomotive types: (i) MostPreferred[l], the preferred
classes of locomotives; (ii) LessPreferred[l]: the accept-
able (but not preferred) classes of locomotives; and
(iii) Prohibited[l], the prohibited classes of locomo-
tives. When assigning locomotives to a train, we can
only assign locomotives from the classes listed as
MostPreferred[l] and LessPreferred[l] (a penalty is asso-
ciated for using LessPreferred[l]).

Constraints. We will now describe the constraints
in the LSM. The constraints can be classified into two
categories: hard constraints (which each locomotive
assignment must satisfy) and soft constraints (which

are highly desirable but not always required to be sat-
isfied). We incorporate soft constraints by attaching
a penalty for each violation of these constraints. The
hard constraints for LSM are: (i) each train must be
assigned locomotives with at least the required ton-
nage and horsepower; (ii) each train ! is assigned loco-
motive types belonging to the set MostPreferred[l] and
LessPreferred[l] only; (iii) each train must be assigned
locomotives with at most 24 active axles; (iv) each
train can be assigned at most 12 locomotives, includ-
ing both the active and deadheaded locomotives; and
(v) the number of assigned locomotives of each type
is at most the number of available locomotives of that
type. The soft constraints for LSM are: (i) consistency
in the locomotive assignment (if a train runs five days
a week, then it should be assigned the same consist
each day it runs); (ii) consistency in train-to-train con-
nections (if locomotives carrying a train to its destina-
tion station connect to another train originating at that
station, then it should preferably make the same con-
nection each day that both trains run); (iii) same-class
connections (trains should connect to other trains in
the same class); and (iv) avoiding consist busting as
much as possible.

Objective Function. The objective function for the
locomotive-scheduling model contains the follow-
ing terms: (i) cost of ownership, maintenance, and
fueling of locomotives; (ii) cost of active and dead-
headed locomotives; (iii) cost of light-traveling loco-
motives; (iv) penalty for consist busting; (v) penalty
for inconsistency in locomotive assignment and train-
to-train connections; and (vi) penalty for using single-
locomotive consists.

3. Space-Time Network

We will formulate the locomotive-scheduling prob-
lem as a multicommodity flow problem with side
constraints on a network, which we call the weekly
space-time network. Each locomotive type defines a
commodity in the network. We denote the weekly
space-time network as G’ = (N7, A7), where N’
denotes the node set and A’ denotes the arc set.
Figure 1 displays a part of the weekly space-time net-
work at one location. We construct the weekly space-
time network as follows.

Nodes in the Weekly Space-Time Network. The
network contains a train arc (i), j;) for each train I. The
tail node 7, of the arc denotes the event for the depar-
ture of train [ at dep-station(l) and is called a departure
node. The head node j; denotes the arrival event of
train [ at arr-station(l) and is called an arrival node.
For each arrival event, we create an arrival-ground
node, and for each departure event, we create a
departure-ground node. Each node is associated with
two attributes: time and place. We use time(i) to
denote the time attribute of node i in the weekly
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Figure 1 A Part of the Weekly Space-Time Network

space-time network. We denote the sets of departure,
arrival, and ground nodes by the sets DepNodes, ArrN-
odes, and GrNodes, respectively. Let the set AllNodes =
DepNodes U ArrNodes U GrNodes.

Arcs in the Weekly Space-Time Network. The net-
work contains four types of arcs. The first is the set
of train arcs, denoted by the set TrArcs, and contains
an arc for every train. We connect each arrival node
to the associated arrival-ground node by a directed
arc called the arrival-ground connection arc. We connect
each departure-ground node to the associated depar-
ture node through a directed arc called the ground-
departure connection arc. We next sort all the ground
nodes at each station in chronological order by their
time attributes and connect each ground node to
the next ground node through directed arcs called
ground arcs. (We assume without any loss of gener-
ality that ground nodes at each station have distinct
time attributes.) The ground arcs allow inbound loco-
motives to stay in an inventory pool as they wait to
be connected to the outbound trains. We also connect
the last ground node in the week at a station to the
first ground node of the week at that station through
the ground arc; this ground arc models the ending
inventory of locomotives for a week, which becomes
the starting inventory for the following week. We also
model the possibility of an inbound train sending its
entire consist to an outbound train. We capture this
possibility by creating train-train connection arcs from
an arrival node to departure nodes whenever such
a connection can be feasibly made. We also allow
the possibility of light travel. We create a light arc
in the weekly space-time network corresponding to
each light travel possibility (to be described in detail
in §6.4). Each light arc originates at a ground node
(with a specific time and at a specific station) and also
terminates at a ground node. Each light arc has a fixed
charge that denotes the fixed cost of sending a sin-
gle locomotive with crew from the origin of the light
arc to its destination. We denote this fixed charge for

a light-travel arc / by F. The light arc also has a vari-
able cost that depends on the number of locomotives
light traveling as a group. Therefore, the four kinds of
arcs are: train arcs (TrArcs), connection arcs (CoArcs),
ground arcs (GrArcs), and light-travel arcs (LiArcs).
Let AllArcs = TrArcs U CoArcs U GrArces U LiArcs.

We will formulate the locomotive-scheduling prob-
lem as a flow of different types of locomotives in
the weekly space-time network. Locomotives flowing
on train arcs are either active or deadheading; those
flowing on light arcs are light traveling; and those
flowing on connection and ground arcs are idling
(that is, waiting between two consecutive assign-
ments). We shall use the following additional nota-
tion for the weekly space-time networks in our MIP
formulations: (i) I[i]: the set of incoming arcs into
node i € AllNodes; (ii) O[i]: the set of arcs emanating
from node i € AllNodes; (iii) F: the cost of an (active)
light traveling locomotive with crew on a light arc
I € LiArcs; (iv) df: defined for every arc I € AllArcs (for
a train arc I, df denotes the cost of deadheading of
locomotive type k on train arc [ and for every other
arc it denotes the cost of traveling for a nonactive
locomotive of locomotive type k on arc [); (v) CB:
the set of all connection arcs from arrival nodes to
ground nodes; alternatively, CB = {(i, j) € AllArcs: i e
ArrNodes and j € GrNodes}; (vi) CheckTime: a time
instant of the week when no event takes place (that is,
no train arrives or departs at any station; we assume
that CheckTime is Sunday midnight); and (vii) S: the
set of arcs that cross the CheckTime (thatis, S={(i, ) €
AllArcs: time(i) < CheckTime < time(j)}).

4. The Mixed-Integer Programming

Formulation

In this section, we present the mixed-integer program-
ming (MIP) formulation of the locomotive-scheduling
model. Our formulation has five sets of decision
variables: (i) xf: an integer variable representing the
number of active locomotives of type k € K on the
arc | € TrArcs; (ii) yf: an integer variable indicating
the number of nonactive locomotives (deadheading,
light-traveling, or idling) of type k € K on the arc
I € AllArcs; (iii) z;: a binary variable that takes value 1
if at least one locomotive flows on the arc [ € LiArcs U
CoArcs, and 0 otherwise; (iv) w;: a binary variable that
takes value 1 if there is a flow of a single locomotive
on arc [ € TrArcs, and 0 otherwise; and (v) s*: an inte-
ger variable indicating the number of unused locomo-
tives of type k € K. It terms of these variables, we next
provide the MIP formulation of the LSM.

mnz= Y Ydu+ ¥ Ydyi+ Y Bz

1eTrArcs keK leAllAres keK leLiArcs

+Y Vzi+ Y Ew,—> G (1a)

1eCB 1eTrArcs keK
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subject to: outbound train (in which case consist busting does
not take place and there is a train-to-train connection).
tixf>T,, forall leTrA 1b i i i
Y hx =T, forall leTrArcs, (Ib)  Constraint (1i) states that for each outbound train all
kek the outbound locomotives either come from a ground
S Hxf =BT, forall leTrArcs, (1c) node or all the locomotives come from an incoming
keK train. Constraint (1j) makes the variable w; equal to 1
S Nxk <24, for all IeTrArcs, (1d) wh'eneve%r a single-locqmotive consist is assigned to
keK train /. Finally, constraint (1k) counts the total num-
. ber of locomotives used in the week; this is the sum
S (xf+y)<12, for all I e TrArcsULiArcs,

keK
(le)

> +y)= Y (5 +y)),

leI[i] 1€0]i]
for all i€ AllNodes, for all ke K, (1f)

> yf <12z, for all le CoArcsULiArcs,  (lg)
keK

> z=1, for all i€ArrNodes, (1h)
1€0[1]

> z;=1, for all i€ DepNodes, (1i)
lel[i]

S (xf+yf)+w,>2, for all leTrArcs, (1)
keK

A (4 yf)+st=B*, forall keK, (1K)

les
xf,y; >0 and integer,

for all e TrArcs, for all ke K, (11)
for all Ie€ CoArcsULiArcs, (Im)
for all I e TrArcs. (In)

z,€{0,1},
w,€1{0,1},

We will now explain the above formulation to con-
firm that it correctly represents the LSM. We will
first discuss the constraints. Constraint (1b) ensures
that the locomotives assigned to a train provide
the required tonnage, and constraint (I1c) ensures
that the locomotives assigned provide the required
horsepower. Constraint (1d) models the constraint
that the number of active axles assigned to a train
does not exceed 24; the constraint (le) models the
constraint that every train arc and light arc are
assigned at most 12 locomotives. The flow balance
constraint (1f) ensures that the number of incoming
locomotives equals the number of outgoing locomo-
tives at every node of the weekly space-time network.
Constraint (1g) makes the fixed-charge variable z;
equal to 1 whenever a positive flow takes place on
a connection arc or a light arc; this constraint also
ensures that no more than 12 locomotives flow on
any light arc. Constraint (1h) states that, for each
inbound train, all the inbound locomotives use only
one connection arc; either all the locomotives go to the
associated ground node (in which case consist bust-
ing takes place), or all the locomotives go to another

of the flow of locomotives on all the arcs crossing
the CheckTime. The difference between the number of
locomotives available and the number of locomotives
used equals the number of unused locomotives (s¥).

We will now discuss the objective function (la),
which contains six terms. The first term denotes the
cost of actively pulling locomotives on train arcs. The
second term captures the cost of deadheading loco-
motives on train arcs and light-travel arcs, as well
as the cost of idling locomotives. We also include
the variable cost of consist busting in the defini-
tion of the term df for each arc ! € CB. The third
term, Y ;iians Fz;, denotes the fixed cost of light-
traveling locomotives. The fourth term, > ;. Vz,
denotes the fixed cost of consist busting. The fifth
term, Y ,cpa.s E/w;, denotes the penalty associated
with the single-locomotive consists; and the sixth
term, " .x G*s¥, represents the savings accrued from
not using all the locomotives. Observe that we can
obtain different levels of consist busting by selecting
different values of the consist busting cost V. The
greater the value of V, the less the amount of consist
busting in an optimal solution.

Observe that formulation (1) assumes that any loco-
motive type can flow on any train arc. However,
recall from our discussion in §2 that each train arc /
has MostPreferred[l], LessPreferred[l], and Prohibited|l]
sets of locomotives. We handle these constraints in
the following manner. To formulation (1) we add
the constraints x¥ = 0 for each k € Prohibited[l] and
each [ € TrArcs. These constraints ensure that prohib-
ited locomotives are never used on train arcs. To dis-
courage the flow of locomotive types belonging to
the LessPreferred sets, we multiply ¢f by a suitable
parameter larger than 1 (for example, 1.2) for each
k € LessPreferred[l] and each I € TrArcs.

Our formulation (1) incorporates all the hard con-
straints described in §2, but not all the soft constraints,
such as the consistency constraints. Including those
constraints would make the formulation unmanage-
ably large.

The locomotive-scheduling problem (1) can be
shown to be NP-complete. We prove this result
by reducing a well-known NP-complete problem,
3-partition, into a locomotive-scheduling problem
(Garey and Johnson 1979). We will prove this result
next.
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3-Partition Problem. Given 3n integers a;, a,, ..., as,,
and b = Z‘zl a;/n, where a;, > b/4 for all i=1,2,...,
3n, does there exist a partition of {1,...,3n} into n
subsets S;, S,, ..., S, such that Y7 a,=b for all j=1
to n? ]

Suppose that there are exactly # trains, each with a
horsepower requirement of b units, and they all travel
from the same origin city to the same destination city.
Suppose further that there are 3n locomotives, where
locomotive i provides horsepower a;. Assume that
b=Y2"a,/n, where a; > b/4 for all i=1,2,...,3n.
Then the locomotive-scheduling problem has a feasi-
ble solution if and only if the 3-partition problem has
a feasible solution. Thus, the 3-partition can be solved
by solving a locomotive-scheduling problem.

In the data provided to us by CSX, there were
538 trains, each of which operated several days in
a week, and there were five locomotive types. The
weekly space-time network consisted of 8,798 nodes
and 30,134 arcs. The MIP formulation (1) consisted
of 197,424 variables and 67,414 constraints. This for-
mulation could not be solved to optimality or near
optimality using the commercial software CPLEX 7.0.
As a matter of fact, we were unable to solve even
the linear programming (LP) relaxation of the prob-
lem. Additionally, this formulation does not cap-
ture the consistency constraints incorporating which
would even further expand the size of the problem.
We therefore developed an alternative approach that
simultaneously helped enforce consistency while dra-
matically reducing the problem size. We will describe
our approach in the next section.

5. Simplifying the Model

We analyzed the number of CSX trains running with
different frequencies in one week. The table shown
in Figure 2 provides these numbers. The first column
in the table gives the weekly train frequency, or how
often the trains run in a week. The second column
in the table lists the number of trains in the train
schedule that run with the frequency given in the
first column. The third column is a product of the
first and second columns; the fourth column provides

Table 1 Analysis of Trains and Their Frequencies
Cumulative
Train Number of Cumulative percentage of
frequency (A) trains (B) AxB sum of AxB AxB (%)
7 372 2,604 2,604 78.3
6 62 372 2,976 89.5
5 29 145 3121 93.9
4 24 96 3,217 96.8
3 20 60 3,277 98.6
2 16 32 3,309 99.5
1 15 15 3,324 100

a cumulative sum of the third column. The fifth col-
umn expresses the values in the fourth column in per-
centage notation. Observe that the third column lists
the number of train arcs in the weekly space-time net-
work for trains with different frequencies. The table
reveals that about 94% of the train arcs in the space-
time network correspond to the trains that run five,
six, or seven days.

We now make an approximation that reduces the
size of the MIP substantially and also helps us sat-
isfy the consistency constraints. We create a daily
locomotive-scheduling model that is a simplification
of the weekly locomotive-scheduling model in the fol-
lowing manner. We assume that: (i) all trains that run
p days or more per week run every day of the week;
and (ii) all trains that run fewer than p days do not
run at all. This assumption results in an approxima-
tion in the sense that we provide locomotives to the
trains that do not exist and do not provide locomo-
tives to trains that do exist. For the train data given
in Table 1, Table 2 gives the number of such trains for
different values of p, as follows.

To transform the solution of the daily locomotive-
scheduling solution into a feasible solution for the
weekly scheduling problem, we take locomotives
from the trains that exist in the daily problem but
do not exist in the weekly problem (type 1 trains)
and assign them to the trains that do not exist in the
daily problem, but exist in the weekly problem (type 2
trains). Also, we possibly use additional locomotives
to meet the constraints. Clearly, we can convert the
solution of the daily problem into a weekly prob-
lem more effectively if the number of type 1 trains
are less than the number of type 2 trains, but still as
close as possible. From this perspective, we find that
p =5 is the best choice for p, which we also deter-
mined in our computational investigations. We there-
fore solve the locomotive-scheduling problem in two
stages. The first stage solves the daily locomotive-
scheduling problem, and the second stage modifies
the daily locomotive schedule to obtain the weekly
locomotive schedule.

Table 2 Choosing the Right Value of p
p 1 2 3 4 5 6 7
Number of 442 352 272 192 120 62 0

nonexisting trains
that are assigned
locomotives

(type 1 trains)

Number of existing 0 15 47 107 203 348 720
trains that are
not assigned
locomotives
(type 2 trains)
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6. Solving the Daily Locomotive
Scheduling Problem

In this section, we will describe how to solve the
daily scheduling problem, including: (i) how to con-
struct the daily space-time network and formulate the
MIP for the daily scheduling problem; and (ii) how to
solve the daily locomotive-scheduling problem using
a decomposition-based approach.

6.1. Constructing the Daily Space-Time Network
and Formulating the MIP

The daily space-time network is constructed for the
daily locomotive-scheduling problem for which each
train is assumed to run each day of the week. It is
constructed similarly to how we construct the weekly
space-time network. We represent the daily space-
time network as G' = (N', A"). The daily space-time
network is about seven times smaller than the weekly
space-time network.

In the daily model, the departure time is the num-
ber of minutes past midnight that the train departs,
and the arrival time is the number of minutes past
midnight that the train arrives. The day of the week
does not play a role in this daily model. For a train /,
let day(l) denote the number of times the train crosses
the midnight time line as it goes from its origin to its
destination. For example, consider a train that leaves
station A at 7 AM on one day and arrives at 4 PMm two
days later at station B. For example, the train starts on
Monday at 7 am and arrives at 4 pm on Wednesday.
In this case, day(l) = 2. If this train were to repeat each
day in our weekly model, then two copies of the train
would cross the time line at midnight on Sunday: the
train that starts at 7 Am on Saturday and ends at 4 Pm
on Monday, and the one that starts at 7 AM on Sunday
and ends at 4 pMm on Tuesday. In general, if day(l) =m
in our daily model, then there are m copies of the
train I that cross the midnight demarcation at Sun-
day time line in our weekly model. Therefore, assign-
ing a locomotive in our daily model to a train / with
day(l) = m corresponds to assigning m locomotives of
the same type in the weekly model.

To account for the impact of day(l), we modify
the fleet size constraint of the locomotive-scheduling
problem as follows:

>« +y)day(l) +s* = B,

leS

for all k e K.

The rest of the formulation of the locomotive-
scheduling problem (1) on the daily space-time net-
work is identical to the one provided earlier.

6.2. Solving the MIP for the Daily Scheduling
Problem

Though the space-time network for the daily schedul-

ing problem was substantially smaller than the space-

time network for the weekly scheduling problem, we

found it to be too large to be solved to optimality
or near optimality. The daily locomotive-scheduling
problem consisted of 463 train arcs, and the daily
space-time network contained 1,323 nodes and 30,034
arcs. The MIP formulation consisted of 22,314 vari-
ables and 9,974 constraints. The LP relaxation took a
few seconds to solve, but the MIP did not provide any
integer feasible solution in 72 hours of running time.
We conjecture that the biggest source of difficulty was
the presence of fixed-charge variables z; (for connec-
tion and light arcs), which takes value 1 whenever
there is a positive flow on arc I. It is well known that
MIPs with many fixed-charge variables often produce
weak lower bounds.

To obtain high-quality feasible solutions and to
maintain a relatively small total running time of the
algorithm, we decided to eliminate the fixed-charge
variables from the MIP formulation using heuristics.
The heuristics also allowed us greater flexibility in
determining what kind of solution we want. In our
formulation, we have two kinds of fixed-charge vari-
ables: one corresponding to connection arcs and the
other corresponding to light arcs. We will first con-
sider the fixed-charge variables corresponding to the
train-train connection arcs, followed by the fixed-
charge variables corresponding to light arcs. We will
also consider some cases in which fixed-charge vari-
ables can be eliminated without any loss of generality.

6.3. Determining Train-Train Connections

Train companies often specify some “hardwired”
train-train connections, that is, they specify some
inbound trains whose consist must go to the spec-
ified outbound trains. These hardwired train-train
connections are easy to enforce in the space-time net-
work. Sometimes, a station has a unique inbound
train and a unique outbound train. If this station has
no light-traveling locomotives coming into it, then
all the locomotives brought in by the inbound train
will be automatically assigned to the outbound train.
Hence, there will be no consist busting and there
will be no need for fixed-charge variables. Sometimes,
train companies also have rules that control which
train-train connections are permissible and/or desir-
able. We can eliminate such inadmissible train-train
connections easily. Among the admissible train-train
connections, we fix several of them using an iterative
process, which we describe next.

We begin with a daily space-time network that
contains all the candidate train-train connection arcs
and candidate light arcs. We next solve the linear
programming relaxation of the locomotive-scheduling
model for which there are no fixed-charge variables
and constraints (that is, constraints (1g) through (1i)),
and all the train-to-ground and ground-to-train con-
nections have a large cost to discourage the flow on
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such arcs (or, alternatively, to discourage consist bust-
ing). Let ¢(I) denote the total flow of locomotives (of
all types) on any arc | in the daily space-time net-
work. We next select a candidate train-train connec-
tion arc h with the largest value of ¢(h). This arc
indicates a successful potential train-train connection.
We make this connection arc the unique connection
arc for the two corresponding trains and resolve the
linear programming relaxation. If this linear program-
ming relaxation is infeasible or if it increases the cost
of the new solution by an amount greater than 0, we
do not make this train-train connection; otherwise, we
keep this connection. In any case, we remove arc h
from the list of candidate train-train connections. We
next select another candidate train-train connection
arc ' with the largest value of ¢(h’) in the current
flow solution and repeat this process until either we
have reached the desired number of train-train con-
nections (as specified by some parameter y), or until
the set of candidate train-train connections becomes
empty.

Our method is parameter driven. By suitably iden-
tifying the values of the two parameters 6 and y, we
can govern the behavior of the algorithm. By choosing
the higher value of 6, we can increase the number of
train-train connections. We can also increase the num-
ber of train-train connections by increasing the value
of the parameter y. We illustrate in §8 that by using
this heuristic technique, we were able to increase the
number of train-train connections to 72%, which was
substantially higher than the goals originally set by
our industry sponsor. In fact, 72% was originally not
considered to be an achievable goal. The parameters
6 and y need to be assigned correct values so we can
determine the desired consist busting. We used 6 =
$1,000 and varied y to get different levels of consist
bustings.

6.4. Determining Light-Travel Arcs

Light travel of locomotives plays an important role in
locomotive scheduling and can substantially impact
the quality of the solution. Incorporating light travel
in the locomotive-scheduling model requires two
decisions: (i) candidate light arcs (what the light travel
arcs should be in the space-time network); and (ii) flow
on light-travel arcs (which locomotives should flow on
the candidate light arcs). In principle, we could allow
light travel of locomotives from any station to any
station at any time of the day. To capture all these
possibilities of light travel in our network, we need
to add a large number of arcs in the daily space-time
network. This, however, would increase the size of
the network substantially as well as the number of
flow variables. Instead of introducing a large number
of light-travel arcs, we developed a heuristic proce-
dure to create a small but potentially useful collection

of light-travel arcs; we developed another heuristic
procedure for selecting a subset of these arcs for
light travel. We will now describe these procedures in
greater detail.

Our first procedure determines the candidate light-
travel possibilities. For each such arc, we need to
decide its origin station, its start time, its destina-
tion station, and its end time. The end time can be
computed from the origin station, its start time, and
its destination station if we know the average speed
of the light-traveling locomotives. In the railroad
network, light-traveling locomotives typically travel
from “power sources” (stations where inbound trains
require substantially more tonnage/horsepower than
the outbound trains) to “power sinks” (stations where
outbound trains require substantially more tonnage/
horsepower than the inbound trains). First, we con-
struct the space network, which is the same as the
daily space-time network described in §6.1 except
that we ignore the time element. We next determine
the additional availability of pulling power at power
sources and the additional demand for pulling power
at power sinks in the space network of our weekly
model. To incorporate both horsepower and tonnage
constraints simultaneously, we translate this informa-
tion into the number of locomotives of a standard
type. This gives us node imbalances of locomotives
in the space network. We then solve a minimum-cost
flow problem (see, for example, Ahuja, Magnanti, and
Orlin 1993) in the space network to determine the
optimal locomotive flow in the network. If there is a
positive flow of locomotives on arc (i, j) in the space
network greater than some threshold value (say, two
locomotives), then we create candidate light-travel
arcs from station i to station j in the space-time net-
work departing from city i every eight hours. For the
data provided by CSX, we found 58 arcs in the space
network with a flow of greater than two locomotives
and we created 174 candidate light arcs in the space-
time network.

In our formulation described before, we need to
create a fixed-charge variable for each candidate light
arc, and we cannot solve the formulation for this
many fixed-charge variables in the required time.
Our second procedure eliminates the fixed-charge
variables. The procedure works by first solving a
linear programming formulation of the locomotive-
scheduling problem in which all the candidate light
arcs are added. It then removes all those light arcs
that have zero flow. Let ¢(I) denote the total num-
ber of locomotives flowing on a candidate light arc I.
We then perform the following iterative step. We
select the candidate light arc [ with the smallest value
of flow ¢(l). Suppose this is arc r. We delete arc r
from the network and solve the LP relaxation of the
locomotive-scheduling problem. If the deletion of this
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candidate light arc causes the total cost of flow (of
the LP relaxation) to increase by at least % units, we
keep this arc and remove it from the candidate light
arcs list; otherwise, we permanently delete this arc.
We repeat this process until there are no unexam-
ined candidate light arcs. The number of light arcs
generated by this module crucially depends upon the
value of the parameter 7. If we increase the value
of m, then we increase the number of arcs deleted
from the network, which will result in fewer light
arcs being generated. Hence, by assigning suitable
values to this parameter, one can generate an appro-
priate number of light arcs. We used n = $1,000 in
our implementation.

6.5. Determining Active and Deadheaded
Locomotive Flow Variables

As described before, the use of heuristics to determine
train-train connections and light-travel arcs eliminates
the fixed-charge variables. We next determine the
remaining variables that are the active and dead-
headed locomotives on arcs in the network. To deter-
mine these variables, we solve the following integer
programming problem:

min z= 3 Ycxi+ X Y diy

leTrArcs keK leAllArcs keK
+ Y Ew,— Y G (2a)
leTrArcs keK
subject to:
S tixf>T, forallle TrArcs, (2b)
keK
S K'xf > BT, forall I € TrArcs, (20)
keK
> Nxk <24, for all I € TrArcs, (2d)
keK
S (xf +y;) <12, forall l € TrArcsULiArcs,
keK

(2e)
Yy =2 i+,
leIi] 1e0]i]
for all i € AllNodes, for all k e K, (2f)

Z(xf +yH)+w,>2, forallleTrArcs, (2g)
keK

Y +yHday () + s =B,

leS

forall ke K, (2h)

x;, yf >0 and integer,
for all I € TrArcs, for all ke K, (2i)

w,€{0,1}, for all I € TrArcs. 2j)

We refer to a solution of (2) by (x,y), because w
can be deduced using the solution (x, y). This integer

programming model is much easier to solve than the
model described in §6.1. It does not contain fixed-
charge variables and has fewer locomotive flow vari-
ables. The locomotive-scheduling problem we solved
had 2,315 xf‘ variables; 6,120 ylk variables; 463 w,
variables; and 7,782 constraints. We solved (2) using
CPLEX 7.0 and set the CPLEX parameters so that a
very good integer solution is obtained in the early
part of the branch-and-bound algorithm. We found
that CPLEX 7.0 provided a high-quality solution
within 15 minutes of execution time, but it did not
terminate even when it was allowed to run for over
48 hours. We also found that the algorithm, when run
for 24 hours, was not much better than the best inte-
ger solution obtained within 15 minutes; therefore,
prematurely terminating the algorithm after 15 min-
utes did not much affect the quality of the solution
obtained.

6.6. Neighborhood Search Algorithm

The integer solution obtained by the integer program-
ming software CPLEX 7.0 is not, in general, an opti-
mal solution for the locomotive-scheduling problem.
We found that this solution can be easily improved
by a modest modification of the solution. We used
a neighborhood search algorithm to look for possi-
ble improvements. A neighborhood search algorithm
typically starts with an initial feasible solution and
repeatedly replaces it by an improved neighbor until
we obtain a solution that is at least as good as its
neighbors. At this point, the current solution is called
a local optimal solution (Aarts and Lenstra 1997). We
call a neighborhood search algorithm a very large-
scale neighborhood (VLSN) search algorithm if the size
of the neighborhood is very large, possibly exponen-
tial in terms of the input size parameters, and we
use implicit enumeration algorithms to identify an
improved neighbor. We refer the reader to the papers
by Ahuja et al. (2001a, b; 2002) for additional details
on VLSN search algorithms. This neighborhood can
also be considered a specific implementation of the
concept of referent domain optimization, as it is briefly
described in Glover and Laguna (1997). We define a
neighborhood using an integer programming formu-
lation and identify an improved neighbor with the
software CPLEX.

Let (x,y) be a feasible solution of (2). We call a
solution (x, y) a neighbor of (X, ¥) if (x,y) is feasible
for (2b)—(2j) and it differs from (¥, y) for one loco-
motive type only; that is, X7 = x7 and y7 = y7 for
all ge K\{k} for some locomotive type k. In other
words, all the feasible locomotive flows that can be
obtained by changing the locomotive flow for one
locomotive type only define the neighborhood of the
solution (x, ). Mathematically, all the solutions of the
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following integer program define the neighborhood
of the solution (¥, ).

minimizez" = Y xf+ > diyf

leTrArcs leAllArcs
+ Y Ew, -GS (3a)
1eTrArcs
subject to:
tixi >T,— Y. X!, forallleTrArcs, (3b)
qeK\{k}
Wxk>pT— Y hix], forall leTrAres, (3c)
qeK\{k}
Nxf<24— Y Mx!, forallleTrArcs,  (3d)
qek\{k}
x4y 12— 3 (F+7),
qek\{k}

for all I € TrArcs U LiArcs, (3e)
> +y) =3 (0 +y),

lel(i) LleO(i)
for all i € AllNodes, (3f)

X+yitw=2- 3 &+,
qeK\(k}

for all / € TrArcs, (3g)
> (xf +y)day(l) +* =B, (3h)

leAllArcs
xf,yf >0 and integer, for all I € TrArcs, (31)
w;€{0,1}, for all I € TrArcs. (3j)

We call the solution (¥, ) a local optimal solution
if (¥, y) is an optimal solution of (3) for each k € K.
Thus, a solution (X, ) is a local optimal solution of the
locomotive-scheduling problem if each single locomo-
tive type is optimally scheduled when the schedule
of other locomotive types is not allowed to change.
Although (3) is an integer programming problem with
2,168 variables and 3,437 constraints, CPLEX was able
to solve it to optimality within a few seconds.

To summarize, we take the solution provided by the
integer programming software for the daily schedul-
ing problem (3) as the starting solution of our neigh-
borhood search algorithm and solve a sequence of
problems (3) for all locomotives of type g € K. We
stop when the solution cannot be improved for any
locomotive type. The solution at this stage is a local
optimal solution.

7. Solving the Weekly

Locomotive-Scheduling Problem
We will now describe how we solve the weekly loco-
motive-scheduling problem. Recall from our discus-
sion in §5 that to handle the consistency constraints

and to keep the problem size manageable, we solve
the problem in two stages. The first stage assumes
that all trains run every day of the week. To satisfy
this assumption, we eliminate trains that run fewer
than p days (for example, p =5), and all other trains
are assumed to run every day of the week. When
we apply the solution of the daily scheduling to the
weekly scheduling problem by repeating it every day,
then we provide locomotives to some trains that do
not exist and do not provide locomotives to those
trains that do exist. To transform this solution into a
feasible and effective solution for the weekly schedul-
ing problem, we take locomotives from the trains that
exist in the daily problem but do not exist in the
weekly problem and assign them to the trains that do
not exist in the daily problem but exist in the weekly
problem; we possibly use additional locomotives to
meet the constraints. In this section, we will describe
this method in greater detail.

First, we will define some notation in order to sim-
plify the presentation. There are two sets of trains in
the locomotive-scheduling problem: (i) ®, the set of
trains that operate p or more days a week; and ¥, the
set of trains that operate fewer than p days a week.
Let @' denote the set of train arcs corresponding to
the trains in ® in the daily space-time network G!,
and let @7 denote the set of train arcs correspond-
ing to the trains in ® in the weekly space-time net-
work G”. Observe that each arc in ®' induces p or
more corresponding arcs in ®7. Let W7 denote the set
of train arcs corresponding to the trains in W in the
weekly space-time network G”. Observe that trains
in ¥ do not have any corresponding train arc in G'.
Also observe that in the weekly space-time network,
TrArcs = @7 U W7,

Suppose that the optimal solution for the daily
locomotive-scheduling problem produces the follow-
ing solution:

X;: The number of active locomotives of type k
assigned to train arc [ € ®'.

yf: The number of deadheaded locomotives of type k
assigned to train arc / € ®'.

We have the following objectives for the weekly
locomotive-scheduling problem:

(i) Each arc I € @7 has a corresponding arc in @',
say, I. The locomotive assignment of arc [ € ®' in
the daily locomotive-scheduling problem becomes the
“target flow” for the corresponding arc [ € @ in the
weekly locomotive-scheduling problem. We would
like the locomotive flow on each arc in @’ to be as
close to its target flow as possible, as this ensures
that the weekly locomotive schedule is consistent.
Changes to the target flow can be made, but they are
penalized, as changes may affect the consistency of
the solution. Henceforth, we assume that xf and i}
denote the target flow for each arc I € ®”.
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(ii) Each arc I € ¥7 should be assigned a sufficient
number of locomotives so that its horsepower and
tonnage requirements are satisfied. Observe that we
do not consider consistency for train arcs in ¥7. Only
6% of the train arcs are in W7, and ignoring consis-
tency of these arcs does not have a major impact on
the overall consistency of the solution.

(iii) If there is a train-train connection from train A
to train B in the daily space-time network, then the
same train-train connection should be carried over to
the weekly space-time network on all the days when
both trains A and B run.

The weekly space-time network is constructed in
the same manner as the daily space-time network,
where each train running on different days is treated
as a separate train. However, we make some changes
for train-train connection arcs. For a train-train con-
nection arc in the daily space-time network, we have
a corresponding train-train connection arc only on
those days when both the associated trains run, and
not otherwise.

We will now discuss how to determine a locomo-
tive schedule in the weekly space-time network. We
first formulated this problem as an integer program-
ming problem, which is similar to the IP formula-
tion (1) presented in §4. However, we were unable
to solve it using CPLEX 7.0. The integer program-
ming problem for the weekly space-time network is
about seven times larger than the corresponding prob-
lem for the daily space-time network, and CPLEX
ran for 72 hours without obtaining any integer fea-
sible solution. Because our goal was to solve the
locomotive-scheduling problem within 30 minutes of
computational time, we needed to follow another
approach.

We next attempted to determine the locomotive
schedule one locomotive type at a time. This con-
verted a multicommodity flow problem (with each
locomotive type defining a commodity) with side con-
straints into a sequence of single-commodity flow
problems with side constraints, one for each locomo-
tive type. We found that CPLEX 7.0 efficiently solved
these single-commodity flow problems with side con-
straints. We will now describe this approach in greater
detail.

We first arranged different locomotive types in
order and then, following this order, considered them
one by one.

Suppose we are considering locomotive type k. Our
goal is to determine the schedule of locomotive type k
S0 as to:

minimize Y (¢} — M)x}f + cfxf+ > dfxf
lew led leAllArcs

+ Y Ew,—Gs"+PY (o  +a;%).  (4a)

1€TrArcs led

Subject it to (3b)-(3g), (3i)—(3j), and the following
constraints:

xf <Uf forallleV, (4b)
o —aF =(xf+y) - (& +7y) forallled, (4c)
a*, a;¥ >0 and integer, for all | € TrArcs, (4d)

S +yf)+s* =B, forallkeKk, (4e)
leS

where M is a large positive number, and where

74 14
T, — qu](\{k} tx, BT — qu](\{k} hzxz
£ ’ h*

U} =max

denotes the number of active locomotives of type k
needed to meet the tonnage and horsepower require-
ments of the train arc /.

This formulation is similar to formulation (3),
which finds the optimal flow of locomotives of type k
while keeping the flow of other locomotive types
intact. In addition, the formulation attempts to send
the sufficient number of locomotives on arcs in ¥; this
is achieved by subtracting a large positive number M
from the active locomotive costs of arcs in ¥ in the
objective function (4a). The formulation also attempts
to find a flow which is “close” to the target flow
on the arcs in ®; this is accomplished by measuring
the positive or negative deviation (a;* or @;*) from
the target flow through constraints (4c) and (4d) and
penalizing it in the objective function (4a). By assign-
ing a suitable value to the coefficient P, we make the
locomotive flow (x*, y¥) sufficiently close to the target
flow on the arcs in the set ®. In our computational
investigations, we used P = $1,000.

We solved formulation (4) multiple times and with
different objective functions to obtain improved solu-
tions. For example, our primary objective is to provide
a sufficient number of locomotives to the trains in V.
We accomplish our goal by choosing a sufficiently
large value of M (say, 10°), and solving (4) for each
locomotive type one at a time. The order in which
we consider different locomotive types is important.
We consider the locomotive types in the decreasing
order of their availability; that is, the locomotive type
that has the largest number of locomotives available is
considered first, followed by the locomotive type that
has the second-largest number of locomotives avail-
able, and so on. The intuition behind this rule is that
if some trains need locomotives, we will try to power
them by the locomotive type that has a greater avail-
ability; this rule tends to generate feasible locomotive
assignments. Once all trains have a sufficient number
of active locomotives, we set M =0 and solve it again
for all locomotive types. Depending on the value of P,
the optimal solution balances the total flow cost and
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the penalty for deviation from the target flow. We may
need to experiment with different values of P before
we obtain the right balance between the two terms.

For our data, formulation (4) is defined over a
network with 8,798 nodes and 9,139 arcs. The for-
mulation (4) consists of 15,266 variables and 13,142
constraints. CPLEX 7.0 was able to solve it for one
locomotive type in a few seconds. We took a total of
two to three minutes to obtain a satisfactory solution
in the weekly space-time network. Whereas the inte-
ger programming formulation of the weekly space-
time network was insolvable, solving it heuristically
using the constrained network flow algorithm was
quite efficient.

After we obtained a feasible solution of the weekly
locomotive-scheduling problem, we applied a neigh-
borhood search algorithm to it. We considered each
locomotive type one by one and tried to determine
the optimal flow of the selected locomotive type while
keeping the flow of other locomotive types intact.
This subproblem is a (single-commodity) constrained
minimum cost flow problem and can be very effi-
ciently solved. We terminate when the solution value
does not improve for any locomotive type. Observe
that this algorithm can also be regarded as a very
large-scale neighborhood search algorithm and is a
modification of the neighborhood search algorithm
described in §6.6 for the daily space-time network.
Finally, after we have obtained the solution of the
weekly locomotive-scheduling problem, we can cre-
ate additional train-train connections by matching the
locomotive assignments of inbound and outbound
trains at each station if they have the same consist.
For the data provided by CSX, we were able to cre-
ate about 10%-15% additional train-train connections
with the use of this algorithm.

8. Computational Results

In this section, we will present our computational
results. CSX Transportation supplied us with data
files for several scenarios. Here we present the results
for three scenarios corresponding to three months.
These scenarios contained 3,324 trains originating
from and terminating at 119 stations; however, the
tonnage and horsepower requirements of these trains

Table 3a Comparison of ALS and CSX Solutions: The Number of
Locomotives of Different Types Used by the CSX and ALS
Software
Scenario 1 Scenario 2 Scenario 3
Type of
locomotives CSX ALS CSX ALS CSX ALS
SD40 498 249 519 283 550 323
SD50 171 160 162 138 174 161
C40 621 487 619 466 620 432
AC44 164 154 155 154 155 155
AC60 160 160 160 160 160 160
Total 1,614 1,210 1,615 1,201 1,659 1,231

were different in different scenarios. 3,316 locomo-
tives belonged to five locomotive types that we could
use for scheduling. All of our algorithms were imple-
mented in C++, and we made extensive use of
callable libraries in CPLEX 7.0. The algorithms were
run and tested on a Pentium III PC with a speed of
750 MHz. We call our software the Advanced Loco-
motive Scheduling (ALS) system. Our algorithms have
been very consistent in terms of their running-time
requirements and the reduction in locomotives.

Table 3(a) compares the solutions obtained by ALS
with those of CSX’s software. In each of these cases,
the ALS solution is substantially superior to the CSX
solution; ours reduces the total cost substantially and
dramatically decreases the number of locomotives
used. The ALS solution used 350-400 fewer locomo-
tives than the CSX solution with medium consist bust-
ing (50%) and medium light travel (0.8%). Recall from
§1 that CSX handles consist assighment and locomo-
tive scheduling separately and that their locomotive-
scheduling phase considers each locomotive type
individually. We achieved the dramatic decrease in
the number of locomotives mainly by combining con-
sist assignment and locomotive scheduling and by
considering all locomotive types together instead of
individually.

Integrating consist assignment and locomotive
scheduling also significantly reduced the fraction
of locomotives that deadhead. Table 3(b) presents
the statistics on the percentage of the times when
locomotives are actively pulling trains, deadheading
on trains, light traveling, or idling at stations (for
maintenanceor just waiting to be assigned to out-

Table 3b Comparison of ALS and CSX Solutions: Comparison of Other Statistics

Scenario 1 Scenario 2 Scenario 3 Average
Performance
measure CSX (%)  ALS (%) CSX (%) ALS(%) CSX (%) ALS (%) CSX (%) ALS (%)
Active time 31.30 44.40 31.30 44.95 29.20 47.03 30.60 45.46
Deadheading time 19.60 8.10 19.60 9.31 20.18 8.31 19.79 8.57
Idling time 49.10 46.70 49.10 45.00 50.62 43.78 49.61 4516
Light-traveling time 0 0.80 0.00 0.74 0.00 0.88 0.00 0.81
Consist busting 85.0 49.4 85.0 68.23 85.0 70.74 85.0 62.79
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Table 4a Sensitivity of the Solution to Light Travel
No light Medium light Sufficient
Consist busting: 50% travel travel light travel
Total number of locomotives used 1,268 1,210 1,192
Total cost ($) 9,431,228 9,242,092 9,182,314
Percentage active time (%) 39.14 44.44 45.26
Percentage deadheading time (%) 12.37 8.09 7.33
Percentage idling time (%) 48.49 46.67 46.06
Percentage light traveling time (%) 0.00 0.80 1.35

bound trains). In the ALS solution, the percentage of
the time that locomotives are actively pulling trains
is about 14% more than in the CSX solution. There-
fore, our solution significantly increases locomotive
productivity.

We also conducted some tests to measure the sen-
sitivity of the solution to the extent of light travel
and the number of train-train connections; for the
sake of brevity, we will present these results for one
Scenario 1 only. Table 4(a) displays the statistics of
the final solution when we allow three levels of light
travel: no light travel; medium light travel; and suffi-
cient light travel. We observe that a reasonable level
of light travel can increase the locomotive utilization
rate significantly. Table 4(b) provides the statistics of
the final solution when we consider several levels
of train-train connections. We observe that consist-
busting can be decreased at the expense of a lower
locomotive-utilization rate and a requirement of more
locomotives.

9. Summary and Conclusions

In this paper, we have presented the results of
a study of a locomotive-scheduling problem faced
by CSX Transportation, a major U.S. railroad com-
pany. We focused on the planning version of the
locomotive-scheduling problem, for which we assign
locomotive types to various trains. Our goal was to
develop excellent plans along a number of dimen-
sions. Our primary metric for evaluating a solution
was to compare it to the existing software that the
locomotive-planning division at CSX uses. This exist-
ing software is an in-house software that has been

developed over a period of 10 years. While it has the
substantial advantage of capturing many constraints
and objectives not dealt with in the existing literature,
it also has some significant limitations. In particular,
it is unable to produce acceptable solutions without
considerable manual adjustment of the solution pro-
duced. Our approach to solve the planning version
of the locomotive-scheduling problem produced solu-
tions that satisfied the constraints and business rules
specified by CSX and offered considerable savings
in cost, especially in terms of a significant reduction
in the number of locomotives needed. Our model is
the first approach to account for consist busting, light
travel, and consistency of the solution in a unified
framework. Our approach relies on the technique of
separating the locomotive-scheduling problem into a
two-step process; first we solve the daily locomotive-
scheduling problem, and then we solve the weekly
locomotive-scheduling problem. This approach works
reasonably well for those situations in which a large
number of trains run most days of the week.

By incorporating more realistic constraints and
costs in our models, we needed to rely on a multistage
heuristic procedure to solve the model. In particular,
we were unable to solve MIPs involving many fixed-
charge constraints. We avoided this with a sequential
heuristic procedure for determining the three sets of
the decision variables (i) light travel, (ii) train-train
connections, and (iii) active and deadhead locomotive
flow variables sequentially instead of determining
their values through an integrated single model. Nev-
ertheless, our sequential procedure heavily exploited
information from a sequence of LPs, and thus relied

Table 4b Sensitivity of the Solution to Consist Busting

Very high High Medium Low Minimum

consist busting consist busting consist busting consist busting consist busting

Consist busting rate (%) 66.39 59.48 49.42 39.09 31.06
Number of locomotive used 1,155 1,165 1,210 1,281 1,340
Total cost ($) 9,052,779 9,064,822 9,242,092 9,532,021 9,772,958
Percentage active time (%) 46.68 45.74 44.44 42.67 41.25
Percentage deadheading time (%) 6.28 6.79 8.09 9.99 9.57
Percentage idling and dwelling time (%) 46.23 46.68 46.67 46.35 48.04
Percentage light-traveling time (%) 0.81 0.79 0.80 0.99 1.14
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on a systemwide view of the entire planning prob-
lem. When we determine light-travel arcs, we con-
sider locomotive flow variables as part of the LPs
solved also. Similarly, when we determine train-train
connection variables, we again consider locomotive
flow variables in the decision process. Therefore, we
do achieve a certain level of integration in our sequen-
tial approach. Perhaps in the future we will be able
to obtain a better integration of these different sets of
variables.
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