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Abstract. We study a multiechelon lot-sizing problem for a serial supply chain that
consists of a production level and several transportation levels, where the demands can
exist in the production echelon as well as in any transportation echelons. With the presence
of stationary production capacity and general cost functions, our model integrates pro-
duction, inventory, and transportation decisions and generalizes existing literature on
many multiechelon lot-sizing models. First, we answer an open question in the literature
by showing that multiechelon lot sizing with intermediate demands (MLS) is NP-hard.
Second, we develop polynomial time algorithms for both uncapacitated and capacitated
MLS with a fixed number of echelons. The run times of our algorithms improve on
those of many known algorithms for different MLS models. Third, we present families of
valid inequalities for MLS that generalize known inequalities. For the uncapacitated case,
we develop a polynomial-time separation algorithm and efficient separation heuristics.
Finally, we demonstrate the effectiveness of a branch-and-cut algorithm using proposed
inequalities to solve large multi-item MLS problems.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2019.1867.
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1. Introduction
In production planning, the economic lot-sizing prob-
lem considers a manufacturer that produces and stores
a single product to meet time-varying demand over a
given finite planning horizon. The problem is to de-
termine production quantities for each period such
that all demands are satisfied on time with minimum
total production and inventory holding costs. The
production plan is of great importance owing to the
balance between the fixed setup cost and the inven-
tory holding cost. Production quantity and the re-
sulting inventory level affect the product availability
and customer service level, making them key ele-
ments for business competitiveness.

If production planning only happens at one level
without involving transportation decisions, the asso-
ciated lot-sizing problem is a single-echelon problem,
where a level is referred to as an echelon. However, in
practice, it is common to see a multilevel or multi-
echelon serial supply chain integrating production,
inventory, and transportation decisions (van Hoesel
et al. 2005). Contemporary research provides sub-
stantial evidence that integrating these decisions
can improve efficiency and effectiveness when re-
sources are limited and costs are nonlinear (i.e., ex-
hibit economies of scale). For example, Kaminsky
and Simchi-Levi (2003) describe a multiechelon serial

supply chain in the pharmaceutical industry where
products are manufactured in a series of production
facilities with values adding on, and intermediate
goods need to be transported between these facilities.
Additionally, a multiechelon serial supply chain will
occur, for instance, when products are distributed
over great distances. In such a case, companies use
central warehouses close to the production facilities
and a number of local stocking points close to the
customers in different areas. Hence, the produced
items can be stored at the production facilities or
transported to a central warehouse in the first level.
Before reaching the final retail level, products are
either stored at an intermediate distribution level,
such as distribution center and wholesaler, or trans-
ported to the next level. In a long serial supply chain, it
is advantageous to transport larger quantities of the
products over long distances to storage facilities in
intermediate echelons before distributing the prod-
ucts to the retailer level. Such a serial supply chain
model can be represented by a generic multiechelon
lot-sizing problem consisting of a manufacturer, several
indistinguishable intermediate production or trans-
portation levels, and a retailer level. The objective is to
minimize the system-wide cost, including production,
transportation, and inventory holding costs, while
satisfying all demands.

1

http://pubsonline.informs.org/journal/opre
mailto:mzhao@udel.edu
https://orcid.org/0000-0002-2664-5267
https://orcid.org/0000-0002-2664-5267
mailto:mzhang16@kennesaw.edu
https://doi.org/10.1287/opre.2019.1867
https://doi.org/10.1287/opre.2019.1867


As one of the most widely studied problems, the
multiechelon lot-sizing problem has been considered
primarily under the assumption that demands occur
only at the final echelon. In this paper, we study a
multiechelon lot-sizing problem in series with pos-
sible demands at intermediate echelons. Although in-
tegrating production, transportation, and inventory
decisions becomes more challenging, it is of partic-
ular importance in supply chain systems with mul-
tichannel or intermediate products demand. For ex-
ample, a retailer such as Microsoft or Apple that
manufactures products overseas may ship products
from its distribution centers directly to the customers
who order through an official website, as well as to a
brick-and-mortar store (e.g., Best Buy) to meet de-
mand. In a value-added production system, a product
needs to be transported through a sequence of pro-
duction facilities. The intermediate goods created in
this production system usually have their own de-
mands, and it is important to fulfill the demand for
both the intermediate and final products.

In practice, regardless of production or transpor-
tation echelons, capacities need to be imposed at each
echelon in a serial supply chain. Following most of
the literature on tractable cases, we concentrate on
a multiechelon lot-sizing problem with a stationary
capacity at the production echelon only and inter-
mediate demand, which is referred as a multiechelon
capacitated lot-sizing problem (MCLS), and its unca-
pacitated variation, denoted as multiechelon uncapa-
citated lot-sizing problem (MULS). As in standard lot-
sizing problems, all cost functions are assumed to
be nondecreasing in the amount produced, stored,
or shipped. In particular, we consider concave cost
functions and special cases such as linear produc-
tion and transportation costs with a fixed charge.
Before our literature review, we present the mathe-
matical formulation of MCLS and MULS. We pro-
vide all technical proofs in an e-companion and use
the prefix “EC” when referring to sections in the
e-companion.

1.1. Mathematical Model and Notations
Let T be the length of the planning horizon and L be
the number of echelons in a serial supply chain, where
manufacturing occurs at the first echelon and prod-
ucts are transported from one echelon to the next
echelon to satisfy demands. For each echelon i ∈ [1, L]
in each period t ∈ [1,T], we define the following
notation:

• dit: demand faced by the customer at echelon i in
period t.

•C: constant production capacity at the production
echelon (i.e., the first echelon).

• xit: production or transportation quantity in pe-
riod t at echelon i. If i � 1, it is the production quantity;

otherwise, it is the transportation quantity from ech-
elon i − 1 to i.
• pit(xit): production or transportation cost function

at echelon i in period t for nonnegative amount xit.
Arguably, the concave cost structure is quite realistic
(e.g., economies of scale) and therefore demands at-
tention. As one of the most important cost structures,
the fixed-charge case has received substantial atten-
tion in the literature. In such a case, we have pit(xit) �
f it δ(xit) + citx

i
t, where f it is the fixed cost, cit is production

or transportation cost, and δ(x) is an indicator func-
tion taking the value 1 if x> 0 and 0 otherwise.
• Iit: inventory quantity held at echelon i at the end

of period t.
• hit(Iit): concave inventory holding cost function

at echelon i for nonnegative amount Iit at the end of
period t. A widely used holding cost function is a
linear function that we simply denote hit(Iit) � hit · Iit.
As an example, Figure 1 shows the network flows

of an eight-period, three-echelon lot-sizing problem.
Throughout this paper, for an echelon i, we refer to
echelon j as a lower echelon (or level) if j> i and a higher
echelon (or level) if j< i according to their positions
in the network (see Figure 1). We let [i, j] denote the
interval {i, i + 1, . . . , j} for i ≤ j and [i, j] � ∅ for i> j.
Given the notations just defined, in MCLS, we min-
imize the total cost of the production and transpor-
tation plan through a serial structure supply chain,
as follows:

min
∑L
i�1

∑T
t�1

pit(xit) + hit(Iii )
( )

(1a)

s.t. Iit−1 + xit � Iit + xi+1t + dit ∀i ∈ [1,L − 1], t ∈ [1,T],
(1b)

ILt−1 + xLt � ILt + dLt ∀t ∈ [1,T], (1c)

x1t ≤ C ∀t ∈ [1,T], (1d)

Ii0 � IiT � 0 ∀i ∈ [1, L], (1e)

xit ≥ 0, Iit ≥ 0 ∀i ∈ [1,L], t ∈ [1,T], (1f)

where objective function (1a) is to minimize the total
cost, including production cost, transportation cost,
and inventory holding cost; constraints (1b) and (1c)
balance inventory over time and echelons; inequal-
ities (1d) constrain production capacity; constraints (1e)
restrict the initial and ending inventories to be zero;
and inequalities (1f) are nonnegativity constraints.
Throughout this paper, we refer to a cost structure,
with fixed-charge production and transportation
costs and linear holding costs, as the fixed-charge cost
structure for short.
In this paper, we are interested in exact methods

for MCLS, where the capacity appears only at the
production level, and its variation, MULS with
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intermediate demands, where the inequalities (1d) are
dropped. For bothMCLS andMULS, we focusmainly
on general concave cost structure and fixed-charge
cost structure. The problems we study generalize lot-
sizing problems with a fixed number of echelons and
demands occurring only at the final echelon. To sim-
plify the comparisonwith the literature, we introduce
some additional notation:

• When the number of echelons L is specified and
fixed, we prefix “L-” to the abbreviations. For exam-
ple, L-ULS and L-CLS are uncapacitated and capac-
itated L-echelon lot-sizing problems, respectively.

• When demand occurs only at the final echelon,
we append “-F” to the abbreviations. For example, we
have abbreviations MCLS-F, L-ULS-F, and L-CLS-F.

For notational convenience, we define di(s, t) �∑t
j�s dij (i.e., the cumulative demand at echelon i in

periods from s to t), and it is 0 if s> t. Let+0 be a subset
of the set [1, L] such that every echelon i ∈ +0 is just
a transshipment echelon without intermediate de-
mands; that is, di(1,T) � ∑T

j�1 dij � 0 ∀i ∈ +0 and +1 �
[1,L] \+0. We define L1 � |+1| and L0 � |+0| as the
number of echelons with and without demand, re-
spectively. Without loss of generality, we can assume
that the final echelon L ∈ +1; otherwise, the problem
can be reduced to an L − 1 echelon lot-sizing problem.
We also assume that

∑L
��1 d�(1, t) ≤ tC, t ∈ [1,T], to

ensure the feasibility of MCLS.

1.2. Literature Review
The study of lot-sizing problems starts from the sem-
inal paper byWagner andWhitin (1958), in which the
authors propose an O(T2) algorithm to solve the un-
capacitated single-echelon lot-sizing problem (1-ULS)

based on the properties of the extreme solutions.
Decades later, the algorithm for the 1-ULSwas improved
by Federgruen and Tzur (1991), Wagelmans et al.
(1992), and Aggarwal and Park (1993) to O(TlogT).
Krarup and Bilde (1977) develop an uncapacitated
facility location formulation for 1-ULS, which is a
compact extended formulation so that the linear re-
laxation yields an optimal solution satisfying all in-
tegrality restrictions. Barany et al. (1984) develop the
so-called (�, S) inequalities, which are sufficient to de-
scribe the convex hull of 1-ULS. Additionally, valid in-
equalities and the computational complexity of 1-ULS
with inventory bounds (Atamtürk and Küçükyavuz
2005, 2008) and backlogging (Küçükyavuz and Pochet
2009) are studied in the literature.
The single-echelon lot-sizing problemwith varying

capacity is known to be NP-hard; see Florian et al.
(1980) and Bitran and Yanasse (1982). However, by
considering a constant capacity over the planning
horizon (i.e., 1-CLS), Florian and Klein (1971) de-
velop an O(T4) dynamic programming algorithm to
solve the problem, which is improved to O(T3) by
van Hoesel and Wagelmans (1996) when the holding
costs are linear. An interesting extension of constant
capacity is considering constant batch size. When
backlogging is not allowed, Pochet andWolsey (1993)
give an O(T3) algorithm and propose the most im-
portant family of inequalities for 1-CLS, the so-called
(k, l,S, I) inequality.With backlogging, Van Vyve (2007)
also gives an O(T3) algorithm for a general num-
ber of maximal batches. The polytope of the vary-
ing capacity case of lot-sizing problems is studied
by Atamtürk and Muñoz (2004). However, their
results do not generalize the (k, l,S, I) inequality.

Figure 1. Eight-Period, Three-Echelon Lot-Sizing Network
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Another variant of capacitated lot sizing is a multi-item
problem in which multiple items share the same lim-
ited resources, such as machine setup time. Fragkos
et al. (2016) apply a branch-and-price algorithm to
a horizon decomposition method, which partitions
the single-echelon multiperiod problem into sub-
problems on consecutive overlapping intervals with
smaller size. This horizon decomposition method
is shown to be efficient and can be generalized to
the problems with a generic constraint structure. In
Akartunalı et al. (2016), the convex hull of the two-
period subproblem is further studied, and a column-
generation method is developed to generate violated
valid inequalities for the two-period subproblems to
effectively solve the original multiperiod problem.
Comparing these period-wise decomposition methods
for the single-echelon problem with such a big bucket
capacity constraint, our study focuses on the multi-
echelon case to address a global supply chain with
many levels of suppliers. We refer readers to Pochet
and Wolsey (2006) for a detailed study of many vari-
ants of the lot-sizing problems.

The uncapacitated multiechelon lot-sizing prob-
lem is first studied by Zangwill (1969), with demand
occurring at the final echelon only. The MULS-F
is modeled as a network flow problem in a two-
dimensional grid, and an O(LT4) dynamic program-
ming algorithm is proposed by Zangwill (1969). Later,
Love (1972) gives anO(LT3) algorithm by exploiting a
nested structure based on the assumption that the
production costs are nonincreasing over time and the
holding costs are nondecreasing over echelons. Be-
cause of its importance in applications, 2-ULS-F re-
ceives a lot of attention. van Hoesel et al. (2005) show
that 2-ULS-F can be solved in O(T3) time, which is
improved to O(T2 logT) by Melo and Wolsey (2010).
Lee et al. (2003) study an application of 2-ULS-F with
backlogging allowed in the last echelon and outbound
shipment. This results in a stepwise and nonconcave
transportation cost for the shipment between the two
echelons. Lee et al. (2003) show that the problem can
be solved inO(T6) time. Hwang (2010) generalizes the
model by considering general concave production
costs. Van Vyve et al. (2014) develop exact and ap-
proximate extended formulations for several variants
of the two-echelon discrete lot-sizing problem with one
item at the first echelon and multiple items at the sec-
ond echelon, such as the uncapacitated cases, constant
capacitated cases, and the cases with startup costs. To
the best of our knowledge, Zhang et al. (2012) are the
first to study the complexityof themultiechelon lot-sizing
problem with intermediate demands, more specifi-
cally 2-ULS. Zhang et al. (2012) show that 2-ULS can
be solved inO(T4) time with a dynamic programming
algorithm, which implies an extended formulation
with O(T4) variables and O(T4) constraints.

Kaminsky and Simchi-Levi (2003) study a three-
echelon lot-sizing model with capacities, which can be
reduced to a two-echelon model. With linear holding
costs and no speculative motives assumption, the model
can be solved in O(T8) time, where no speculative
motives implies that it is optimal to transport to the lower
echelons as late as possible (i.e., c�t + h�+1t ≥ c�t+1 + h�t in
the case of the fixed-charge cost structure). vanHoesel
et al. (2005) provide a detailed analysis of the
capacitatedmultiechelon lot-sizing problemMCLS-F.
They show that in the case of fixed-charge trans-
portation costs without speculative motives, MCLS-F
can be solved in polynomial time, O(T7 + LT4), and
the algorithm complexity can be improved to O(T6)
when L � 2. However, they provide only a pseudo-
polynomial algorithm with complexity O(LT2L+3) for
MCLS-F with general concave costs. Later, this result
is significantly improved by Hwang et al. (2013) be-
cause theMCLS-F is proved to be polynomial solvable
in O(LT8) time using a new concept called basis paths.
It is well known that the lot-sizing problem with

concave costs can be seen as a minimum concave
cost network flow problem in a two-dimensional grid
with only one source. Because much of the literature
on network flow problems focuses on more general
settings where the network could have multiple
sources, we find only two papers, by He et al. (2015)
and Ahmed et al. (2016), closely related to our work.
For more research on the general network flow prob-
lem, we refer to the literature in those two papers. He
et al. (2015) focus on the grid network with multiple
sources at the first level. They show that MULS, as a
special case, is polynomial solvable when the number of
echelons L is fixed, but the computational complexity
is not specified. Ahmed et al. (2016) study a similar
grid network with flow capacities and classify many
NP-hard and polynomial solvable cases. They show
that the minimum concave cost network flow prob-
lem in a two-dimensional grid with two sources at the
top level is NP-hard. However, the complexity of
solving the single-source problem, MULS, is unknown.
Despite the extensive study of lot-sizing problems,

the polyhedral study of multiechelon lot-sizing prob-
lems has received little attention in the literature,
except for the valid inequalities for the two-echelon
production planning problem with a complex as-
sembly structure developed byGaglioppa et al. (2008)
and a large family of two-echelon inequalities for
2-ULS proposed by Zhang et al. (2012).

1.3. Main Contributions and Outline
This paper contributes both to theory and compu-
tation. In Section 2, we prove that the MULS with
a fixed-charge cost structure is NP-hard and pro-
vide a list of the computational complexities of
our proposed algorithms for solving MULS and
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MCLS (see Table 1). Note that our algorithms out-
perform the best-known algorithms proposed in the
literature (see Table 2). In Section 3, we study the valid
inequalities for MULS and MCLS, and our results
generalize many known inequalities, such as (�,S),
two-echelon, and (k, l,S, I) inequalities. The efficacy of
applying our inequalities in solving large instances
of the multi-item, multiechelon lot-sizing problem
is demonstrated in Section 4. We demonstrate that
the branch-and-cut algorithm with the proposed in-
equalities is four times faster than CPLEX and ap-
proximately two times faster than the best-known
algorithms in the literature. For ease of reading, we
discuss our major theoretical findings and compu-
tational study in the text but include the complete
proofs of all theorems, propositions, and corollaries
and detailed computational results in the e-companion.
Last, we conclude our paper in Section 5.

2. Computational Complexities
In this section, we prove that MULS is NP-hard and
develop efficient polynomial algorithms for MULS
and MCLS given a fixed number of echelons. By con-
sidering intermediate demands, our results (see Table 1)
generalize and outperform much existing research
(see Table 2), including that of Zangwill (1969), Lee
et al. (2003), van Hoesel et al. (2005), and Zhang et al.
(2012), which are special cases of our model.

2.1. NP-Hardness
Much effort has been spent in finding efficient
polynomial-time algorithms or proving NP-hardness
for the dynamic lot-sizing problem and its extensions
to certain network flow problems. On the one hand, if

demand occurs at the final echelon only, then MULS-F
and MCLS-F are polynomial solvable, as shown by
Zangwill (1969) andHwang et al. (2013), respectively.
On the other hand, Ahmed et al. (2016) show that the
minimum concave cost flow in a two-dimensional
grid is NP-hard if there are two sources at the first
level. An obvious gap between these results is the
unknown complexity of theMULS. Themain result of
this subsection, Theorem 1, aims to close this gap.

Theorem 1. The MULS with a fixed-charge cost structure
is NP-hard.

The proof of Theorem 1 is a reduction from planar
3SAT and can be found in Section EC.1 of e-companion.

2.2. Uncapacitated Cases
First, we generalize the approach of Zangwill (1969)
on MULS-F to MULS by considering intermedi-
ate demands. We then propose a novel algorithm to
solve MULSwith a fixed-charge cost structure, which
outperforms the one suggested by Zhang et al. (2012).
We show that our approach provides a better ex-
tended formulation and can be extended to solve
2-ULS with backlogging and outbound transporta-
tion, where the transportation cost functions are
stepwise and nonconcave.
Unlike lot-sizing problems with demands at the fi-

nal echelon only, our problem requires characteriz-
ing demand satisfaction status at each echelon, which
motivatesus to introduceL-dimensional vectors. Hence,
we define a set 9 � {v ∈ [0,T]L : v1 ≤ · · · ≤ vL}. For
notational convenience, we denote 0 ∈ 9 with 0i �
0 ∀i ∈ +, 1 ∈ 9 with 1i � 1 ∀i ∈ [1,L], and T ∈ 9 with
Ti � T ∀i ∈ [1, L].

Table 1. Computational Complexity Results

Model Cost structure Complexity

MULS General concave costs O(LT3L1+1)
Fixed-harge cost structure O(Lmin(TL logT,T3L1+1))

MCLS General concave costs O(LT2L1L+2)
Fixed-charge transportation costs and no
speculative motives

O(T4L1+2 + LT3L1+1)

Table 2. Computational Complexity Comparisons Between Our Results and the Best-
Known Results

Model The best-known results Results of this paper

3-ULS-Fa O(T4) By Zangwill (1969) O(T3 logT)
MCLS-Fb O(LT2L+3) By van Hoesel et al. (2005) O(LT2L+2)

O(LT8) By Hwang et al. (2013)
MCLS-Fc O(T7 + LT4) By van Hoesel et al. (2005) O(T6 + LT4)
2-CLS-Fc O(T6) by van Hoesel et al. (2005) O(T5)
2-ULSa O(T4) By Zhang et al. (2012) O(T2 logT)

aWith fixed-charge cost structure.
bWith general concave cost functions.
cWith fixed-charge transportation costs and no speculative motives.
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2.2.1. General Concave Costs. Following the tradi-
tional view of Zangwill (1969), the MULS with con-
cave cost functions can be seen as aminimum concave
flow problem in a two-dimensional grid. The ship-
ment pattern of any extreme solution can be char-
acterized similarly, except that satisfying interme-
diate demands requires more detailed analysis (see
Section EC.2.1 of the e-companion).

Theorem 2. The MULS with concave cost functions can be
solved in O(LT3L1+1) time.

In the case of MULS-F, we have L1 � 1, so the com-
putational complexity is O(LT4), the result derived
by Zangwill (1969). Theorem 2 indicates that the
complexity of MULS depends only on the number of
echelons with demands, regardless of which echelons
have demands.

2.2.2. Fixed-Charge Cost Structure. As one of the
most important cost structures, the fixed-charge cost
structure receives a lot of attention in the literature
on dynamic lot-sizing problems. It is well known that
linear holding costs can be dropped and replaced
by variable production and transportation costs be-
cause Iit �∑t

τ�1(xiτ − xi+1τ ) − di(1, t) ∀i ∈ [1,L− 1] and ILt �∑t
τ�1 xLτ − dL(1, t). Hence, in this subsection, we assume

that the holding costs are 0 without loss of generality.
In the case of the single-echelon lot-sizing problem

with a fixed-charge cost structure, the idea of regen-
eration points and intervals is used to reformulate the
problem as a shortest-path problem on a directed graph.
We will generalize regeneration points and intervals
to the multiechelon lot-sizing problem as regeneration
vectors and arcs, which can be used to reformulate the
problem as finding a shortest path on a directed graph.
This novel approach is very different from the tradi-
tional method that considers MULS as a minimum cost
network flow on a two-dimensional grid.We show that
the resulting dynamic programming recursions out-
perform many of the best-known algorithms.

Definition 1. A vector v ∈ [0,T]L is a regeneration vector
if v ∈ 9 and Iivi � 0 for all i ∈ [1,L]. Let !i � {(v,w) :
v,w ∈ 9, vj � wj ∀j �� i and vi <wi} for all i ∈ [1,L]. A
pair of two regeneration vectors (v,w) forms a regen-
eration arc at echelon i with i ∈ [1,L] if (v,w) ∈ !i.

Consider a directed graph & � (9,!), where the arc
set! � ⋃L

i�1 !i.We define the cost of arc (v,w) ∈ !i for
any i ∈ [1, L] as
C(v,w) � di(vi + 1,wi)

∑i

��1
c�v�+1

+ f ivi+1 if di(vi + 1,wi) +
∑L
��i+1

d�(1, v�) �� 0,

0 otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

The arc (v,w) assumes that the demands in periods
vi + 1, . . . ,wi at echelon i are all satisfied by the pro-
duction in period v1 + 1 and transportation in period
v� + 1 at each echelon � ∀� ∈ [1, i]. Thus, the arc cost
includes the production and transportation costs at
all echelons � ∈ [1, i] in period v� + 1 for demand
di(vi + 1,wi) and the fixed cost at echelon i in period
vi + 1 if necessary. The costs can be decomposed into
each potential regeneration arc because the variable
costs are additive. One of our main theorems shows
the following.

Theorem 3. The MULS with a fixed-charge cost struc-
ture can be solved as a shortest-path problem on a directed
acyclic graph & � (9,!) with the source node 0 and the
sink node T.

The following example shows that an extreme so-
lution is related to a path composed of regeneration
vectors and arcs.

Example 1. Given a two-echelon, six-period, uncapa-
citated lot-sizing problem, we can view it as a network
flow problem in a two-dimensional grid, as shown in
Figure 2. According to Theorem 3, we construct a graph
& � (9,!)with node set9 � {v ∈ [0,6] × [0,6] : v1 ≤ v2}
and arc set ! � {(v,w) : v,w ∈9,v1 � w1,v2 < w2} ∪
{(v,w) : v,w ∈9,v1 < w1,v2 � w2}, as shown in Figure 3.
The solution shown in Figure 2 is an extreme solution
whose total cost is

(d1(1,3)+d2(1,5))c11+ f 11 +d2(1,2)c21+ f 21 +d2(3,5)c23+ f 23
+d14c

1
4+ f 14 +(d1(5,6)+d26)c15+ f 15 +d26c

2
6+ f 26 .

It corresponds to the path from (0, 0) to (6, 6) as depicted
in Figure 3, with the same total cost according to the
arc costs marked by each arc. To simplify the notation,
we assume that all demands are positive at each echelon
in each period, so the fixed cost has to be considered for
each arc in the path.

Remark 1. In Example 1,
• the demand d2(1, 2) in Figure 2 is satisfied by pro-

duction and transportation at period 1, which cor-
respond to the arc ((0, 0), (0, 2)) in Figure 3 with cost
d2(1, 2)(c11 + c21) + f 21 ;

Figure 2. An Extreme Solution of a Two-Echelon, Six-
Period, Uncapacitated Lot-Sizing Problem
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• the demand d2(3, 5) is satisfied by production
at period 1 and transportation at period 3, which
correspond to the arc ((0, 2), (0, 5)) in Figure 3 with
cost d2(3, 5)(c11 + c23) + f 23 ; and• the demand d1(1, 3) is satisfied by production at
period 1, which corresponds to the arc ((0, 5), (3, 5)) in
Figure 3 with cost d1(1, 3)c11 + f 11 , and a similar rela-
tionship follows between Figures 2 and 3.

It is worth noting that the demand d26 is satisfied by
production at period 5 and transportation at period 6,
which correspond to the arc ((4, 5), (4, 6)). The reason
that an arc corresponding to d26 does not follow im-
mediately from an arc corresponding to d2(3, 5) is that
arc ((4, 5), (4, 6)) provides the production and trans-
portation information of d26. Thus, the associated cost
of satisfying d26 can be calculated correctly. Note that
a path consisting of arcs ((0, 0), (0, 2)), ((0, 2), (0, 5)),
((0, 5), (2, 5)) corresponds to a solution that is not ex-
treme. The path indicates that the total production in
period 1 is d1(1, 2) + d2(1, 5). Because d13 is not satisfied
by the production at period 1, we need a positive pro-
duction in period 3 to fulfill its demand (i.e., x13 > 0). To
satisfy the demands d2(3, 5) in periods 3–5, we must

hold positive ending inventory in period 2 (i.e., I12 > 0).
Because I12x

1
3 > 0, the zero inventory ordering (ZIO)

property (see Section EC.2.2 in the e-companion) is
violated, and the solution is not extreme. Although
some paths do not suggest extreme solutions, the
shortest path will correspond to a solution with min-
imum cost because the proof of Theorem 3 shows that
the total cost of a path is equal to the total cost of the
corresponding solution.

Remark 2. The cost of arc (v,w) in (2) contains a fixed
cost f ivi+1 if the value of di(vi + 1,wi) +∑L

��i+1 d�(1, v�) is
nonzero. The term

∑L
��i+1 d�(1, v�) is necessary in case

echelon i has no demand. For example, Figure 4 shows
an extreme solution of a two-echelon, two-period, un-
capacitated lot-sizing problem where d11 � d12 � 0 and
d21 � d22 � 1.

The corresponding path in graph & is ((0, 0), (0, 1)),
((0, 1), (0, 2)), ((0, 2), (2, 2)). To calculate C((0,2),(2,2)) as
in (2), where i � 1, v � (0, 2), and w � (2, 2), we have
di(vi+1,wi) �d1(1,2) �0 and

∑L
��i+1d�(1,v�) �d2(1,2) �2.

Then we get C((0,2),(2,2)) � f 11 , where the fixed cost f 11 is
necessary in the cost calculation because of the pro-
duction at period 1. However, if the term

∑L
��i+1

Figure 3. A Path in the Graph & Corresponds to the Extreme Solution in Figure 2
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d�(1,v�) is neglected, we will get C((0,2),(2,2)) �0, which
results in an incorrect cost calculation.

For a given vector v ∈ 9, let G(v) represent the
minimumcost of a path in& from v toT. For notational
convenience, we denote vL+1 � T and (v−i, α) ∈ 9 as a
vector equal to v, except that the ith component is α.
The shortest-path algorithm implies that

G(v) � min
w:(v,w)∈!

C(v,w) + G(w)
� min

i∈[1,L]:vi < vi+1
min

w:(v,w)∈!i

C(v,w) + G(w) (3)

� min
i∈[1,L]:vi < vi+1

min
w:w−i�v−i and
vi <wi≤vi+1

C(v,w) + G(v−i,wi).

(4)

Because (v,w) ∈ !, we know that (v,w) ∈ !i for i ∈
[1,L]. From the definitions of !i and 9, we have
vi+1 � wi+1 ≥ wi > vi. Thus, Equations (3) and (4) hold.
The arc cost C(v,w) equals a possible fixed cost plus
di(vi + 1, μ)∑i

��1 c�v�+1, where the fixed cost f ivi+1 occurs
if we have production or transportation at echelon i
in period vi + 1. Apparently, the fixed cost has to
be considered if divi+1 > 0. Otherwise, in the case of
divi+1 � 0, we can compare the costs by having G(v) �
G(v−i, vi + 1) (i.e., ignoring the 0 demand) or having
production/transportation in period vi + 1 at echelon i.
Note that (v−i, vi + 1) ∈ 9 because vi+1 > vi in (4). In
contrast to the arc cost, here the way of dealing with
fixed cost follows Wagelmans et al. (1992). There-
fore, G(v) satisfies a dynamic programming recursion
as follows, and consequently, we have Corollary 1:

G(v) � min
i∈[1,L]:vi < vi+1

min
vi <λ≤vi+1

[
f ivi+1 + di(vi + 1, λ)

∑i

��1
c�v�+1 + G(v−i, λ)

]
if divi+1 > 0,

min G(v−i, vi + 1), min
vi <λ≤vi+1

[
f ivi+1+

{

di(vi + 1, λ)∑i

��1
c�v�+1 + G(v−i, λ)

]}
if divi+1 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Corollary 1. The MULS with a fixed-charge cost structure
can be solved in O(min(LT3L1+1, LTL logT)) time.

Remark 3. The traditional method (see Zangwill 1969,
Melo and Wolsey 2010, Zhang et al. 2012) applies dy-
namic programming recursions on a two-dimensional
grid with nodes in the form of (echelon, period). The
method does not fully explore the characterization
of extreme solutions and has difficulty in general-
izing to higher-dimensional problems. Our algo-
rithm is to find the shortest path on an L-dimensional

graph with node set 9. As evidence of its efficacy, the
complexity result in Theorem 1 improves many pre-
vious studies (see Table 2).

Because the MULS with a fixed-charge cost struc-
ture can be solved by finding a shortest path in the
graph & with O(TL) nodes and O(LTL+1) arcs, we can
have an extended formulation (see EC.2.4 in the
e-companion) with O(LTL+1) variables and O(TL) con-
straints. For a review of extended formulations, we
refer readers to Pochet and Wolsey (2006). Zhang
et al. (2012) establish a hierarchy of formulations by
studying their relative strengthwhen L � 2. Van Vyve
et al. (2014) propose extended formulations of two-
echelon lot-sizing problems with multiple items at
the final echelon and startup costs. Our extended for-
mulation is very different and obtained from the
shortest-path algorithm for the purpose of efficiently
addressing the existence of intermediate demands. In
particular, our extended formulation has fewer variables
and constraints than the one in Zhang et al. (2012).
However,whendemandoccurs only at thefinal echelon,
the proposed extended formulation is probably not the
best one comparedwith existing extended formulations.

2.3. Capacitated Cases
Capacitated lot-sizing problems are much more com-
plicated than their uncapacitated counterparts mainly
because the zero inventory ordering property does
not hold after imposing a capacity. However, starting
with Florian and Klein (1971), many researchers find
that the production and transportation quantities can
be enumerated in polynomial time if the capacity is
stationary. van Hoesel et al. (2005) provide a detailed
study on capacitated multiechelon lot-sizing prob-
lemswith demand occurring at the final echelon only.
They show that in the view of the network flow prob-
lem, the flow corresponding to any extreme solution
can be decomposed into a sequence of so-called sub-
plans, each of which has at most one positive pro-
duction arc where the production quantity is strictly
less than the capacity. This property of the sub-
plan allows them to enumerate all possible values of

Figure 4. An Extreme Solution of a Two-Echelon, Two-
Period, Uncapacitated Lot-Sizing Problem
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cumulative production and transportation quantities
for each subplan. They are then able to solve MCLS-F
through a two-phase dynamic programming by con-
sidering adjacent subplans.

A more general approach is proposed in this sub-
section to solve MCLS. In particular, the definition of
a subplan needs to be adjusted for MCLS because of
the intermediate demands. It turns out that, in our
case, the cumulative production and transportation
quantities have a much richer structure. By enu-
merating all allowable values, we are able to solve
MCLS in O(LT2L1L+2) time for general concave costs,
which outperforms the approach proposed by van
Hoesel et al. (2005) for solving MCLS-F. Throughout
this subsection, for two L-dimensional vectors u and v,
we denote u ≤ v if u� ≤ v� ∀� ∈ [1, L] component-wise.
Similarly, min(u, v) is an L-dimensional vector whose
�th component equals min(u�, v�) ∀� ∈ [1,L]. We also
define a relaxed set of 9 by fixing the components
corresponding to the transshipment echelons to 0
(i.e., 9 � {v ∈ [0,T]L : vi ≤ vj∀i ≤ j ∈ +1 and vi � 0∀i ∈
+0}). For notational convenience, we denote 1̄ ∈ 9
with 1i � 1 ∀i ∈ +1 and T ∈ 9 with Ti � T ∀i ∈ +1.
We define $i(v̄, w̄) � ∑L

��i d�(v̄� + 1, w̄�) ∀i ∈ [1,L] and
vector �$(v̄, w̄) � ($1(v̄, w̄), . . . ,$L(v̄, w̄)).
2.3.1. Subplans and Relaxed Subplans. We consider
theflows in the network corresponding to the extreme
points, where the network consists of nodes (i, t) at
echelon i in period t (see Figure 5). After removing all
production arcs, the network is decomposed into
several connected components. We then connect each
isolated node without demand to the node on its left
(connecting to its above node if the node is in period 1)
and define each connected component as a subplan
(v,w) with v,w ∈ 9 and v ≤ w. We also require that,
for any j ∈ [1, L − 1], we have either vj+1 <wj or v� �
w� ∀� ∈ [j + 1,L] owing to the arborescent structure

of an extreme solution in the subplan. Note that if
vj+1 ≥ wj, then, in the subplan, there is no flow that can
connect to the nodes (j + 1, vj+1 + 1), . . . , ( j + 1,wj+1).
Hence, the subplan only contains nodes at echelons
1, . . . , j, andwe need to have v� � w� ∀� ∈ [ j + 1,L]. We
say that two subplans (v′,w′) and (v′′,w′′) are con-
secutive if w′ � v′′. For example, in Figure 5, if d17 > 0,
then we have three consecutive subplans ((0, 0, 0),
(6, 7, 7)), ((6, 7, 7), (7, 7, 7)), and ((7, 7, 7), (11, 11, 11)).
Otherwise, we have only two consecutive subplans
((0, 0, 0), (7, 7, 7)) and ((7, 7, 7), (11, 11, 11)). As common
in network flow problems, we define an arc as free if it
carries an amount of flow that is positive and strictly
less than its capacity. Because the flow corresponding
to the extreme solution is acyclic, at most, one free
production arc enters the subplan.
The definition of a subplan was first introduced by

van Hoesel et al. (2005), except that their requirement
is vi+1 <wi ∀i ∈ [1,L − 1] for a subplan (v,w). For ex-
ample, in Figure 5, ((6, 7, 7), (7, 7, 7)) is no longer a valid
subplan because v2 � w1 � 7. Thus, we have only two
consecutive subplans ((0, 0, 0), (7, 7, 7)) and ((7, 7, 7),
(11, 11, 11)) when d17 > 0. Apparently, we could have
two free production arcs, for example, x14 and x17, in
the subplan ((0, 0, 0), (7, 7, 7)). The example shows
that with the requirements vi+1 <wi ∀i ∈ [1,L − 1] in
the case of having intermediate demands, we cannot
ensure that at most one free production arc enters
each subplan, which is the key property we need for
subplans. Therefore, a different (relaxed) subplan
definition is necessary.
In summary, any extreme solution can be decom-

posed into a sequence of consecutive subplans, and
at most one free production arc enters the subplan.
Even though we need two vectors v,w ∈ 9 for a sub-
plan, the total demand of a subplan depends only on
v̄, w̄ ∈ 9, where v̄� � v� and w̄� � w� ∀� ∈ +1. Hence,
wedefine the pair (v̄, w̄) as a relaxed subplan.We know

Figure 5. The Flow Corresponding to an Extreme Solution to the 3-CLS with 11 Periods
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that the subplan (v,w) satisfies, for any j ∈ [1,L − 1],
either vj+1 < wj or v� � w� ∀� ∈ [ j + 1,L]. This implies
that (v̄, w̄) satisfies, for any j ∈ [1,L − 1] ∩+1, either
vj+1 < wj or v� � w� ∀� ∈ [j+ 1,L]. Similarly, two relaxed
subplans (v̄′, w̄′) and (v̄′′, w̄′′) are consecutive if w̄′ � v̄′′.
On the basis of the preceding discussions, we have the
following.

Proposition 1. The total demand $1(0,T) can be decom-
posed into the demands of a sequence of consecutive relaxed
subplans. The demand of a relaxed subplan is served by at
most one positive production quantity whose value is strictly
less than the capacity.

Although the concepts of subplans and relaxed
subplans are related, they differ fundamentally. A
subplan is a subnetwork connected by a flow that
indicates a production and transportation plan of a
subproblem, whereas a relaxed subplan is just a pair
of vectors that indicate the demand quantities. When
the demand occurs at the final echelon only, a relaxed
subplan is identified by a pair (v̄, w̄)whose only non-
fixed components are at the final echelon. Then it is
equivalent to represent the relaxed subplan as (v̄L, w̄L).

2.3.2. General Concave Costs. Given a relaxed sub-
plan (v̄, w̄), we define a graph &(v̄,w̄) with nodes (t,X, τ)
where

• t ∈ [v̄1, w̄L] is a time period;
• X � (X1, . . . ,XL) is a cumulative quantity vector

such that X1 is a cumulative production quantity up
to and including period t, and Xi, ∀i ∈ [2,L], is a cu-
mulative transportation quantity from echelon i − 1
to echelon i up to and including period t;

• τ ∈ [v̄1, w̄L] if X1 � $1(v̄, w̄), and τ � 0 otherwise.
Let X be a cumulative quantity vector up to and in-

cluding period t − 1 in the relaxed subplan (v̄, w̄). For
all t,X,X and τ, we define arcs in &(v̄,w̄) as follows:

• ((t − 1,X, 0), (t,X, 0)) if X1 ≤ X1 <$1(v̄, w̄);
• ((t − 1,X, 0), (t,X, t)) if X1 <$1(v̄, w̄) � X1;
• ((t − 1,X, τ), (t,X, τ)) if X1 � X1 � $1(v̄, w̄).
Note that τ will be used as an indicator to identify

the last production period. All arcs with given t,X,X
indicate the same planning that at echelon i ∈ [1, L]
in period t, the production (or transportation if i > 1)
quantity is Xi − Xi, and the inventory quantity is Xi −
Xi+1 − di(v̄i + 1,min(t, w̄i)), except that, at echelon L,
the inventory quantity isXL − dL(v̄L + 1, t). Hence, arcs
with given t,X,X have the same arc cost as follows:∑L
i�1

pit(Xi − Xi) +
∑L−1
i�1

hit(Xi − Xi+1 − di(v̄i + 1,min(t, w̄i)))

+ hLt (XL − dL(v̄L + 1, t)). (6)

It is important to note that the choices of X are not
arbitrary because production quantities are bounded
by the capacity and restricted by Proposition 1. In

particular, Remark EC.3 in the e-companion shows
that the number of allowable values for (X, τ) is
O(T2L1(L−1)+1). Because X and X are two cumulative
quantity vectors in two adjacent periods, the choices
of (X,X, τ) can be further limited, and Proposition EC.3
shows that the number of allowable values for (X,X, τ)
is O(T2L1(L−1)+1). Because arcs in &(v̄,w̄) include all al-
lowable values for (X,X) in two adjacent periods, a
path from node (v̄1, 0, 0) to node (w̄L, �$(v̄, w̄), τ), for
some τ> 0, corresponds to a solution that satisfies
demand$1(v̄, w̄) in the relaxed subplan (v̄, w̄), and τ is
the last production period based on our arc definition.
Let &c � ⋃

(v̄,w̄) &(v̄,w̄) be a graph that is the union of
&(v̄,w̄) for all relaxed subplans. We denote each node
(t,X, τ) in &(v̄,w̄) as a node (t,X, τ)(v̄,w̄) in &c. Addition-
ally, we add a source node (0, 0, 0)(0,0) and a sink node
(T, 0, 0)(T,T) to the graph &c.
First, we connect the source node to nodes (0,

0, 0)(0,v̄) for all v̄ ∈ 9with 0 arc cost. So a path from the
source node to node (v̄L, �$(0, v̄), τ)(0,v̄), for some v̄ and
τ> 0, corresponds to a solution that satisfies demand
$1(0, v̄) of the relaxed subplan (0, v̄).
Next, for any two consecutive relaxed subplans (ū, v̄)

and (v̄, w̄), we connect each node (v̄L, �$(ū, v̄), τ)(ū,v̄)
with τ> 0 in &(ū,v̄) to a node (τ̂, 0, 0)(v̄,w̄) with τ̂ �
max(τ, v̄1) in &(v̄,w̄) through a dummy arc with cost 0.
Recall that τ in a node (v̄L, �$(ū, v̄), τ)(ū,v̄) indicates
the last production period for satisfying demand in
$1(ū, v̄) in the relaxed subplan (ū, v̄). Each dummy arc
ensures that the production used to satisfy demand
in $1(v̄, w̄) occurs after period τ̂ � max(τ, v̄1). After
subgraphs in &c are connected by dummy arcs, a path
from the source node to node (T, �$(w̄,T), τ)(w̄,T), for
some w̄ and τ> 0, corresponds to a solution that sat-
isfies the total demand $1(0,T).
Finally, we connect nodes (T, �$(w̄,T), τ)(w̄,T) for all

w̄ ∈ 9 and τ> 0 to the sink node with 0 arc cost.
Therefore, the MCLS can be solved as a shortest-path
problem from the source node to the sink node on a
directed acyclic graph &c. Because there are O(T3L1+1)
combinations of (ū, v̄, w̄, τ), the number of dummy arcs
in &c is O(T3L1+1). Also, there are O(T2L1+1+2L1(L−1)+1) �
O(T2L1L+2) combinations of (v̄, w̄, t,X,X, τ). Because
T3L1+1 ≤ T2L1L+2, the total number of arcs (as well as
nodes) in &c is O(T2L1L+2). Note that the cost (6) for
each arc can be calculated inO(L) time. Sowe have the
following theorem.

Theorem 4. The MCLS can be solved as a shortest-path
problem on a directed acyclic graph &c in O(LT2L1L+2) time.

Example 2 illustrates the relationship between an
extreme solution of an MCLS and a path in graph &c.

Example 2. Given an extreme solution of a three-
echelon, five-period, capacitated lot-sizing problem as
shown in Figure 6, with C � 9, d1t � 0, and d�t � 2 for
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t � 1, . . . , 5 and � � 2, 3, we have source node (0, (0, 0, 0),
0)((0,0,0),(0,0,0)) and sinknode (5, (0, 0, 0), 0)((0,5,5),(0,5,5)) in&c.
Table 3 contains nine arcs in graph &c corresponding to
the extreme solution in Figure 6. Because the total de-
mand can be decomposed into demands of two re-
laxed subplans ((0, 0, 0), (0, 3, 4)) and ((0, 3, 4), (0, 5, 5)),
arcs 2–5 and arcs 7 and 8 are in two subgraphs
&((0,0,0),(0,3,4)) and &((0,3,4),(0,5,5)), respectively. Arc 6 serves
as a dummy arc to link two subgraphs. Arc 1 links the
source node to &((0,0,0),(0,3,4)), and arc 9 links the sink
node to &((0,3,4),(0,5,5)).

For example, the node (t,X, τ)(v̄,w̄) � (4, (14, 14, 8),
3)((0,0,0),(0,3,4)) indicates that at period 4 in relaxed sub-
plan ((0, 0, 0), (0, 3, 4)), we have the cumulative pro-
duction quantity up to and including period 4 as X1 �
14 � x11 + x13 (note that x14 is not included because we
consider relaxed subplan ((0, 0, 0), (0, 3, 4))), the cu-
mulative transportation quantity from echelon 1 to
echelon 2 up to and including period 4 as X2 � 14 �
x21 + x22 + x23, and the cumulative transportation quan-
tity from echelon 2 to 3 up to and including period 4 as
X3 � 8 � x31 + x32 + x33. Because X1 � 14 indicates that

all demands in the relaxed subplan ((0, 0, 0), (0, 3, 4))
are produced, the last production period is τ � 3.

Remark 4. For 1-CLS, we have L � L1 � 1. Theorem 4
implies the same complexity O(T4) as in Florian and
Klein (1971). In the case of 2-CLS-F (i.e., L � 2 and
L1 � 1), Theorem 4 indicates that the model can be
solved in O(T6) time, which improves the complexity
O(T7) proposed by van Hoesel et al. (2005).

2.3.3. Fixed-Charge Transportation Costs Without
Speculative Motives. The assumption of no specula-
tive motives is commonly made for the production
and inventory holding costs in traditional economic
lot-sizing models and appears often in the literature.
In the context of fixed-charge transportation costs,
no speculative motives indicates that it is attractive
to transport as late as possible. More formally, c�t +
h�+1t ≥ c�t+1 + h�t if inventory holding cost is linear.
Following theorem 4.4 in van Hoesel et al. (2005),
there exists an optimal solution satisfying the ZIO
property (i.e., Iit−1xit � 0 for i ∈ [1, L] and t ∈ [1,T])
because of fixed-charge transportation costs and no

Figure 6. An Extreme Solution of a Three-Echelon, Five-Period, Capacitated Lot-Sizing Problem

Table 3. A Path in Graph &c

Arc From node To node

Arc costi (t − 1,X, τ′)(ū,v̄) (t,X, τ)(v̄,w̄)
1 (0, (0, 0, 0), 0)((0,0,0),(0,0,0)) (0, (0, 0, 0), 0)((0,0,0),(0,3,4)) 0
2 (0, (0, 0, 0), 0)((0,0,0),(0,3,4)) (1, (9, 4, 2), 0)((0,0,0),(0,3,4)) p11(9) + h11(5) + p21(4) + p31(2)
3 (1, (9, 4, 2), 0)((0,0,0),(0,3,4)) (2, (9, 9, 5), 0)((0,0,0),(0,3,4)) p22(5) + p32(3) + h32(1)
4 (2, (9, 9, 5), 0)((0,0,0),(0,3,4)) (3, (14, 14, 8), 3)((0,0,0),(0,3,4)) p13(5) + p23(5) + p33(3) + h33(2)
5 (3, (14, 14, 8), 3)((0,0,0),(0,3,4)) (4, (14, 14, 8), 3)((0,0,0),(0,3,4)) 0
6 (4, (14, 14, 8), 3)((0,0,0),(0,3,4)) (3, (0, 0, 0), 0)((0,3,4),(0,5,5)) 0
7 (3, (0, 0, 0), 0)((0,3,4),(0,5,5)) (4, (6, 2, 0), 4)((0,3,4),(0,5,5)) p14(6) + p24(2) + h14(4)
8 (4, (6, 2, 0), 4)((0,3,4),(0,5,5)) (5, (6, 6, 2), 4)((0,3,4),(0,5,5)) p25(4) + p35(2)
9 (5, (6, 6, 2), 4)((0,3,4),(0,5,5)) (5, (0, 0, 0), 0)((0,5,5),(0,5,5)) 0

Note. Except for special arcs 1, 6, and 9 that are defined in some specific ways, our arc definition shows
that (a) “from node” and “to node” are in the form of (t − 1,X, τ′)(ū,v̄) and (t,X, τ)(v̄,w̄), respectively, and
(b) if X1 <X1 � total demand in a subplan, then τ′ � 0 and τ � t; otherwise, τ′ � τ.
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speculativemotives. Therefore,we can limit ourselves to
the extreme solutions with the ZIO property. MCLS
can be solved by decoupling the production echelon
(the first echelon) from the rest of the model, and the
echelons from level 2 to level L can be solved by using
dynamic programming recursions in Section 2.2.1 be-
cause of theZIOproperty.Note that the production costs
and inventory holding costs are still assumed to be
generally concave. Thuswe have the following theorem.

Theorem 5. The MCLS with fixed-charge transportation
costs and no speculative motives can be solved in O(T4L1+2 +
LT3L1+1) time.

Corollary 2. The 2-CLS-F with fixed-charge transportation
costs and no speculative motives can be solved in O(T5) time.

Remark 5. Theorem 5 differs from Theorem 4 in that it
shows a complexity that is independent of the num-
ber of echelons L. Under the condition of fixed-charge
transportation costs with no speculative motives, MCLS
can be solved within polynomial time when L1 is fixed.
Our results generalize and outperform algorithms in
van Hoesel et al. (2005), where the authors have pre-
sented an O(T7 + LT4) algorithm for solving MCLS-F
and an O(T6) algorithm for solving 2-CLS-F.

3. Multiechelon Inequalities
In this section, we focus on developing valid in-
equalities for the multiechelon lot-sizing problem
with a fixed-charge cost structure as follows:

min
∑L
i�1

∑T
t�1

citx
i
t + f it y

i
t

( )
(7a)

s.t.
∑T
t�1

xit �
∑L
��i

d�(1,T) ∀i ∈ [1, L], (7b)

∑t
j�1

(xij − xi+1j ) ≥ di(1, t) ∀i ∈ [1, L − 1],
t ∈ [1,T],

(7c)

∑t
j�1

xLj ≥ dL(1, t) ∀t ∈ [1,T], (7d)

xit ≤
∑L
��i

d�(t,T)yit ∀t ∈ [1,T], (7e)

x1t ≤ Cy1t ∀t ∈ [1,T], (7f)

xit ≥ 0, yit ∈ {0, 1} ∀i ∈ [1,L], t ∈ [1,T],
(7g)

where binary variables yit ∀i ∈ [1, L], t ∈ [1,T] are in-
troduced tomodel the fixed-charge costs. The efficacy
of the inequalities proposed in this section will be
demonstrated in Section 4 by solving large instances
of the multi-item, multiechelon lot-sizing problem.

3.1. Uncapacitated Case
We present a family of valid inequalities for MULS
that generalizes many known inequalities.

Theorem 6. For 0 � k0 ≤ k1 ≤ · · · ≤ kL ≤ n, let [ki−1 + 1,ki]
⊆ Ti ⊆ [1,ki] and Si ⊆ Ti ∀i ∈ [1,L]. We have an L-echelon
inequality

∑L
i�1

∑
t∈Ti\Si

xit +
∑
t∈Si

φi
ty

i
t

( )
≥ ∑L

i�1
di(1, ki), (8)

where

φi
t �

∑L
��i

d�(αi
�t + 1, βi�t) (9)

such that αi
it � t − 1, βiit � max{τ ≥ t − 1 : [t, τ] ⊆ Ti},

αi
�t � max{τ ≥ αi

�−1,t : [αi
�−1,t + 1, τ] ⊆ T�} and

βi�t � max{τ ≥ βi�−1,t : [βi�−1,t + 1, τ] ⊆ T�} (10)

for � ∈ [i + 1,L].
Remark 6. In the definition of αi

�t and βi�t, we have αi
�t �

αi
�−1,t when αi

�−1,t + 1 /∈T� and βi�t � βi�−1,t when βi�−1,t+
1 /∈T�. In general, we have βi�t ≤ k� ∀� ∈ [i, L]. However,
βiit � max{τ ≥ t − 1 : [t, τ] ⊆ Ti} � ki when Ti � [1, ki]
for some i ∈ [1,L]. In such a case, βi�t � k� ∀� ∈ [i + 1,L]
follows because of the iterative definition and the fact
that [k�−1 + 1, k�] ⊆ T� ∀� ∈ [i + 1, L].
If 0 � k0 � k1 � · · · � kL−1 ≤ kL ≤ n, then Ti � Si � ∅

∀i ∈ [1, L − 1] and SL ⊆ TL � [1, kL]. It is easy to cal-
culate that αL

L,t � t − 1 and βLL,t � kL. Inequality (8) then
reduces to∑

t∈[1,kL]\SL
xLt +

∑
t∈SL

dL(t, kL)yLt ≥ dL(1, kL),

which is the (�,S) inequality of Barany et al. (1984).
If 0 � k0 � k1 � · · · � kL−2 ≤ kL−1 ≤ kL ≤ n, then Ti �

Si � ∅ ∀i ∈ [1,L − 2], SL−1 ⊆ TL−1 � [1, kL−1], SL ⊆ TL,
and [kL−1, kL] ⊆ TL ⊆ [1, kL]. It follows that αL−1

L−1,j � αL
L,t �

t − 1, αL−1
L,t � βLL,t � max{τ ≥ t − 1 : [t, τ] ⊆ TL}, βL−1L−1,t �

kL−1, and βL−1L,t � kL. Inequality (8) becomes∑L
i�L−1

∑
t∈Ti\Si

xit +
∑
t∈Si

φi
ty

i
t

( )
≥ ∑L

i�L−1
di(1, ki),

where φL−1
t � dL−1(t,kL−1) +dL(t,kL) −dL(t, βLL,t) and φL

t �
dL(t, βLL,t), which is the two-echelon inequality of
Zhang et al. (2012).
The necessary and sufficient facet conditions for

an L-echelon inequality are expected to be complicated
(we refer readers to Zhang et al. 2012 on the necessary
and sufficient conditions for the two-echelon in-
equality), and it could be even more difficult to imple-
ment the conditions into a branch-and-cut algorithm.
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Therefore, we consider only two simple necessary
conditions that make an L-echelon inequality facet
defining, and they are implemented in our compu-
tational study.

Proposition 2. If the L-echelon inequality (8) is facet de-
fining, then we have, for any j ∈ [1, L − 1],(a) [1, tj] ∩
Tj+1 � ∅, where tj � max{τ : [1, τ] ⊆ ∪l∈[1,j](Tl \ Sl)}, and
(b) when [tj, tj] ⊆ Tj \ Sj, there exists t ∈ [tj − 1, tj] such that
[tj, tj] ∩ Tj+1 � [tj, t].
Remark 7. Multiechelon inequalities are special cases
of the dicut collection inequalities introduced by
Rardin and Wolsey (1993). However, dicut collection
inequalities are written implicitly as a function of a
collection of dicuts in a graph without known com-
binatorial separation algorithms. To yield a multi-
echelon inequality, the required dicut collection Γ �⋃

i∈[1,L]{Γit}t∈[1,T] has each Γit as a singleton {Qi
t} for t ∈

[1,n] and i ∈ [1, L]. The dicut collection that gives the
multiechelon inequality is, for i ∈ [1, L], Γit � ∅ if t ∈
[ki + 1,T] and Γit � {Qi

t} � ⋃
l∈[1,i]{xlj : j ∈ [1, t] ∩ Tl}∪⋃

l∈[1,i]{ylj : j ∈ {τ : t ∈ [αi
lτ + 1, βilτ]} ∩ Sl} if t ∈ [1, ki].

Because a dicut with a smaller size will result in stronger
inequalities, Proposition 2 improves the dicut collection.
We refer readers to Rardin andWolsey (1993) for further
details on the dicut collection inequalities.

3.2. Separation for L-Echelon Inequality
The exact separation algorithm can be generalized
from proposition 4 for 2-ULS in Zhang et al. (2012)
with a similar proof. We use the shortest-path net-
work introduced in Section 2.2.2 for the separation
network. We have the following proposition.

Proposition 3. Given a fractional solution of a multiechelon
lot-sizing problem, there is an O(LT2L) algorithm to find the
most violated inequality (8), if any.

As Zhang et al. (2012) point out, even deriving the
exact separation for a two-echelon inequality is quite
time consuming in practice owing to its O(T4) time
complexity. Now we give an efficient separation heu-
ristic and show the computational results in Section 4.

Note that we can always aggregate adjacent ech-
elons to construct an MULS with fewer than L ech-
elons. The main part of our separation algorithm is to
obtain m � {m1, . . . ,m|m|} and k � {k1, . . . , k|m|}, where
a newMULS is derived by aggregating echelonsm1 to
m2 − 1 as the first echelon and so on until aggregating
echelonsm|m| to L as the lastechelon.Vectork is composed
of all the ki values for each echelon after aggregation.
Algorithm 1 provides the details of finding m and k.

Algorithm 1 Find m and k
1. Ki ← ∅ ∀i ∈ [1,L]
2. Aggregate echelons i, . . . , L to a 1-ULS and

apply (�, S) inequalities

3. if (�,S) inequalities cut off current linear pro-
gramming (LP) solution then

4. Ki ← Ki ∪ {�}
5. Initiate two vectors m and k
6. for m1 � 1 to L − 1 and m2 � m1 + 1 to L do
7. for k1 ∈ K1 and k2 ∈ K2 such that k1 ≤ k2 do
8. m.push back(m1), m.push back(m2)
9. k.push back(k1), k.push back(k2)

10. for i � m2 + 1 to L do
11. if ki�min{k∈Ki : k≥ the last element

ink} exists then
12. m.push back(i); k.push back(ki)
We then obtain Ti ∀i ∈ m using the separation net-

workdescribed inAlgorithm 2with the givenk.Without
loss of generality, we present Algorithm 2 by assum-
ing |m| � L and mi � i in order to simplify notation.
Algorithm 2 shows that Ti ∀i ∈ [1,L] can be determined
by a shortest-path algorithm with complexity O(LT2).
Proposition 2 is applied next to improve the choice of
Ti ∀i ∈ [1,L]. We let t ∈ Si if xit >φi

ty
i
t. Finally, the

L-echelon inequality (8) is added only if it cuts off the
current LP solution.

3.3. Capacitated Case
The most general class of inequalities defined for
constant-capacity, single-echelon lot sizing (1-CLS) is
the so-called (k, l,S, I) inequalitiesofPochet andWolsey
(1993, 2006). The main idea is to construct a mix-
ing set in the form {(s, zj) ∈ R+ × Zn : s + Czj ≥ bj}, and
then the mixing mixed-integer rounding (MIR) in-
equalities developed by Günlük and Pochet (2001)
imply valid inequalities for 1-CLS. Let {i0, . . . , is−1} �
S ⊆ [k, l] with k< l ∈ [1,T] and |S| � s. We denote ij �
max{τ ∈ [k − 1, l] : [k, τ] \ S| | � j} for j � 0, . . . , s. It is
clear that is � l. As demonstrated by Pochet and
Wolsey (2006), the mixing set with inequalities

∑k−1
t�1

x1t +
∑

t∈[k,l]\S
x1t + C

∑
t∈[k,ij]∩S

y1t ≥ d1(1, ij) ∀j ∈ [0, s]

(11)

can be used to generate the (k, l,S, I) inequality. In this
subsection, we only consider valid inequalities for 2-
CLS. We give a family of valid inequalities (12) that
can be used to construct a mixing set.

Algorithm 2 Find Ti ∀i ∈ [1,L] with given ki ∀i ∈ [1,L]
1. T1 ← [1, k1], and Ti ← ∅ ∀i ∈ [2, L]
2. j ← T, T′

j−1 ← [1, kj−1]
3. repeat
Procedure: build a separation network with node set

{0, . . . , kj−1 + 1} ∪ {1′, . . . , k′j−1}
4. Arcs (0, 1) and (0, 1′) with cost 0
5. Arcs (u,v′)with 1≤u<v≤kj−1 (or (u,kj−1+1)).

The shortest path visiting the arc (u,v′) implies that
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to minimize the left-hand side of inequality (8), we let
[u,v−1]⊆Tj and u−1,v/∈Tj. The cost on this arc is∑v−1

t�u
min xj−1τ ,φ

j−1
t yj−1t

{ }
+∑v−1

t�u
min xjt,φ

j
ty

j
t

{ }
,

where φ
j−1
t and φ

j
t are defined in (9). Note that

α
j−1
j−1,t � t−1, βj−1j−1,t � kj−1, α

j−1
j,t � t−1, βj−1j,t � kj. α

j
j,t � t−1,

and β
j
j,t � t−1. The rest of αs and βs can be obtained

iteratively because T�, ∀� ∈ [j+1,L], are known.
6. Arc (v′,w) with 1≤ v<w≤ kj−1+1. A

shortest path visiting each arc (v′,w) implies that to
minimize the left-hand side of inequality (8), we let
[v,w−1]∩Tj � ∅ and v−1,w ∈Tj. The cost on this arc is∑w−1

t�v
min xj−1t ,φ

j−1
t yj−1t

{ }
,

where φ
j−1
t is defined in (9). Note that α

j−1
j−1,t � t − 1,

β
j−1
j−1,t � kj−1, α

j−1
j,t � t − 1, and β

j−1
j,t � kj. The rest of the

αs and βs can be obtained iteratively because T�, ∀� ∈
[j + 1,L] are known

End Procedure
7. Find a shortest path from node 0 to node

kj−1 + 1 in the separation network
8. for all arcs (a, b) in the shortest path do
9. if (a, b) � (u, v′) is an arc defined in step 5

then
10: Let [u, v − 1] ⊆ Tj and u − 1, v /∈ Tj
11. if (a, b) � (v′,w) is an arc defined in step 6

then
12. Let [v,w − 1] ∩ Tj � ∅ and v − 1,w ∈ Tj

13. j ← j − 1
14. until j � 1
15. return Ti ∀i ∈ [1, L]

Proposition 4. The inequalities

∑k−1
t�1

x1t − x2t
( ) + ∑

t∈[k,l]\S
x1t + C

∑
t∈[k,ij]∩S

y1t

≥ max d1(1, ij), d1(1, ij) + d2(1, ij)(
+ d1(1, k − 1) − (k − 1)C) ∀j ∈ [0, s]

(12)

are valid for MCLS.

Remark 8. We can use inequalities (12) to construct
mixing sets, and the valid inequalities for 2-CLS can be
derived by applying the mixing MIR procedure. In
Example 3, two valid and facet-defining inequalities are
obtained using this procedure. Clearly, building amixing
set to generate valid inequalities is crucial.We contributes
a method to develop valid inequalities in an explicit form,
based on the explicit convex hull description for mixing
set developed by Günlük and Pochet (2001). More
important, the inequalities we developed generalize the
(k, l, S, I) inequalities to 2-CLS because inequalities (12)

degenerate to (11) for 1-CLS, in which case, d1(1, k − 1)
≤ (k − 1)C.
Owing to the complexity of the capacitated lot-sizing

problem, Pochet and Wolsey (1993) show that the
(k, l,S, I) inequality is not enough to describe the convex
hull of 1-CLS. No combinatorial polynomial exact sep-
aration algorithm is known for the (k, l,S, I) inequality
(see Pochet and Wolsey 2006). Even more, we do not
find any literature on studying (k, l,S, I) inequalities
computationally. As evidence in our computational
study with a simple separation heuristic, the results
show that the (k, l, S, I) inequality is not necessarily
more efficient than the (�,S) inequality by Barany et al.
(1984). Thus, an algorithm that can find good mixing
sets is important on effectively applying mixing-set
based inequalities, which we leave as future research.

Example 3. Consider a 2-CLS problem with four pe-
riods, d1t � d2t � 10 ∀t ∈ [1, 4] and C � 32. Let k � 2,
l � 4, S � {3, 4}. Then i0 � 2, i1 � 3, and i2 � 4. We have
a mixing set described by inequalities (12) as follows:

(x11 − x21) + x12 ≥ 20

(x11 − x21) + x12 + 32y13 ≥ 38

(x11 − x21) + x12 + 32y13 + 32y14 ≥ 58.

A valid inequality, which is also facet-defining,

x11 − x21 + x12 + 18y13 + 6y14 ≥ 44

can be derived from the mixing set.

Amixing set canbeobtainedbyother valid inequalities.
When d2(k,n) ≤ C, as in the example, we have valid
inequalities (with a similar proof as for Proposition 4)

∑k−1
t�1

x1t − x2t
( ) + ∑

t∈[k,l]\S
x1t + C

∑
t∈[k,ij]∩S

y1t +
∑

t∈[k,ip]∩S
y2t

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

≥ max d1(1, ij),(
d1(1, ij) + d2(1, imax(p,j)) + d1(1, k − 1)
− (k − 1)C) ∀j ∈ [0, s], p ∈ [0, j + 1].

(13)

We can get a different mixing set with inequalities

(x11 − x21) + x12 ≥ 20,

(x11 − x21) + x12 + 32y23 ≥ 28,

(x11 − x21) + x12 + 32y13 + 32y23 ≥ 38,

(x11 − x21) + x12 + 32y13 + 32y14 + 32y23 ≥ 58,

where the last three inequalities are in the form of (13)
with p � 1 and j � 0, 1, 2. The mixing set gives another
valid and facet-defining inequality

x11 − x21 + x12 + 16y13 + 6y14 + 2y23 ≥ 44.
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4. Computational Results
To investigate the computational advantages of the
proposed strong inequalities, we implement them as
cutting planes in the branch-and-bound process of the
state-of-the-art optimization solver CPLEX; that is, as
an implementation of the branch-and-cut (B&C) al-
gorithm. In particular, the Concert Technology of
CPLEX 12.6.1 is used for adding user-defined cuts,
and a traditional branch-and-bound search method
with single thread is adopted. All tests are subject to a
3,600-second central processing unit (CPU) time limit.
If no optimal solution is obtained within the time
limit, then the optimality gap is reported. The com-
putational study was carried out on a node machine
at the University of Houston Center for Advanced
Computing and Data Science, which contains two
Intel Xeon 2.8-GHz processors with 8-GB memories.

Our testing data sets consist of instances of the multi-
item, multiechelon lot-sizing problem with T periods, L
echelons, R items, and mode constraints that allow at
most κ orders to be placed in each period at each
echelon. On the basis of a hierarchy of formulations
established in Zhang et al. (2012) and our initial tests
on different formulations, we use the formulation in
Equations (14a)–(14g) rather than a multi-item for-
mulation based on Equations (1a)–(1f). LetMi

a and d̂iat
be the order capacity and demand for item a at ech-
elon i in period t, respectively. The demands, fixed
costs, variable costs, and holding cost for each item at
each echelon in each period are generated using a
discrete uniform distribution in the intervals [0, 50],
[1,000, 2,000], [0, 20], and [0, 6], respectively, except
that d̂iat � 0 ∀t ∈ 1, �R/κ�[ ] to ensure the feasibility be-
cause of the mode constraints. The capacityMi

a is set to
3�∑L

��i d̂ia (1,T)/T�. We define d̂ia(u, v) � ∑v
j�u d̂iaj. Let xiat

denote the total order quantity of item a in period t at
echelon i. The mixed-integer programming formu-
lation of the capacitated multi-item lot-sizing prob-
lem with mode constraints is as follows:

min
∑R
a�1

∑L
i�1

∑T
t�1

citx
i
at + f it y

i
at

( )
(14a)

s.t.
∑T
t�1

xiat �
∑L
��i

d̂�a(1,T) ∀i ∈ [1,L], a ∈ [1,R], (14b)

∑t
j�1

(xiaj − xi+1aj ) ≥ d̂ia(1, t) ∀i ∈ [1,L − 1],

t ∈ [1,T], a ∈ [1, a], (14c)

∑t
j�1

xLaj ≥ d̂La (1, t) ∀t ∈ [1,T], a ∈ [1,R], (14d)

xiat ≤ Mi
ay

i
at ∀i ∈ [1, L], t ∈ [1,T],

a ∈ [1,R], (14e)

∑R
a�1

yiat ≤ κ ∀i ∈ [1,L], t ∈ [1,T], (14f)

xiat ≥ 0, yiat ∈ {0, 1} ∀i ∈ [1,L],
t ∈ [1,T], a ∈ [1,R]. (14g)

By varying the values of T,L,R, κ with κ � �R/2�, we
generate 80 base instances of 16 different sizes (see
Table 4) and five instances for each size.
Then, for each instance, we randomly select an

echelon l ∈ [2,L − 1] and generate a new instance by
letting d̂lat � 0 ∀a ∈ [1,R], t ∈ [1,T]. Hence, in all new
instances, there is no demand for any product at one
of their echelons and L1 � L − 1. We call those 80 in-
stances derived instances. Those random instances are
tested with implementation of the following com-
puting methods:
•CPX indicates the default CPLEX with traditional

B&C in single-thread mode;
• LS indicates a B&C algorithm to which the (�, S)

inequalities (Barany et al. (1984)) are added at the root
node only;
•C indicates a B&C algorithm to which the (k, l,S, I)

inequalities (Pochet and Wolsey (1993)) are added at
the root node only;
• 2LS indicates a B&C algorithm to which the (�, S)

inequalities and the two-echelon inequalities (Zhang
et al. (2012)) are added at the root node only; and
•MLS indicates a B&C algorithm towhich the (�, S)

inequalities and the L-echelon inequalities are added
at the root node only.
Observing that adding cuts at every node of the

branch-and-bound tree is rather ineffective, our
implementations mainly focus on cut generation at
the root node. We implement LS and 2LS algorithms
as in Zhang et al. (2012). The C algorithm is imple-
mented by adding (k, l,S, I) inequalities where the
set S is generated in the same way as for the (�,S) in-
equality, and we set I � S. Then, we enumerate all
possible values of parameters k and l to obtain violated
(k, l,S, I) inequalities. The detailed computational re-
sults of each algorithm are presented in Tables EC.1
and EC.2 in e-companion. Tables 5–8 summarize the
algorithms’ overall performance.
In Table 5, for both base and derived instances, we

report the number of instances solved to optimality
(column “Solved”), the number of unsolved instances

Table 4. Sizes of All Instances

L T.R.κ L T.R.κ L T.R.κ L T.R.κ

3 15.7.4 5 20.3.2 7 20.2.1 9 30.1.1
20.7.4 25.3.2 25.2.1 35.1.1
20.5.3 15.5.3 15.3.2 15.2.1
25.5.3 20.5.3 20.3.2 20.2.1
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(column “Unsolved”), the average gap before ter-
mination among unsolved instances (column “Av-
erage gap (unsolved)”), and the average number of
user-defined cuts added before termination (column
“Average cuts”). Although the (�,S) inequalities are
added to both 2LS and MLS algorithms, we only
count the number of two-echelon inequalities and
L-echelon inequalities added.Note that the number of
(�, S) inequalities added to algorithms LS, 2LS, and
MLS are very close.

In Table 6, we compare the algorithms’ ability to
solve instances to optimality in 1 hour. Each entry in
the table shows the number of instances unsolved by
one algorithm but solved by another. For example, as
shown in the table footnote, C can solve six base in-
stances that LS cannot. According to our experiments,
MLS is the most robust algorithm because all in-
stances thatMLS cannot prove to optimality in 1 hour
are unsolved by other algorithms.

In Tables 7 and 8, we benchmark B&C algorithms’
performances against CPLEX on 19 base instances
and 42 derived instances that can all be solved to
make the comparison fair. Additionally, we bench-
mark 2LS and MLS against LS on 36 base instances
and 53 derived instances that all three can solve. We
report the algorithms’ data on those instances with
the average CPU seconds (column “Average time”),
the ratio of the average CPU seconds between CPLEX
(or LS) and other B&C algorithms (column “CPXTime

B&CTime”
or, similarly, column “ LSTime

B&C Time for LS”), the average
number of nodes explored (column “Average nodes”),
and the ratio of the average number of nodes ex-
plored between CPLEX (or LS) and other B&C al-
gorithms (column “ CPXNodes

B&C Nodes” or, similarly, column
“ LSNodes
B&C Nodes for LS”).
On the basis of Tables 5–8, a few observations can

be made. Algorithm C is not necessarily more effec-
tive than LS, even though the tested instances have

Table 5. Summarized Results of All Instances

Base instances Derived instances

Solved Unsolved
Average gap
(unsolved) (%) Average cuts Solved Unsolved

Average gap
(unsolved) (%) Average. cuts

CPX 20 60 0.36 0.0 43 37 0.32 0.0
LS 37 43 0.30 161.4 53 27 0.28 150.1
C 40 40 0.34 141.6 55 25 0.29 132.1
2LS 44 36 0.29 87.9 56 24 0.25 108.6
MLS 55 25 0.28 608.2 62 18 0.23 547.9

Table 6. Summarized Results of All Instances

Base instances Derived instances

Unsolved by

Solved by

Unsolved by

Solved by

CPX LS C 2LS MLS CPX LS C 2LS MLS

CPX — 18 20 24 35 CPX — 10 13 13 19
LS 1 — 6a 8 18 LS 0 — 3 3 9
C 0 3 — 6 15 C 1 1 — 2 7
2LS 0 1 2 — 11 2LS 0 0 1 — 6
MLS 0 0 0 0 — MLS 0 0 0 0 —

aIndicates that C can solve six base instances that LS cannot.

Table 7. Summarized Results of Base Instances

19 instances solved by all algorithms 36 instances solved by LS, 2LS, and MLS

Average
time

CPX time
Average nodes

(×1,000)
CPX nodes

Average
time

LS time
Average nodes

(×1,000)
LS nodes

B&C time B&C nodes B&C time B&C nodes

CPX 1,331.2 1.00 312.8 1.00
LS 635.8 2.09 131.0 2.39 1,222.0 1.00 226.1 1.00
C 645.8 2.06 126.4 2.48
2LS 515.4 2.58 85.3 3.67 1,039.5 1.18 161.0 1.40
MLS 333.9 3.99 37.9 8.25 643.2 1.90 72.7 3.11
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constant capacities at each echelon. It may indicate
that a more efficient way of generating strong mixing
sets needs to be considered in future research. As we
expected, the derived instances are much easier to
solve than the base instances. Overall, algorithmMLS
with multiechelon inequality (8) is the most effective
one in obtaining optimal solutions or closing the
optimality gap. Part of the reason for this could be that
the average number of user cuts added by MLS is
approximately five times that of other algorithms.

5. Conclusions
We studied the multiechelon serial lot-sizing prob-
lem with intermediate demands (MLS). Many exist-
ing studies have provided polynomial algorithms on
MLS with demand occurring at the final echelon only
or have shown that themultiple sources network flow
problem isNP-hard.However, the complexity ofMLS
with a fixed-charge cost structure, a classic single-
source network flow problem, remains unknown. As
one of many contributions, this paper proves that
MLS with a fixed-charge cost structure is NP-hard,
which closes the theoretical gap.

We investigated both uncapacitated and capaci-
tated MLS with different types of cost functions, such
as general concave costs, fixed-charge costs, stepwise
and nonconcave transportation cost, and fixed-charge
transportation cost with no speculative motives. By con-
sidering intermediate demands, our results (see Table 1)
generalize the findings of Zangwill (1969), Lee et al.
(2003), van Hoesel et al. (2005), and Zhang et al.
(2012), which are special cases of the problems we
studied. In addition to developing efficient algorithms
for solving both MULS and MCLS, we show that, in
terms of complexities, our algorithms outperform
many of the best-known algorithms in the literature
(see Table 2).

Besides improving computational complexities, we
studied the polyhedral structure of MLS in order to
provide an efficient means to solve large instances
of the multi-item, multiechelon lot-sizing prob-
lems. Again, our inequalities generalize many known
inequalities, including the (�,S), two-echelon, and

(k, l,S, I) inequalities. Their efficacy is demonstrated in
a comprehensive computational study. By imple-
menting them in a B&C algorithm, we show that our
algorithm is four times faster than CPLEX and ap-
proximately two times faster than the best-known
algorithm in the literature.
There are a number of avenues that can be pursued

in future. Currently, our development of dynamic
programming algorithms for MULS and MCLS is of
theoretical interest. It is worth studying heuristic
algorithms by modifying proposed exact algorithms
to obtain feasible solutions efficiently. There aremany
practical variations at the retailer level in a supply chain,
such as the multi-item case with a big bucket capacity
constraint, the backlogging case, and inventory bounds.
Although our developed cutting planes are valid for
some variations, it is more interesting to strengthen the
cutting planes. In this paper, we assume a constant ca-
pacity at the first echelon. The more general case with
varying capacity at the first as well as transportation
echelons also needs to be studied. In addition, the
complete convex hull of 2-ULS is still unknown. To
improve practical applicability, we should consider al-
gorithms to solve MLS in assembly systems.
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