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Abstract
We consider server scheduling on parallel dedicated machines to minimize the

makespan. Each job has a loading operation and a processing operation. The load-

ing operation requires a server that serves all the jobs. Each machine has a given

set of jobs to process, and the processing sequence is known and fixed. We design

a polynomial-time algorithm to solve the two-machine case of the problem. When

the number of machines is arbitrary, the problem becomes strongly NP-hard even if

all the jobs have the same processing length or all the loading operations require a

unit time. We design two heuristic algorithms to treat the case where all the loading

times are unit and analyze their performance.
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1 INTRODUCTION

Limited availability of resources is one of the major con-

straints in managerial decisions. In this paper, we consider

scheduling of jobs with fixed processing sequences on par-

allel dedicated machines with a common server, where both

the server and machines are limited resources. We first study

the two-machine case, followed by the case with an arbi-

trary number of machines. Specifically, m disjoint job sets

k = {Jk,1, … , Jk,nk}, 1 ≤ k ≤ m, are given. The jobs

of set k must be processed by their dedicated machine Mk
in the order as specified by their indices, that is, machine

Mk processes its jobs in the order Jk,1, … , Jk,nk . Each job

Jk, j comprises two operations, that is, loading and process-

ing, requiring sk, j and pk, j units of time, respectively. We

denote the completion time of job Jk, j in a particular sched-

ule as Ck, j. A common server, for example, a technician or

hoister, is available for performing the loading operations.

So, given the limited availability of the server, at most one

loading operation can be performed at any time. The pro-

cessing of a job can start only when its loading operation is

completed. The objective of the problem is to find a feasi-

ble schedule that minimizes the makespan, the maximum job

completion time Cmax = max{C1,n1
, … ,Cm,nm , }. We denote

the problem as PD, S1 ∣ fixed - seq ∣Cmax, where PD is for ded-

icated machines, S1 is for a single server, and “fixed-seq” in

the second field indicates the assumption that the job process-

ing sequences are fixed. We suppose that all the data in this

paper are nonnegative integers.

Kravchenko and Werner (1997) considered the server

scheduling problem P2, S1‖Cmax. The NP-hardness of the

problem directly follows from the classical two parallel-

machine scheduling problem to minimize the makespan. They

developed a pseudo-polynomial-time algorithm to solve the

case P2, S1 ∣ sj = 1 ∣Cmax, where sj = 1 indicates unit loadings

for all jobs. The problem becomes strongly NP-hard when the

loading times are the same but not necessarily equal to one.

The case P, S1 ∣ pj = 1 ∣Cmax is polynomially solvable (Hall,

Potts, & Sriskandarajah, 2000). Brucker, Dhaenens-Flipo,

Knust, Kravchenko, and Werner (2002) proved that the case

P2, S1 ∣ pj = p ∣Cmax is binary NP-hard. Glass, Shafransky,

and Strusevich (2000) proved that PD, S1‖Cmax remains

strongly NP-hard even if there are only two machines and all

the loading times are equal or all the processing times are

equal. Hasani, Kravchenko, and Werner (2014) formulated

P2, S1‖Cmax as a mixed integer program using block mod-

els. Through computational experiments, they studied the gap

performance of the proposed models and several heuristics
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in the literature. Jiang, Dong, and Ji (2013) considered

two-machine server scheduling with preemption of job load-

ing and processing. They designed a heuristic that attains a

tight performance ratio of 4/3, and proposed polynomial-time

solution algorithms for the two special cases where pj = p and

sj = s. The complexity status of the two-machine preemptive

version had remained open until Cheng, Kravchenkov, and

Lin (2017) proposed a pseudo-polynomial-time algorithm to

solve it. They also showed that the case with an arbitrary

number of machines is strongly NP-hard. They designed the

longest processing time (LPT) heuristic for this case and

showed that it has a tight performance ratio of 2. Several spe-

cial cases are polynomially solvable. We refer the reader to

Brucker et al. (2002), Abdekhodaee, Wirth, and Gan (2006),

and Werner and Kravchenko (2010) for comprehensive infor-

mation on variants of the server scheduling problem.

While the P2, S1‖Cmax problem is intractable, permutation-

based approximation algorithms such as local search and

meta-heuristics have been developed. For such solution

approaches, the objective values of the solutions that are

represented in the corresponding job sequences need to be

computed in an efficient manner. This requirement also arises

from the deployment of exact solution methods such as the

branch-and-bound approach. Since machine allocation has

been determined under such approaches, we assume that the

setup and processing of a job are consecutively executed on

the same machine. So we focus on the specific variant of

the problem under the assumption that the jobs have been

assigned to machines following fixed processing sequences.

We organize the rest of the paper as follows: in Section

2 we develop a dynamic programming algorithm to solve

PD2, S1 ∣ fixed - seq ∣Cmax. In Section 3 we show that the case

where the number of machines is part of the input is strongly

NP-hard. In Section 4 we propose two heuristics for the case

where all the loading operations require a unit time and study

their performance through theoretical analysis and compu-

tational tests. We conclude the paper and suggest topics for

future research in Section 5.

2 TWO MACHINES

In this section we consider the case of the problem where

there are only two dedicated machines, that is, PD2,

S1 ∣ fixed - seq ∣Cmax.

For most scheduling problems, given a job sequence, com-

puting the objective value is easy. However, it is not trivial

for PD2, S1 ∣ fixed - seq ∣Cmax. To solve this problem, the first

decision is to determine which of the first setup operations

on the two machines should proceed first, which will affect

the later decisions. Consider the three-job instance shown in

Figure 1A, where jobs J1, 1 and J1, 2 are assigned to machine

M1, and job J2, 1 to machine M2. There are two schedules that

start with M1 and M2, respectively. The schedule starting with

M1 completes earlier. Figure 1B shows two schedules with

M 1 s1,1 p1,1 s1,2 p1,2

M 2 s2,1 p2,1

M 1 p1,2

M 2

s1,1 p1,1 s1,2

s2,1 p2,1

M 1

Two schedules for four jobs that start with different machines

(A)

(B)
s1,1 p1,1 s1,2 p1,2

M 2 s2,1 p2,1 s2,2 p2,2

M 1 p1,2

M 2 p2,2

s1,1 p1,1 s1,2

s2,1 p2,1 s2,2

Two schedules for four jobs that start with different machines

FIGURE 1 Schedules starting with different machines

one more job J2, 2 to process on M2. In this case, starting with

M2 results in a shorter makespan. The above examples indi-

cate the necessity for examining different combinations of a

series of decisions. A similar challenge exists in the schedul-

ing problems studied in Hwang, Kovalyov, and Lin (2014a,

2014b), Lin and Hwang (2011), Shafransky and Strusevich

(1998), and Sourd (2005). Resolution of such decisions has

its theoretical interest, as well as meeting the need to effi-

ciently compute the objective values in permutation-based

algorithms.

We apply dynamic programming to solve the problem. To

determine the optimal value of a specific state, we resort to

job-by-job recursions. Nevertheless, removing a job from an

optimal schedule may induce different scenarios that make the

analysis hard to follow. In addition to job-based recursions,

we introduce blocks to simplify the analysis.

A block is a set of jobs that can be processed consecutively

without creating forced idle time except the first loading. The

Gantt chart of a schedule starts with a setup operation on

one machine and an idle time on the other machine. Subse-

quently, the Gantt chart can be interpreted as a juxtaposition

of components that are separated by idle slots on either of

the machines. The components could be individual jobs or

sub-sequences of jobs that are processed without any idle

time. For 1≤ i1 ≤ j1 ≤ n1 and 1≤ i2 ≤ j2 ≤ n2, we define block
B(i1, j1, i2, j2) of the processing of the two sub-sequences

(J1,i1 , J1,i1+1, … , J1,j1 ) and (J2,i2 , J2,i2+1, … , J2,j2 ). In addi-

tion to meeting the availability constraint of the common

server, block B(i1, j1, i2, j2) must satisfy the following three

conditions

C1: No idle time is incurred between any two jobs on

the same machine in the block, and no idle time is

created during loadings except for the first one in the

block.

C2: Setup s2,i2 starts at the completion of setup s1,i1 , or

vice versa.

C3: If C1,j1 ≠ C2,j2 , then J1,j1 is the only job that satis-

fies C1,j1 > C2,j2 or J2,j2 is the only job that satisfies

C2,j2 > C1,j1 .

For example the left schedule in Figure 1B can be rep-

resented by three blocks as follows: the first block is the

only job J1, 1, the second block comprises the two jobs

{J1, 2, J2, 1}, and the third block contains only the job J2, 2.

Note that {J1, 2, J2, 1, J2, 2} does not form a block because of

the created idle time during the third setup. The right sched-

ule in Figure 1B is represented by two blocks. The first block
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s1,1 p1,1 s1,2 p1,2 s1,3 p1,3

s2,1 p2,1 s2,2 p2,2

type a block

s2,1 p2,1

s1,1 p1,1 s1,2 p1,2 s1,3 p1,3

s2,2 p2,2

type b block

s1,1 p1,1 s1,2 p1,2

s2,1 p2,1 s2,2 p2,2 s2,3 p2,3

type c block

s1,1 p1,1

s2,1 p2,1 s2,2 2,2p s2,3 p2,3

s1,2 p1,2

type d block

FIGURE 2 Four types of blocks

contains only the job J2, 1 and the second block contains the

three jobs {J1, 1, J2, 2, J1, 2}. Note that jobs J1, 1 and J2, 1 do

not form a block because of the forced idle time during the

second setup.

Condition (C3) prevents a block from having a long tail

of individual jobs on one machine. Given the job indices i1,

j1, i2, and j2, there are four types of blocks, depending on

which machine starts first and which machine finishes last as

follows:

Type a: Block B(i1, j1, i2, j2) starts and finishes both on

machine M1.

Type b: Block B(i1, j1, i2, j2) starts on machine M1 and fin-

ishes on machine M2.

Type c: Block B(i1, j1, i2, j2) starts and finishes both on

machine M2.

Type d: Block B(i1, j1, i2, j2) starts on machine M2 and fin-

ishes on machine M1.

Figure 2 shows example blocks of the four types. For each

B(i1, j1, i2, j2), we should check if it is an admissible block

satisfying the above three conditions. Therefore, to check if

(J1,i1 , J1,i1+1, … , J1,j1 ) and (J2,i2 , J2,i2+1, … , J2,j2 ) constitute

block B(i1, j1, i2, j2), we have to schedule the given jobs in

the way as shown in Figure 2 and check the three conditions

for the obtained schedule. To this end, for all the job indices,

we deploy a procedure that examines all B(i1, j ′1, i2, j
′
2
),

i1 ≤ j′
1
≤ j1, i2 ≤ j′

2
≤ j2. First, B(i1, i1, i2, i2) is exam-

ined. If it is admissible, then we examine B(i1, i1 + 1, i2, i2)

and B(i1, i1, i2, i2 + 1). The process continues until we reach

B(i1, j1, i2, j2). If some B(i1, j ′1, i2, j
′
2
) is found inadmissible,

then B(i1, j1, i2, j2) is inadmissible.

To facilitate discussion, we introduce the notion of the rear

part of a block. If a block B(i1, j1, i2, j2) starts with machine

M1 (type a or type b), then it has a tail of length

||C1,j1 − C2,j2
|| = ||||p1,i1 +

j1∑
𝓁=i1+1

(s1,𝓁 + p1,𝓁) −
j2∑

𝓁=i2

(s2,𝓁 + p2,𝓁)
||||.

On the other hand, if it starts with machine M2 (type c or type

d), then its tail length is given by

||C1,j1 − C2,j2
|| = ||||p2,i2 +

j2∑
𝓁=i2+1

(s2,𝓁 + p2,𝓁) −
j1∑

𝓁=i1

(s1,𝓁 + p1,𝓁)
||||.

Based upon the block structure, we can then develop

a backward dynamic programming algorithm to examine

all the possible combinations of the jobs and/or blocks.

Define the state (k, i1, i2), k∈ {1, 2}, for the scenario

where

s1,i 1 p1,i 1

case λ 1,1

f (1, i1 +1 , i2)
s1,i 1 p1,i 1

case λ 1,2

f (2, i1 +1 , i2)

a
type

case λ 2,1

B (i1, j 1, i2, j 2) f (1, j 1 +1 , j 2 +1)

a
type

B (i1, j 1, i2, j 2)

case λ 2,2

f (2, j 1 +1 , j 2 +1)

b
type

B (i1, j 1, i2, j 2)

case λ 3,1

f (1, j 1 +1 , j 2 +1)

b
type

B (i1, j 1, i2, j 2) f (2, j 1 +1 , j 2 +1)

FIGURE 3 Types of recursion in Algorithm DP

(1) the sub-sequences (J1,i1 , J1,i1+1, … , J1,n1
) and

(J2,i2 , J2,i2+1, … , J2,n2
) are considered, and

(2) the schedule starts with job Jk,ik on machine Mk.

Let f (k, i1, i2) be the optimal makespan of the schedules for

the state (k, i1, i2). We introduce the auxiliary jobs J1,n1+1 and

J2,n2+1 with p1,n1+1 = s1,n1+1 = p2,n2+1 = s2,n2+1 = 0 to define

the boundary conditions. To calculate the value of f (1, i1, i2),

we first consider three disjoint cases for the first block of the

schedule, which can be one of the following cases:

(1) a single job,

(2) a type a block, and

(3) a type b block.

Each case can be further categorized into two sub-cases

concerning the machine on which the sub-schedule would

start. Please refer to Figure 3 for the six cases. The value of

f (2, i1, i2) is similarly computed.

We now present the dynamic programming algorithm. Note

that the algorithm generates only semiactive schedules, that

is, no job (operation) can be processed earlier without chang-

ing the processing order or violating the constraints (Brucker,

2007, p. 7).

Algorithm DP: Initialization:

f (1, n1 + 1, n2 + 1) = f (2, n1 + 1, n2 + 1) = 0;

f (1, i1, n2 + 1) =
n1∑

𝓁=i1

(s1,𝓁 + p1,𝓁), i1 = 1, 2 … , n1;

f (2, n1 + 1, i2) =
n2∑

𝓁=i2

(s2,𝓁 + p2,𝓁), i2 = 1, 2 … , n2;

f (k, i1, i2) = ∞ for other combinations of k, i1, and i2.

Recursion:
For i1 = n1, n1 − 1, … ,1 and i2 = n2,

n2 − 1, … , 1, do the following steps:

Case 1 The first block is a single job J1,i1 :

/* In the recursion, the sub-schedule starts

with machine M1, see Figure 3 case 𝜆1, 1.

𝜆1,1 = s1,i1 + p1,i1 + f (1, i1 + 1, i2);
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/* In the recursion, the sub-schedule starts

with machine M2, see Figure 3 case 𝜆1, 2.

𝜆1,2 =
{

s1,i1 + f (2, i1 + 1, i2), if s2,i2 ≥ p1,i1 ;
∞, otherwise.

𝜆1 =min{𝜆1,1, 𝜆1,2}.

Case 2 The first block is of type a:

Let a(i1, i2) be the set of ordered pairs

(j1, j2), 1≤ i1 < j1 ≤ n1 and 1≤ i2 < j2 ≤ n2, for

which the sub-sequences (J1,i1 , J1,i1+1, … , J1,j1 )
and (J2,i2 , J2,i2+1, … , J2,j2 ) form type a blocks.

/* In the recursion, the sub-schedule starts

with machine M1, see Figure 3 case 𝜆2, 1.

𝜆2,1 = min
(j1,j2)∈a(i1,i2)

{
j1∑

𝓁=i1
(s1,𝓁 + p1,𝓁) + f (1, j1 + 1, j2 + 1)

}
.

/* In the recursion, the sub-schedule starts

with machine M2, see Figure 3 case 𝜆2, 2.

𝜆2,2 = min
(j1,j2)∈a(i1,i2)

⎧⎪⎨⎪⎩
s1,i1 +

j2∑
𝓁=i2

(s2,𝓁 + p2,𝓁) + f (2, j1 + 1, j2 + 1),

if s2,j2+1 ≥∣ C1,j1 − C2,j2 ∣;
∞, otherwise.

𝜆2 =min{𝜆2,1, 𝜆2,2}.

Case 3 The first block is of type b:

Let b(i1, i2) be the set of ordered pairs

(j1, j2), 1≤ i1 < j1 ≤ n1 and 1≤ i2 < j2 ≤ n2, for

which the sub-sequences (J1,i1 , J1,i1+1, … , J1,j1 )
and (J2,i2 , J2,i2+1, … , J2,j2 ) form type b blocks.

/* In the recursion, the sub-schedule starts

with machine M1, see Figure 3 case 𝜆3, 1.

𝜆3,1 = min
(j1,j2)∈b(i1,i2)

⎧⎪⎨⎪⎩
j1∑

𝓁=i1
(s1,𝓁 + p1,𝓁) + f (1, j1 + 1, j2 + 1),

if s1,j1+1 ≥∣ C1,j1 − C2,j2 ∣;
∞, otherwise.

/* In the recursion, the sub-schedule starts

with machine M2, see Figure 3 case 𝜆3, 2.

𝜆3,2 = min
(j1,j2)∈b(i1,i2)

{
s1,i1 +

j2∑
𝓁=i2

(s2,𝓁 + p2,𝓁) + f (2, j1 + 1, j2 + 1)

}
.

𝜆3 =min{𝜆3,1, 𝜆3,2}.

Analysis of the above three cases leads to

f (1, i1, i2)=min{𝜆1, 𝜆2, 𝜆3} and the function

values f (2, i1, i2) are derived by a similar pro-

cess.

Goal: Find min{f (1, 1, 1), f (2, 1, 1)}.

In Algorithm DP, the if -conditions in 𝜆1,2, 𝜆2,2, and 𝜆3,1 are

used to ensure the existence of idle time required to separate

the first component from the sub-schedule for recursions. If

the first component and the sub-schedule of the recursion do

not introduce any idle time on either of the two machines, then

a larger component should be considered.

Theorem 1 Algorithm DP finds the opti-
mal values f (k, i1, i2) for all k∈ {1, 2},

i1 ∈ {1, … , n1 + 1}, and i2 ∈ {1, … , n2 + 1}.

Proof Recall that we consider only semiac-

tive schedules, that is, no job (operation) can be

processed earlier without changing the process-

ing order or violating the constraints. It is easy

to see that only the cases in Figure 3 can arise

in an optimal schedule. For the instance shown

in Figure 4A, the first setup s2,i2 on machine

M2 in the partial schedule corresponding to

f (2, i1 + 1, i2) can be shifted to the left without

violating feasibility. The same issue arises in the

schedule shown in Figure 4B. Moreover, when-

ever Algorithm DP yields ∞ (in 𝜆1, 2, 𝜆1, 2 and

𝜆3, 1), the corresponding schedule is not active.

The correctness of the proof is based on the

following three observations: (1) Any schedule

can be decomposed into a sequence of blocks

and single jobs. (2) Any schedule can be repre-

sented as a sequence of states, where any two

neighboring states represent a block or a sin-

gle job. (3) In a sequence of states representing

an optimal schedule for any state (k, i1, i2), the

value f (k, i1, i2) is the minimum.

We consider only the case k= 1. The

case k= 2 can be similarly analyzed. We

show that Algorithm DP finds the optimal

makespan f (1, i1, i2) for i1 ∈ {1, … , n1 + 1}

and i2 ∈ {1, … , n2 + 1}. Assume that the opti-

mal values f (k′, i′
1
, i′

2
) are known for k′ ∈ {1,2},

i ′
1
∈ {i1, … , n1 + 1}, and i ′

2
∈ {i2, … , n2 + 1},

excluding i ′
1
= i1 and i ′

2
= i2.

Consider some optimal schedule 𝜎 associated

with the state (1, i1, i2). If the job sequence on

M2 is empty, that is, i2 = n2 + 1, then the optimal

value f (1, i1, n2 + 1) is determined in the Initial-

ization step. Assume that the job sequence on

M2 is not empty and that setup s2,i2 starts at the

completion of s1, i ′1, i1 ≤ i ′
1
. We consider two

disjoint cases as follows:

(1) i1 < i ′
1
:

In this case, the optimal value f (1, i1, i2) is

obtained by a series of single-job recursions,

together with the value f (1, i′
1
, i2) as in Case

1-𝜆1, 1 in the algorithm.

(2) i1 = i ′
1
:

The analysis proceeds with a focus on the

first idle time inserted between two jobs on the

same machine. If there is no such idle time in

𝜎, then 𝜎 comprises a single block and a tail

on either of the machines. The optimal value
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s1,i 1 p1,i 1
f (2, i1 +1 , i2) a

(A) (B)

type
B (i1, j 1, i2, j 2) f (2, j 1 +1 , j 2 +1)

FIGURE 4 Nonsemiactive schedules

f (1, i1, i2) is thus computed by a block-based

recursion with a function value found in Ini-

tialization. Now, we assume that the earliest

idle time in schedule 𝜎 occurs between jobs

Jk,jk and Jk,jk+1, ik ≤ jk ≤ nk. If k= 2, then

a block B(1, i1, j1, i2, j2)∈a(i1, i2) is exam-

ined, together with f (1, j1 + 1, j2 + 1) as in Case

2-𝜆2, 1, or a block B(1, i1, j1, i2, j2)∈b(i1, i2)

is examined, together with f (1, j1 + 1, j2 + 1)

as in Case 3-𝜆3, 1. On the other hand, if k= 1,

then three settings will arise: (i) job J1,i1
and f (2, i1 + 1, i2) are examined as in Case

1-𝜆1, 2; (ii) block B(1, i1, j1, i2, j2)∈a(i1, i2)

is examined, together with f (1, j1 + 1, j2 + 1)

as in Case 2-𝜆2, 2; and (iii) block

B(1, i1, j1, i2, j2)∈b(i1, i2) is examined,

together with f (2, j1 + 1, j2 + 1) as in Case

3-𝜆3, 2.

The above cases are disjoint and complete.

The optimal value f (1, i1, i2) is thus derived

from recursions with different first components

being considered. ▪

Running Time: There are O(n1n2) states, each of which

requires to examine O(n1n2) first blocks of r, r ∈ {a, b, c,

d}. The total of the loading times and processing times can

be computed by a pre-processing procedure. Therefore, the

overall running time is O(n2
1
n2

2
). The eligibility of the 4-tuple

vectors (i1, j1, i2, j2) for being a block can be checked by

direct construction in a linear time. If (i1, j1, i2, j2) constitutes

a block, then examining (i1, j1 + 1, i2, j2) or (i1, j1, i2, j2 + 1),

and calculating its tail length can be performed in a constant

time. On the other hand, if (i1, j1, i2, j2) is not a block, then

(i1, j1 + 1, i2, j2) and (i1, j1, i2, j2 + 1) are not examined further.

Therefore, the time required by a pre-processing procedure is

O(n2
1
n2

2
), the same as that of Algorithm DP.

Theorem 2 Algorithm DP solves PD2,

S1 ∣ fixed - seq ∣Cmax in O(n2
1
n2

2
) time.

3 ARBITRARY NUMBER OF MACHINES:
COMPLEXITY

A natural generalization of the two-machine case is PD,

S1 ∣ fixed - seq ∣Cmax, where the number of machines is part

of the input rather than a constant. We show that this case

is strongly NP-hard even if (1) all the jobs require the same

processing time or (2) all the loading operations take a

unit time. The first proof is based on a reduction from the

strongly NP-hard 3-PARTITION problem (Garey & Johnson,

1979).

3-PARTITION: Given a positive integer E and a set of 3q
elements I = {1, 2, … , 3q}, in which each element i has a size

ei ∈Z+ such that E/4< ei <E/2 and
∑

i∈Iei = 𝑞𝐸, can I be

partitioned into q subsets I1, I2, … , Iq such that each subset

Ij satisfies
∑

i∈Ij
ei = E?

Theorem 3 PD, S1 ∣ fixed - seq, pj = p ∣Cmax

is strongly NP-hard.

Proof Given a 3-PARTITION instance, we

create an instance of PD, S1 ∣ fixed - seq,

pj = p ∣Cmax that consists of 3q+ 1 machines

{M1, M2, … , M3q+ 1} and 4q+ 1 jobs {J1, 1,

J2, 1, … , J3q, 1, J3q+ 1, 1, J3q+ 1, 2, … ,

J3q+ 1, q+ 1}. Each machine Mk, 1≤ k≤ 3q, pro-

cesses a single job Jk, 1, while machine M3q+ 1

processes q+ 1 jobs J3q+ 1, 1, … , J3q+ 1, q+ 1.

We define the jobs as follows:

sk,1 = ek, pk,1 = E, 1 ≤ k ≤ 3q;

s3q+1,j = 1, p3q+1,j = E, 1 ≤ j ≤ q + 1.

It is not hard to verify the claim that the

answer to 3-PARTITION is affirmative if and

only if there is a feasible schedule whose

makespan is not greater than (q+ 1)(E + 1). ▪

The next proof is for the case where all the loading oper-

ations take one unit of time. We polynomially transform the

3-DIMENSIONAL MATCHING (3DM) problem to the deci-

sion version of PD, S1 ∣ fixed - seq, sj = 1 ∣Cmax. The 3DM

problem, shown to be NP-hard by Karp (1972), is as follows:

3-DIMENSIONAL MATCHING: Given a set U ⊆ T × T ×T ,

where T = {t1, … , tq} is a finite set, does U = {u1, … , uz}

contain a perfect matching, that is, a subset W ⊆U such that

its cardinality ∣W ∣ = q and no two elements of W agree in any

coordinate?

Theorem 4 PD, S1 ∣ fixed - seq, sj = 1 ∣Cmax

is strongly NP-hard.

Proof Given an instance of 3DM, we create

an instance of PD, S1 ∣ fixed - seq, sj = 1 ∣Cmax

with n jobs, where n= z5(3z2 + z+ 1)(z− q)+
z5 + z4 + 3z3 + z2 + 2z+ 1. The number of

machines is m= z+ 1.

Machine Mr, 1≤ r ≤ z, corresponds to

the triple ur ∈T × T × T and processes the

nr = 3z2 + z+ 1 jobs Jr,1, … , Jr,nr . The pro-

cessing times of these nr jobs are defined by

the coordinate values tr
1
, tr

2
, and tr

3
of the cor-

responding triple ur = (tr
1
, tr

2
, tr

3
). For the case

tr
1
= ti, tr

2
= tj, and tr

3
= tk, we define the

processing times as follows:
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One job with pr, 1 = z4 + (i− 1)z2 + q− i that

starts the processing on the machine.

3z2 jobs:

pr,2 = · · · = pr,z2 = 0, pr,z2+1 = (q − i)z2 + (j − 1)z2,

pr,z2+2 = · · · = pr,2z2 = 0, pr,2z2+1 = (q − j)z2 + (k − 1)z2,

pr,2z2+2 = · · · = pr,3z2 = 0, pr,3z2+1 = (q − k)z2 + 𝑖𝑧.
Call them matching jobs.

z jobs:

pr,3z2+2 = · · · = pr,3z2+z = 0, pr,3z2+z+1 = (q − 1)z.
Call them separating jobs.

Machine Mz+ 1 handles nz+ 1 = z5(3z2 + z+ 1)

(z− q)+ z5 + z4 + z+ 1 jobs, where the jobs are

defined as follows:

One job with pz+ 1, 1 = q that starts the pro-

cessing on the machine.

z4 jobs:

pz+1,2 = · · · = pz+1,z4 = 0, pz+1,z4+1 = 3𝑞𝑧2.

Call them matching jobs.

z jobs:

pz+1,z4+2 = · · · = pz+1,z4+z = 0, pz+1,z4+z+1 = 𝑞𝑧.

Call them separating jobs.

z5(3z2 + z + 1)(z − q) jobs:

pz+1,(𝜓−1)z5+z4+z+2 = · · · = pz+1,(𝜓−1)z5+z5+z4+z = 0,

pz+1,(𝜓−1)z5+z5+z4+z+1 = 1,

for 𝜓 = 1, 2, … , (z − q)(3z2 + z + 1).
Call them finishing jobs.

z5 jobs:

pz+1,z5(3z2+z+1)(z−q)+z4+z+2

= · · · = pz+1,z5(3z2+z+1)(z−q)+z5+z4+z+1 = 0.

Call them final jobs.

The roles of the jobs are based on the follow-

ing consideration: given a specific time point

K of a schedule, see Figure 6, which will

be defined later, the matching jobs processed

before K constitutes a solution for 3DM. The

separating jobs act as a buffer between the

matching jobs scheduled before and after K. The

finishing jobs on machine Mz+ 1 provide a time

interval to accommodate the matching jobs of

the other machines that are scheduled after K.

The final jobs anchor the specified makespan,

that is, Cmax.

One can see that the reduction is polynomial

in the input length of 3DM. We prove the claim

that the answer to 3DM is positive if and only if

there exists a feasible schedule with

Cmax ≤ n = z5(3z2 + z+ 1)(z− q) + z5 + z4 + 3z3 + z2 + 2z+ 1.

(3.1)

Since the total of the loadings for the given

scheduling instance is equal to the total number

of jobs n, Equation (3.1) holds only if the server

works without idle time. Machine Mz+ 1 handles

nz+ 1 = z5(3z2 + z+ 1)(z− q)+ z5 + z4 + z+ 1

jobs. For Mz+ 1, the total processing times,

excluding the loading time, of the starting job,

matching jobs, separating jobs, and finishing

jobs are q, 3qz2, qz, and (z− q)(3z2 + z+ 1),

respectively. So the total pure processing

time on machine Mz+ 1 is their sum, that is,

q+ 3qz2 + qz+ (z− q)(3z2 + z+ 1). Therefore,

machine Mz+ 1 needs to be active for

nz+1 + (q + 3𝑞𝑧2 + 𝑞𝑧 + (z − q)(3z2 + z + 1))
= (z5(3z2 + z + 1)(z − q) + z5 + z4 + z + 1)
+ (q + 3𝑞𝑧2 + 𝑞𝑧 + (z − q)(3z2 + z + 1))

= z5(3z2 + z + 1)(z − q) + z5 + z4 + z + 1

+ z(3z2 + z + 1) = n

units of time. Comparing the engagement length

of machine Mz+ 1 with the right hand side of

Equation (3.1), we construct the proof by deter-

mining a feasible schedule in which machine

Mz+ 1 is working without any downtime in the

period [0, n).

Thus, the question reduces to the following:

Does there exist a feasible schedule without

server idleness or machine Mz+ 1 downtime in

the period [0, n)?

(Only-If part) First, we show that if 3DM

has a solution, then a schedule 𝜎 with Cmax ≤ n
exists. For simplicity, let the triples u1, u2, … ,

uq constitute the known solution and tr
1
= tr

for r = 1, … , q. From this solution, we con-

struct a schedule 𝜎 as follows: machine Mz+ 1

starts loading at time zero, and then continues

processing and loading without any downtime.

Therefore, machine Mz+ 1 is working in the

whole interval [0, n).

Machines Mr, r = 1, … , q, work with-

out any downtime in 𝜎. Since Mr has to

work for z4 + 3qz2 + i(z− 1)+ q(z+ 1)+ 1

time units and i= r by the condition

tr
1

= tr, we obtain that Mr has to work

for z4 + 3qz2 + r(z− 1)+ q(z+ 1)+ 1 time

units. Thus, in schedule 𝜎, machines Mr,

r = 1, … , q, process all the prescribed jobs

in the interval [r, z4 + 3qz2 + rz+ q(z+ 1)+ 1),

respectively, see Figure 5. Note that since u1,

u2, … , uq represent a solution for 3DM, the

server works without idle time in [T1, T2)=
[z4 + q+ 1, z4 + 3qz2 + q+ 1). The condition
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tr
1

= tr for r = 1, … , q entails the con-

tinuous working of the server within the

time intervals [1, q+ 1) and [T2 + z, T3)=
[T2 + z, T2 + z+ qz)= [z4 + 3qz2 + q+ z+ 1, z4 +
3qz2 + qz+ q+ z+ 1).

Machines Mq+ 1, … , Mz process the pre-

scribed jobs after the time point K =T3 + z5,

see Figure 6. This is permissible because after

time K, machine Mz+ 1 leaves the server free

for (3z2 + z+ 1)(z− q) unit-length intervals. As

a consequence, we obtain a feasible schedule 𝜎

without any server idle time.

(If part) Next, we show that if a feasible

schedule 𝜎 with Cmax ≤ n exists for the schedul-

ing instance, then 3DM has a solution. Recall

that the ideas behind the reasoning are based

on the job functions: the matching jobs pro-

cessed before the time point K define a solution

for 3DM, the finishing jobs provide the possi-

bility to schedule the remaining matching jobs

after K, and the separating jobs act as buffers

between the matching jobs scheduled before K
and after K.

It is easy to show that in schedule 𝜎, machine

Mz+ 1 has to work without downtime, starting

from 0, and that the server has to work with-

out idle time within [0, Cmax(𝜎))= [0, n). One

can note that machines M1, … , Mz can pro-

cess all the starting jobs within time interval [1,

K), and if the starting job is loaded within [1,

q+ 1), then the corresponding machine can pro-

cess all the assigned jobs within [1, K), but if the

starting job is loaded after q+ 1, then the corre-

sponding machine cannot process any other job

within [1, K).

We show that in 𝜎, all the machines perform-

ing the loading operations within the interval [1,

q+ 1) constitute a solution for the instance of

3DM.

Order the machines in such a way that for each

r = 1, … , q, machine Mr performs loading in

[r, r + 1). Form a schedule 𝜎
′

(may be infeasi-

ble), where for each r = 1, … , q, machine Mr
processes the prescribed jobs without downtime

starting from the time point r. Now for each

machine Mr, r = 1, … , q, we select a triple

of time points (tr
1
, tr

2
, tr

3
, ) in the following way.

Set e0 = z4 + q+ 1+ 0.5z2. By the job definition,

machine Mr has to be loaded in one of the next

q unit-length intervals

[e0, e0 + 1), [e0 + z2, e0 + z2 + 1), … ,

[e0 + (q − 1)z2, e0 + (q − 1)z2 + 1).

Let this interval be the ath among the above

intervals. Set tr
1
= ta.

Similarly, there is only one unit-length inter-

val among the next q intervals

[e0 + 𝑞𝑧2, e0 + 𝑞𝑧2 + 1), … ,

[e0 + 𝑞𝑧2 + (q − 1)z2, e0 + 𝑞𝑧2 + (q − 1)z2 + 1),

where machine Mr, r = 1, … , q, can be loaded.

Let the sequence number of this interval be b.

Set tr
2
= tb.

Finally, there is only one unit interval among

the next q intervals

[e0 + 2𝑞𝑧2, e0 + 2𝑞𝑧2 + 1), … ,

[e0 + 2𝑞𝑧2 + (q − 1)z2, e0 + 2𝑞𝑧2 + (q − 1)z2 + 1),

where machine Mr can be loaded. Let the

sequence number of this interval be c. Set

tr
3
= tc.

Using schedule 𝜎
′
, we obtain the triple

(tr
1
, tr

2
, tr

3
) = (ta, tb, tc) for each machine Mr,

r = 1, … , q. We claim that the obtained set

of triples constitutes a perfect matching. If this

is not the case, then there are two triples, say,

(t1
1
, t1

2
, t1

3
) and (t2

1
, t2

2
, t2

3
), agreeing in some coor-

dinate, say, the first coordinate, that is, t1
1
= t2

1
.

In schedule 𝜎
′
, there would be a time inter-

val [e0 − 𝛿, e0 + 𝛿] where M1 and M2 are both

loaded for the time 2𝛿, where 𝛿 ≥ 0.5z2 − q
holds. Let X denote the set of jobs loaded on M1

in the interval [e0 − 𝛿, e0 + 𝛿] and Y the set of

jobs loaded on M2 in [e0 − 𝛿, e0 + 𝛿].

Now consider 𝜎 and both sets X and Y . In

schedule 𝜎, the maximum distance between any

job belonging to X and any job belonging to Y
must be more than 4𝛿 = 2z2 − 4q. All the jobs

from X ∪Y can be ordered by their finishing

times. Let v∈X ∪ Y denote the job with the

largest finishing time. Let M1 be the machine

that processes v. In schedule 𝜎, the separat-

ing jobs assigned to M1 have to be loaded

after time point T3, implying that the server

is idle within the interval [1, T3]. It follows

from the fact that the set of jobs loaded on

M1, … , Mz within [0, T3) is limited by the

following types of jobs: it can be the start-

ing job or it can be any job assigned to the

machine loaded within [1, q+ 1]. The total load-

ing time for any machine M1, … , Mz loaded

within [1, q+ 1] is 3z2 + z+ 1. Thus, the maxi-

mum loading time on M1, … , Mz within [1, T3]

is MAX = q(3z2 + z+ 1)+ z− q. Since the sepa-

rating jobs assigned to M1 are not loaded within

[1, T3] the maximum loading time within [1, T3]

is L=MAX − z= q(3z2 + z+ 1)− q= 3qz2 + qz.

On the other hand, machine Mz+ 1 is free from

the loadings within [1, T3] for F = 3qz2 + qz+ q,
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that is, L<F, which implies that the server is

idle within [1, T3]. A contradiction thus arises

because the server has to work without idle time.

Therefore, the set of machines loaded with [1,

q+ 1) constitutes a perfect matching. ▪

4 HEURISTIC ALGORITHMS

After the complexity analysis, we design approximation algo-

rithms and analyze their performance for the unit-loading case

of the problem PD, S1 ∣ fixed - seq, sj = 1 ∣Cmax.

The first heuristic, called MINIMUM-LOADING-TIME,

starts with a schedule of all the jobs. The starting schedule

could be infeasible. The heuristic sequentially shifts all the

jobs with overlapped loadings to create a feasible schedule.

HEURISTIC MINIMUM-LOADING-TIME:

Step 1: For each machine Mk, k= 1, … , m, sched-

ule all the jobs Jk,1, … , Jk,nk in the time

interval
[
0,
∑nk

j=1
(1 + pk,j)

)
.

Step 2: Find the smallest index i such that the inter-

val [i, i+ 1) contains two or more loadings.

Step 3: Keep the loading operation on machine Mk
with the minimum value nk. For all the other

machines with loadings in [i, i+ 1), shift

their processing one time unit later from [t,
t+ 1) to [t+ 1, t+ 2) for each t= i, i+ 1, … .

Step 4: If the obtained schedule is feasible, then out-

put the schedule; otherwise, go to Step 2.

To attain a polynomial running time, we detail the design

as follows: enumerate all machines in nondecreasing order

of their nk-values. It takes O(mlogm) time. For each machine

Mk, an ordered list tk,1, … , tk,nk is created, where tk, j is the

starting time of the loading for the corresponding job Jk, j.

It takes O(n) time. Besides, for each machine, we introduce

the variable yk, defined as a shift of the unscheduled jobs in

the corresponding list. Initially, yk = 0 for all k= 1, … , m.

In the first iteration, we consider all the values t1, 1 + y1, … ,

tm, 1 + ym in this order, select the first minimum value, say,

tq, 1 + yq, and mark all Mk, k�= q, with tk, 1 + yk = tq, 1 + yq.

It takes O(m) time. Schedule the job corresponding to

tq, 1 in the time interval [tq, 1 + yq, tq, 1 + yq + 1), indicate the

next value tq, 2 as the first in the list tq,1, … , tq,nq , and set

yk = yk + 1 for all the marked machines Mk. It takes O(m)

time. Thus, all the n iterations take O(nm) time. Therefore,

the overall running time of MINIMUM-LOADING-TIME is

O(nm).

We next analyze the heuristic’s performance in terms

of the deviation of its solution from the optimal solu-

tion. Denote the makespan of the schedule obtained by

MINIMUM-LOADING-TIME by CL
max and that of an optimal

schedule by C∗
max. We first present a property useful for the

analysis.

Lemma 1 Let n =
∑m

k=1 nk and
nmax =max1≤ k≤m{nk}. By the pigeonhole
principle, we know that nmax ≥ n/m.

We have the following result on the performance of the

proposed heuristic.

Theorem 5 For PD, S1 ∣ fixed - sequences,

sj = 1 ∣Cmax, Heuristic MINIMUM-LOADING-

TIME constructs a schedule satisfying CL
max −

C∗
max ≤ n

(
1 − 1

m

)
and the bound is tight.

Proof Let the value CL
max be the completion

time of job Jx,nx on some machine Mx. One can

see that nx +
∑nx

j=1
px,j is the total actual working

time of Mx. Let

[t1, t1 + 1), … , [tz, tz + 1)

be the z unit-length intervals within which

machine Mx is idle for some nonnegative z,

that is, the number of idle unit-length slots.

Let {Mi1 , … ,Miy} be the set of machines

performing loading operations in the inter-

vals [t1, t1 + 1), … , [tz, tz + 1). Consider the

machines of {Mi1 , … ,Miy} ∪ {Mx}. By the

machine selection rule of Step 3, we have nx ≥

ni1 , · · · , nx ≥ niy . Therefore,

CL
max = nx +

nx∑
j=1

px,j + z

≤

(
nx +

nx∑
j=1

px,j

)
+ ni1 + · · · + niy

≤ C∗
max + ni1 + · · · + niy

≤ C∗
max + n − nmax

≤ C∗
max + n − n

m
. (4.1)

The last inequality follows from Lemma 1. We

then have CL
max ≤ C∗

max + n
(

1 − 1

m

)
.

To show the tightness of the above ratio,

we consider the following instance with m
machines and m2 jobs, where each machine Mi,

1≤ i≤m− 1, has exactly m jobs Ji, 1, … , Ji, m
with pi, 1 = · · · = pi, m = 0, while machine Mm
also has exactly m jobs Jm, 1, … , Jm, m, with

pm, 1 = · · · = pm, m− 1 = 0 and pm, m = (m− 1)m.

Step 1 of the heuristic has all the loading oper-

ations performed in the interval [0, m). Since

n1 = n2 = · · · = nm =m, the heuristic may per-

form the loading operations in any order of the

machine indices. So it can happen that all the

loading operations are performed on machines

M1, … , Mm− 1 in the interval [0, m(m− 1))

and then machine Mm performs its loading
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M 1 : 1

t1 t2 t3 t1 t2 t3 t1 t2 t3

z 2 z 2 z 2 z

M 2 : 1 z 2 z 2 z 2 z

M 3 : 1 z 2 z 2 z 2 z

M z+1 : 1 z 4

T2

z

T3

z 5

0 T1
z4 + q+ 1 3qz2 z + qz z5

K

FIGURE 5 Constructed schedule within the time interval [0, K) for q= 3 and the known solution (t1, t3, t2), (t2, t2, t1), and (t3, t1, t3). The number inside each

box means the time of the corresponding loading operation. To estimate the real-time scale, the length of the time interval between two points is specified

below the time axis. z> q holds

M 1 :

M 2 :

M 3 :

M 4 : 1

Mz+1 : z 5

1

z 5

1

z 5

1

z 5

· · ·

· · ·

1

z 5

1

z 5

K K + z 5+ 1 n

FIGURE 6 Constructed schedule for z= 4 within the time interval [K, n).

The number inside each box means the time of the corresponding loading

operation

operations in the interval [m(m− 1), m2). Then,

CL
max = 2m(m − 1) + m, while the optimal

makespan C∗
max = m2. So CL

max − C∗
max = m2 −

m = n(1 − 1∕m) holds. ▪

In Step 3, another strategy for selecting the machine is to

keep its loading operation when multiple loading operations

occur in the same time slot. This leads to a new heuris-

tic, called MAXIMUM-REMAINING-WORK, which selects the

machine with the maximum remaining work (we acknowl-

edge that this heuristic is suggested by one of the reviewers).

HEURISTIC MAXIMUM-REMAINING-WORK:

Step 1: For each machine Mk, k= 1, … , m, sched-

ule all the jobs Jk,1, … , Jk,nk in the time

interval
[
0,
∑nk

j=1
(1 + pk,j)

)
.

Step 2: Find the smallest index i such that the inter-

val [i, i+ 1) contains two or more loadings.

Step 3: Keep the loading operation on machine Mk
with the maximum remaining work for pro-

cessing. For all the other machines with

loadings in [i, i+ 1), shift their processing

one time unit later from [t, t+ 1) to [t+ 1,

t+ 2) for each t= i, i+ 1, … .

Step 4: If the obtained schedule is feasible, then out-

put the schedule; otherwise, go to Step 2.

Denote the makespan of the schedule obtained by HEURIS-

TIC MAXIMUM-REMAINING-WORK by CW
max. We do not

provide an upper bound on the deviation CW
max−C∗

max. Instead,

we derive the following lower bound on the heuristic’s per-

formance.

Theorem 6 For PD, S1 ∣ fixed - sequences,

sj = 1 ∣Cmax, HEURISTIC MAXIMUM-

REMAINING-WORK constructs a schedule
satisfying CW

max − C∗
max ≥ n

(
1 − 1

m

)
.

Proof To establish the above deviation,

we consider the following instance with m
machines and n= klm jobs, where k≥ 1,

l≥ 1, and each machine Mi, 1≤ i≤m
has to process exactly kl jobs Ji, 1, … ,

Ji, kl. For each q, 0≤ q< k, the correspond-

ing subset of l jobs Ji, ql+ 1, … , Ji, ql+ l is

defined by pi, ql+ 1 = · · · = pi, ql+ (l− 1) = 0,

and pi, ql+ l = l(m− 1). To construct an opti-

mal schedule we process all jobs assigned

to Mq, for 1≤ q≤m, in the time interval

[(q− 1)l, (q− 1)l+ klm], see Figure 7. Thus, the

optimal C∗
max value is klm+ l(m− 1).

The schedule constructed by HEURIS-

TIC MAXIMUM-REMAINING-WORK can

be described in the following way. All

jobs assigned to Mq, for 1≤ q≤m, are

scheduled in the time interval [(q− 1),

(q− 1)+ kl(2m− 1)− km+ k)] in such a way

that after processing each job with zero pro-

cessing time corresponding machine is idle

for m− 1 time units, and after processing

each job with nonzero processing time corre-

sponding machine starts loading immediately,

see Figure 8. The obtained CW
max value is

kl(2m− 1)− km+ k+m− 1.

Thus, for the considered example

CW
max − C∗

max

= 𝑘𝑙𝑚
(

1 − 1

m
− 1

l
− 1

k
+ 1

𝑙𝑚
+ 1

𝑘𝑚
+ 1

𝑘𝑙
− 1

𝑘𝑙𝑚

)
= n

(
1 − 1

m
− 1

l
− 1

k
+ 1

𝑙𝑚
+ 1

𝑘𝑚
+ 1

𝑘𝑙
− 1

𝑘𝑙𝑚

)
.

The last value tends to n
(

1 − 1

m

)
when k→∞

and l→∞, and therefore the inequality CW
max −

C∗
max ≥ n(1 − 1∕m) holds. ▪

4.1 Computational study

In addition to the above theoretical performance analysis of

the two heuristics, we conducted a computational study to
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M 1 l(m − 1) l(m − 1)
M 2 l(m − 1) l(m − 1)
M 3 l(m − 1) l(m − 1)

0 l lm klm

FIGURE 7 Optimal schedule for the case m= 3, l= 4, and k= 2. The

number inside a box means the processing time of the corresponding job

M 1 l(m − 1) l(m − 1)
M 2 l(m − 1) l(m − 1)
M 3 l(m − 1) l(m − 1)

0 m (l − 1)m l(2m − 1) − m + 1 kl (2m − 1) − km + k

FIGURE 8 The schedule constructed by HEURISTIC

MAXIMUM-REMAINING-WORK for the case m= 3, l= 4, and k= 2. The

number inside a box means the corresponding processing time

assess the general performance of the heuristics. We devel-

oped a mixed integer programming (MIP) model to find the

optimal solutions C∗
max of the tested instances. We imple-

mented the heuristics in Python and solved the MIP model

using the Gurobi Optimization Solver version 8.0.0 under

a complimentary education licence. The platform of exper-

iments was a personal computer equipped with an Inter

i7-6800k CPU and 64GB RAM. We generated test instances

with m= 3 or 5 machines as follows:

The number of jobs were n= 30, 50, 100;

The processing times pk, j were drawn from the uniform

distribution U[0, 20].

For each n, we consider two scenarios: even distribution

of the jobs across the machines and one machine processes

more jobs than the other machines. Altogether, we tested 12

settings, each of which is denoted by (n. m. k), where n is the

number of jobs, m is number of machines, and k is the machine

distribution scenario as follows:

30.3.1 ∶ n1 = n2 = n3 = 10

30.3.2 ∶ n1 = 14, n2 = n3 = 8

50.3.1 ∶ n1 = 16, n2 = n3 = 17

50.3.2 ∶ n1 = 20, n2 = n3 = 15

100.3.1 ∶ n1 = 34, n2 = n3 = 33

100.3.2 ∶ n1 = 40, n2 = n2 = 20

30.5.1 ∶ n1 = · · · = n5 = 6

30.5.2 ∶ n1 = 10, n2 = · · · = n5 = 5

50.5.1 ∶ n1 = · · · = n5 = 10

50.5.2 ∶ n1 = 18, n2 = · · · = n5 = 8

100.5.1 ∶ n1 = · · · = n5 = 20

100.5.2 ∶ n1 = 32, n2 = · · · = n5 = 17.

For each of the above 12 testing settings, we generated

10 independent random instances. We measure the heuris-

tic solution quality by its gap from the optimal solution in

percentage, which is defined by

CH
max − C∗

max

C∗
max

× 100%,

where CH
max, H = L or W, is the solution value produced

by the corresponding heuristic, respectively. Table 1 reports

the results of the computational study. The columns “C∗
max”

and “CH
max” contain the average solution values over the 10

instances for each test setting produced by the MIP model

and the heuristics. The column “Opt” contains the number

of instances that are optimally solved by the corresponding

heuristic. The columns “Gap”, “M-Gap”, and “m-Gap” show

the average gap, the largest gap, and the smallest gap, all in

percentages, between the heuristic solutions and the optimal

ones over the 10 instances for each test testing, respectively.

Although the theoretical performance of HEURISTIC

MINIMUM-LOADING-TIME is not worse than that of

HEURISTIC MAXIMUM-REMAINING-WORK, the computa-

tional results indicate that in the case of uniform dis-

tribution, HEURISTIC MAXIMUM-REMAINING-WORK out-

performs HEURISTIC MINIMUM-LOADING-TIME in view

of the number of optimally solved instances and the

average gap. HEURISTIC MAXIMUM-REMAINING-WORK

optimally solves 62 of the 120 tested instances, while

HEURISTIC MINIMUM-LOADING-TIME solves only eight

instances to optimality. The average gap of HEURISTIC

MINIMUM-LOADING-TIME ranges from 0.89% to 4.49%.

On the other hand, most of the average gaps of HEURIS-

TIC MAXIMUM-REMAINING-WORK are below 1%. For

instances with balanced machine workloads, HEURISTIC

MINIMUM-LOADING-TIME achieves smaller average gaps.

HEURISTIC MINIMUM-LOADING-TIME, on the contrary, has

better performance when a machine has more jobs to process.

The reason could be that when the machine having a greater

workload accords a higher priority to perform its loading

operations, the increase in the maximum job completion time,

that is, the makespan, will be confined. Another observation

is that when the number of jobs on a machine increases, the

average gaps of both heuristics become smaller, that is, both

heuristics achieve better performance for larger instances.

5 CONCLUSIONS

We consider parallel dedicated machines scheduling with

a common server to minimize the makespan under the

assumption that the job processing sequence on each machine

is given and fixed. Our study evinces the fact that in server

scheduling, to produce an optimal schedule from a given job

sequence is not as easy as it seems. We design an O(n2
1
n2

2
)

dynamic programming algorithm to solve the two-machine

case of the problem. When the number of machines is arbi-

trary, we show that the problem becomes strongly NP-hard

even if (1) all the jobs have the same processing time, that

is, pj = p, or (2) all the loading operations take a unit time,

that is, sj = 1. We provide two heuristics to solve the case

where all the loading operations take a unit of time. We

analyze their performance bounds and assess their solution



CHENG ET AL. 331

TABLE 1 Computational results of the two heuristics

Minimum-loading-time Maximum-remaining-work

Instance C∗
max CL

max Opt Gap M-Gap m-Gap CW
max Opt Gap m-Gap m-Gap

30.3.1 132.3 133.8 3 1.19 4.00 0.00 133.0 5 0.55 2.48 0.00

30.3.2 158.7 161.4 0 1.72 3.45 1.07 158.7 10 0.00 0.00 0.00

50.3.1 214.2 217.2 2 1.46 3.11 0.00 215.1 4 0.42 1.90 0.00

50.3.2 232.1 235.9 0 1.65 2.43 0.83 232.5 7 0.17 0.84 0.00

100.3.1 424.0 427.8 2 0.89 2.10 0.00 425.0 3 0.24 0.75 0.00

100.3.2 489.5 495.3 0 1.20 2.13 0.21 490.2 3 0.14 0.21 0.00

30.5.1 83.1 86.8 1 4.49 8.57 0.00 84.4 2 1.55 3.57 0.00

30.5.2 122.0 127.3 0 4.45 7.21 2.76 123.0 4 0.96 4.55 0.00

50.5.1 138.2 142.2 0 2.92 5.63 0.63 138.9 5 0.52 1.54 0.00

50.5.2 213.5 220.0 0 3.08 4.57 1.84 214.3 7 0.40 2.53 0.00

100.5.1 257.2 261.5 0 1.67 3.42 0.41 259.3 0 0.82 1.66 0.36

100.5.2 363.6 372.0 0 2.32 3.04 1.86 365.1 2 0.41 0.80 0.00

quality through a computational study of randomly generated

problem instances.

We note that our dynamic programming solution algorithm

can be easily adapted to deal with the cases where the objec-

tive is to minimize the total completion time
∑

Cj or the

maximum lateness Lmax. Take the objective of minimizing∑
Cj as an example, we can compute

𝜆1,1 = (s1,i1 + p1,i1 )(j1 − i1 + 1 + j2 − i2 + 1) + f (1, i1 + 1, i2),

𝜆2,1 = min
(j1,j2)∈a(i1,i2)

{ j1∑
𝓁=i1

(s1,𝓁 + p1,𝓁)(j1 − i1 + 1

+ j2 − i2 + 1) + f (1, j1 + 1, j2 + 1)
}

to reflect the increase in the total completion time caused

by the first job. The definitions of the other 𝜆 variables can

accordingly be made. For Lmax, we have

𝜆1,1 = max{s1,i1 + p1,i1 − d1,i1 , s1,i1 + p1,i1 + f (1, i1 + 1, i2)},

𝜆2,1 = min
(j1,j2)∈a(i1,i2)

{
max

{
Lmax(i1, j1, i2, j2),

j1∑
𝓁=i1

(s1,𝓁 + p1,𝓁) + f (1, j1 + 1, j2 + 1)
}}

,

where Lmax(i1, j1, i2, j2) is the maximum lateness in the block

B(i1, j1, i2, j2).

For future work, it is interesting to design polynomial-time

algorithms for the case with a constant number of machines.

The key is to define the states for the development of dynamic

programming algorithms. The case where preemptions are

allowed is another topic worthy of future research endeav-

ors. It is easy to see that an optimal schedule for PD,

S1 ∣ fixed - seq, pmtn ∣Cmax can be found among the class of

schedules where there is no preemption for any processing

operation. It is also easy to note that there are heuristics such

that C̃ − C∗ ≤ S and C̃ − C∗ ≤

(
1 − 1

m

)
S, where C̃ is the

heuristic solution, C* is the optimal solution, and S is the sum

of the loading times. Therefore, developing approximation

algorithms with better performance is a promising research

direction.
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