
This article was downloaded by: [132.227.125.207] On: 15 November 2017, At: 08:07
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Cutting Planes for Multistage Stochastic Integer Programs
Yongpei Guan, Shabbir Ahmed, George L. Nemhauser,

To cite this article:
Yongpei Guan, Shabbir Ahmed, George L. Nemhauser,  (2009) Cutting Planes for Multistage Stochastic Integer Programs.
Operations Research 57(2):287-298. https://doi.org/10.1287/opre.1080.0535

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2009, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.1080.0535
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 57, No. 2, March–April 2009, pp. 287–298
issn 0030-364X �eissn 1526-5463 �09 �5702 �0287

informs ®

doi 10.1287/opre.1080.0535
©2009 INFORMS

Cutting Planes for Multistage Stochastic
Integer Programs

Yongpei Guan
School of Industrial Engineering, University of Oklahoma, Norman, Oklahoma 73019, yguan@ou.edu

Shabbir Ahmed, George L. Nemhauser
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

{sahmed@isye.gatech.edu, gnemhaus@isye.gatech.edu}

This paper addresses the problem of finding cutting planes for multistage stochastic integer programs. We give a general
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1. Introduction
This paper deals with polyhedral aspects of multistage
stochastic integer programs. Our basic idea is to extend
known results concerning cutting planes for a determinis-
tic model of the problem to a stochastic model. In other
words, suppose that we know valid inequalities that make it
possible to solve efficiently the deterministic model by lin-
ear programming or branch and cut. In this paper, we show
how to use this knowledge to get valid inequalities for a
stochastic scenario-tree-based model of the problem so that
it too can be solved by a branch-and-cut algorithm. Multi-
period production-planning problems are a typical example
where there is considerable knowledge of the convex hull
of feasible solutions for various deterministic problems.
In Guan et al. (2006), we showed how to apply this idea for
uncapacitated lot-sizing problems by generalizing the well-
known (l� S) inequalities (Barany et al. 1984) to a stochastic
setting. Here we generalize the basic ideas of Guan et al.
(2006) so that the results can be applied to general multi-
stage stochastic integer programs involving a scenario tree
model of the uncertain parameters. The key idea of our
approach is to combine deterministic valid inequalities cor-
responding to different scenarios to obtain valid inequal-
ities for the whole scenario tree. The general framework
is studied in detail in the context of stochastic dynamic
knapsack problems and stochastic lot-sizing problems. For
these special cases, we provide facet and convex hull defin-
ing conditions, and discuss separation procedures. We also
present computational results that show that the approach is
computationally feasible for stochastic lot-sizing problems.

The remainder of this paper is organized as follows. In
the next section, we present notation and terminology used
throughout the paper, and also discuss the underlying com-
bination principle in our approach. A general framework for
obtaining valid inequalities for scenario-tree-based stochas-
tic integer programs is given in §3. Applications to stochas-
tic dynamic knapsack problems and stochastic lot-sizing
problems are presented in §§4 and 5, respectively. Section 6
presents computational results, and §7 gives conclusions
and directions for future research.

2. Notation and Preliminaries

2.1. Multistage Stochastic Integer Programs

Consider the deterministic T -period mixed-integer program

min
T∑
t=1
��txt +	tyt�

s.t.
t∑

�=1
�Gt�x� +At�y��� bt� t = 1� � � � � T � (1)

xt ∈�p
+� yt ∈�n

+� t = 1� � � � � T �

where At� and Gt� are matrices; and �t , 	t , and bt are
vectors of appropriate dimensions. We assume, without loss
of generality, that the decision vectors in each of the time
periods t = 1� � � � � T are of identical dimension.
Now consider the extension of (1) to a stochastic setting.

We assume that the problem parameters (��	�G�A�b)
evolve as a discrete-time stochastic process with a finite
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probability space. This information structure can be inter-
preted as a scenario tree � = �� ��� with T levels
(or stages) where a node i ∈� in stage t of the tree gives
the state of the system that can be distinguished by infor-
mation available up to time stage t. The probability asso-
ciated with the state represented by node i is pi. The set
of nodes on the path from the root node to a node i is
denoted by ��i�. The decisions (xi� yi) corresponding to a
node i are assumed to be made after observing the real-
izations ��i�	i� �Gij�j∈��i�� �Aij�j∈��i�� bi�, but are nonan-
ticipative with respect to future realizations. The goal is
to minimize expected total costs. The multistage stochastic
integer programming extension of (1) is then

min
∑
i∈�

pi��ixi +	iyi�

s.t.
∑

j∈��i�
�Gijxj +Aijyj�� bi� i ∈� � (2)

xi ∈�p
+� yi ∈�n

+� i ∈� �

Any multistage stochastic integer program defined over
a scenario tree can be modelled as formulation (2)
(cf. Römisch and Schultz 2001, Sen 2005). Specific exam-
ples of such problems include stochastic lot-sizing prob-
lems (Guan et al. 2006, Lulli and Sen 2004) (see also §5),
stochastic capacity-planning models (Ahmed et al. 2003,
Singh et al. 2008), and the stochastic unit commitment
problem (Nowak and Römisch 2000, Takriti et al. 1996).
We denote the set of feasible solutions of the multistage

stochastic integer program (2) by X� , and refer to this set
as the tree set. In this paper, we develop valid inequalities
for the tree set X� by combining given valid inequalities
for path sets of the form

Xi =
{
�xk� yk�k∈��i��

∑
j∈��k�

�Gkjxj +Akjyj�� bk�

xk ∈�p
+� yk ∈�n

+ ∀k ∈��i�

}

for i ∈� . Note that the path set Xi includes only those con-
straints of X� that correspond to the nodes on the path ��i�
from the root node to node i, and hence is a relaxation of
the tree set X� . Moreover, the path set Xi is essentially the
feasible region of the deterministic multiperiod problem (1)
with t�i� periods, where t�i� is the stage number of node i
in the scenario tree � . Consequently, known valid inequal-
ities for the deterministic model (1) are valid for the path
set Xi and also for the tree set X� . The (deterministic) valid
inequalities corresponding to different path sets, called path
inequalities, can be combined to obtain a new valid inequal-
ity, called a tree inequality, for the tree set. This idea has
been previously explored in Guan et al. (2006), where valid
inequalities for deterministic uncapacitated lot sizing were
combined to derive valid inequalities for stochastic lot siz-
ing, and in Guan et al. (2007), where valid inequalities

for general deterministic two-stage integer programs were
combined to obtain inequalities for two-stage stochastic
integer programs. The underlying combination scheme in
these papers, and in this work, is a simple operation known
as pairing (Guan et al. 2007), which is described next.

2.2. Pairing

Throughout this paper, we adopt the following conven-
tion. Given two vectors a1 and a2 of the same dimension,
the operations min�a1� a2� and max�a1� a2� are understood
to be carried out componentwise. Given a vector a and
a scalar b, we define a + b = a + b� and min�a� b� =
min�a� b��, where � is a vector of ones of the same dimen-
sion as a. Also, because all variables are nonnegative, we
say that an inequality a1x� b1 dominates another inequal-
ity a2x� b2 if a1 � a2 and b1 � b2.

Theorem 1 Guan et al. (2007). Suppose that the in-
equalities g1x+ a1y � b1 and g2x+ a2y � b2 with b1 � b2
are valid for the set X ⊂ �p

+ × �n
+. Then, the pairing

inequality

�x+�y � b2� (3)

where � = max�g1� g2� and � = min�a1 + �b2 − b1��
max�a1� a2��, is valid for X.

The pairing inequality is a split cut that can be derived
as in Cook et al. (1990) or via the mixed-integer round-
ing procedure (Nemhauser and Wolsey 1988, 1990) and, in
the special case where all coefficients are nonnegative, via
mixing (Günlük and Pochet 2001). The following example
illustrates that the pairing inequality may not be obtained
by one round of the Chvatal-Gomory (C-G) procedure on
the original inequalities, i.e., the C-G rank of the pairing
inequality is at least two.

Example 1. Consider the set

X �= ��x� y1� y2� ∈�3
+� x+ 2y1 � 2� x+ 5y2 � 5��

The pairing inequality for the above system is

x+ 2y1 + 3y2 � 5� (4)

To obtain a C-G inequality for X, let �1, �2 be the multi-
pliers for the first two inequalities in X, �� 0 be the multi-
plier for x� 0, and  1�  2 � 0 be the multipliers for y1 � 0
and y2 � 0. To obtain a C-G inequality that dominates (4),
these multipliers should satisfy

	2�1 + 5�2
� 5 ⇒ 4< 2�1 + 5�2�

	�1 +�2 +�
� 1 ⇒ �1 +�2 � 1�

	2�1 + 1
� 2 ⇒ �1 � 1�

	5�2 + 2
� 3 ⇒ �2 � 3/5�

However, the last three inequalities imply that 2�1+5�2 �
3�8 < 4. Therefore, no C-G multipliers exist that produce
an inequality that dominates inequality (4), and the C-G
rank of (4) is at least two.
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Given a set of valid inequalities, the pairing operation
can be carried out repeatedly to generate new valid inequal-
ities. The order in which the inequalities are paired dif-
ferentiates the inequalities. A natural order is sequential
pairing. Given K valid inequalities

gix+ aiy � bi� i= 1� � � � �K

for a set X ⊂ �p
+ × �n

+, such that b1 � b2 � · · · � bK ,
the sequential pairing inequality is obtained by pairing the
inequality for i = 1 with the one for i = 2, and then pair-
ing the resulting inequality with the one for i = 3 and so
on in the sequence i= 1� � � � �K. Problem structures where
sequential pairing dominates any other pairing order have
been studied in Guan et al. (2007). One such structure is
that of two-stage stochastic integer programs.

3. From Paths to Trees
In this section, we derive a family of valid inequalities for
the tree set X� from a given set of path inequalities. We
assume that the coefficients of the path inequalities are non-
negative. This assumption can be enforced by weakening
any coefficient � to max�0��� because all variables are
assumed to be nonnegative. We need the following addi-
tional notation regarding scenario trees. Each node i of the
scenario tree � , except the root node (indexed as i = 1),
has a unique parent i−, and is the root of a subtree � �i�=
�� �i����i��, which contains all descendants of node i,
including itself. Thus, � = � �1� and � =� �1�. Given a
subset of nodes R ⊆ � , let �R = ⋃

i∈R��i�, and R�j� =
R∩� �j� for each j ∈�R.

3.1. The Tree Inequalities

Given a nonempty subset of nodes R⊆� , we consider, for
each path set Xi for i ∈R, the valid path inequality∑
j∈��i�

�gijxj + aijyj�� bi� (5)

Without loss of generality, we assume that the set R =
�i1� � � � � iK� is partially ordered such that 0 =� bi0 � bi1 �
bi2 � · · ·� biK . Corresponding to such a set of path inequal-
ities, we define

b�R�= biK �

%j�R�=
∑

ik∈R�j�
�bik − bik−1� ∀ j ∈�R�

�j�R�=max
i∈R

�gij� ∀ j ∈�R� and

�j�R�=min
{
max
i∈R

�aij��%j�R�
}

∀ j ∈�R�

(6)

Theorem 2. Given a subset R⊆� , suppose that the path
inequalities of the form �5� are valid for the path sets Xi

for all i ∈R. Then, the tree inequality∑
j∈�R

�j�R�xj +�j�R�yj � b�R� (7)

is valid for the tree set X� .

Proof. We show, by induction, that the tree inequality (7)
corresponding to Rk = �i1� � � � � ik� is valid for X� for all
k ∈ �1� � � � �K�.
For the base case k= 1, after coefficient tightening, the

path inequality for Xi1
is

∑
j∈��i1�

�gi1jxj +min�ai1j � bi1�yj�� bi1� (8)

which is valid for X� . Inequality (8) is precisely the tree
inequality (7) with R= �i1�. In this case, �R =��i1� and
R�j�= �i1� for all j ∈�R.
Assume now that the inequality

∑
j∈�Rk

��j�Rk�xj +�j�Rk�yj�� bik (9)

is valid for X� for some k ∈ �1� � � � �K − 1�. The path
inequality for Xik+1 is

∑
j∈��ik+1�

�gik+1jxj + aik+1jyj�� bik+1� (10)

which is also valid for X� .
Next, we pair the valid inequalities (9) and (10) for X�

using Theorem 1. Note that the pairing inequality has a
right-hand side equal to bik+1 and includes variables from
all the nodes in �Rk+1 =�Rk

∪��ik+1�. We next show that
the coefficients in the inequality obtained by pairing (9)
and (10) are less than or equal to those of the tree inequal-
ity (7) corresponding to Rk+1.
We partition �Rk+1 into three sets: (i) ��ik+1�\�Rk

,
(ii) �Rk

\��ik+1�, and (iii) �Rk
∩��ik+1�.

(i) For each j ∈��ik+1�\�Rk
, we have

�=max�0� gik+1j �

= max
i∈Rk+1

�gij�

= �j�Rk+1��

where the second equality follows from the fact that gij = 0
for all i ∈Rk for any j ∈��ik+1�\�Rk

. Also,

�=min��j�Rk�+ bik+1 − bik �max�0� aik+1j ��

=min
{
bik+1 − bik � maxi∈Rk+1

�aij�
}

=min
{
max
i∈Rk+1

�aij��
∑

ir∈Rk+1�j�
�bir − bir−1�

}

=�j�Rk+1��

where the second equality follows from the fact that aij = 0
for all i ∈Rk for any j ∈��ik+1�\�Rk

, and the third equal-
ity follows from the fact that Rk+1�j� = �ik+1� for any
j ∈��ik+1�\�Rk

.
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(ii) For each j ∈�Rk
\��ik+1�, we have

�=max��j�Rk��0�

=max
{
max
i∈Rk

�gij��0
}

= max
i∈Rk+1

�gij�

= �j�Rk+1��

Also,

�=min
{
�j�Rk�+ bik+1 − bik �max��j�Rk��0�

}
=�j�Rk�

=min
{
max
i∈Rk

�aij��
∑

ir∈Rk�j�
�bir − bir−1�

}

=min
{
max
i∈Rk+1

�aij��
∑

ir∈Rk+1�j�
�bir − bir−1�

}

=�j�Rk+1��

where the second equality follows from the fact that
�j�Rk� � 0, and the penultimate equality follows from
the fact that aik+1j = 0 and Rk+1�j� = Rk�j� for j ∈
�Rk

\��ik+1�.
(iii) For each j ∈�Rk

∩��ik+1�, we have

�=max��j�Rk�� gik+1j �

=max
{
max
i∈Rk

�gij�� gik+1j

}

= max
i∈Rk+1

�gij�

= �j�Rk+1��

Also,

�=min��j�Rk�+ bik+1 − bik �max��j�Rk��aik+1j ��� (11)

where �j�Rk� = min�maxi∈Rk�aij��
∑

ir∈Rk�j��bir − bir−1��.
Consider the following two cases.

(a) If maxi∈Rk�aij� �
∑

ir∈Rk�j��bir − bir−1�, then
�j�Rk�=maxi∈Rk�aij�, and from (11),

�=min
{
max
i∈Rk+1

�aij��max
i∈Rk

�aij�+ bik+1 − bik

}

�min
{
max
i∈Rk+1

�aij��
∑

ir∈Rk�j�
�bir − bir−1�+ bik+1 − bik

}

=min
{
max
i∈Rk+1

�aij��
∑

ir∈Rk+1�j�
�bir − bir−1�

}

=�j�Rk+1��

(b) If maxi∈Rk�aij� >
∑

ir∈Rk�j��bir − bir−1�, then
�j�Rk�=

∑
ir∈Rk�j��bir − bir−1�, and from (11),

�=min
{
max

{ ∑
ir∈Rk�j�

�bir − bir−1�� aik+1j

}
�

∑
ir∈Rk�j�

�bir − bir−1�+ bik+1 − bik

}

�min
{
max

{
max
i∈Rk

�aij�� aik+1j

}
�

∑
ir∈Rk+1�j�

�bir − bir−1�

}

=min
{
max
i∈Rk+1

�aij��
∑

ir∈Rk+1�j�
�bir − bir−1�

}

=�j�Rk+1��

It then follows that the tree inequality (7) corresponding
to Rk+1 is dominated by an inequality obtained by pairing
the valid inequalities (9) and (10), and is therefore valid
for X� . �

Example 2. Consider a tree set corresponding to the sce-
nario tree depicted in Figure 1. Assume that the three valid
path inequalities corresponding to nodes 2, 3, and 4 are,
respectively,

2x1 + 5y1 + 2x2 + 5y2 � 15�

3x1 + 4y1 + 3x3 + 4y3 � 17� and

3x1 + 6y1 + 3x3 + 5y3 + 9x4 + 5y4 � 18�

Then, by Theorem 2, the tree inequalities of the form (7)
corresponding to R= �2�3� and R= �2�4�,

3x1 + 2x2 + 3x3 + 5y1 + 5y2 + 2y3 � 17� and

3x1 + 2x2 + 3x3 + 9x4 + 6y1 + 5y2 + 3y3 + 3y4 � 18�

are valid.

3.2. Nondominated Tree Inequalities

In general, any R⊆� can produce a tree inequality. How-
ever, if the path inequality coefficients gij and aij depend
only on the variables, i.e., gij = gj and aij = aj for all i

Figure 1. Scenario tree for Example 2.
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and j , then some of the tree inequalities may be dominated
by others. In this case, the path inequalities simplify to

∑
j∈��i�

�gjxj + ajyj�� bi ∀ i ∈� � (12)

and we can assume that bj � bi for all j ∈ ��i�. Also
from (6),

�j�R�= gj and �j�R�=min�aj�%j�R�� (13)

for all j ∈�R.
Now, consider a set R = �i1� � � � � iK� and suppose that

for some node ik ∈ R, there exists a node jk ∈ ��ik� such
that jk � R and bjk > bik−1 . We let jk be the closest such
node to ik. We now compare the tree inequalities (7) for
the sets R and R′ = �i1� � � � � ik−1� jk� ik� � � � � iK�. Note that
�R =�R′ , b�R� = b�R′� = biK , and �j�R� = �j�R

′� = gj
for all j ∈�R. Now for all j ∈�R\�ik�, we have %j�R�=
%j�R

′�. However,

%ik
�R�−%ik

�R′�= �bik−bik−1�−�bik−bjk �= bjk−bik−1 > 0�

Thus, �j�R���j�R
′�, and the tree inequality for R′ dom-

inates the one corresponding to R.
To obtain a node set whose corresponding tree inequal-

ity is not dominated in the above manner, let i′k =
argmin�t�j�� j ∈ ��ik� and bj > bik−1� for each ik ∈ R. If
no such i′k exists, let i′k = ik. Let (R = ⋃

ik∈R��i
′
k� ik�,

where ��i′k� ik� = ��ik�\��i′k� ∪ �i′k�. Then, inductively
applying the argument given above over the nodes in
��i′k� ik� proves the following result.

Theorem 3. The tree inequality �7� corresponding to (R

dominates the tree inequality corresponding to R.

In the next section, we will give an example of Theo-
rem 3. Note that Theorem 3 does not need to be applied
recursively because from the definition of (R it follows that
((R

=(R. From now on, unless otherwise stated, when-
ever the path inequality coefficients depend only on the
variables, we will assume that the path inequality sets R
are such that R=(R.

4. The Stochastic Dynamic
Knapsack Problem

The deterministic dynamic knapsack set

XDK =
{
�x� y� ∈�+ × �0�1�T � x+

t∑
�=1

a�y� � bt

t = 1� � � � � T
}
�

where at ∈ �+ and bt ∈ �+, has been studied in Loparic
et al. (2003). Assuming that the parameters at and bt
are stochastic and evolve according to the scenario tree

� = �� ���, and using the notation already described, the
stochastic dynamic knapsack set is

XSDK=
{
�x�y�∈�+×�0�1��� �� x+ ∑

j∈��i�
ajyj�bi� i∈�

}
�

(14)

where ai ∈ �+ and bi ∈ �+ for all i ∈ � . Without loss of
generality, we assume that bj � bi if j ∈��i�.
The stochastic dynamic knapsack set XSDK is a simple

special case of the tree set X� , involving a single binary
variable and a single constraint corresponding to each node
of the scenario tree, and an additional continuous variable x
corresponding to the root node. By applying Theorem 2 to
XSDK, we obtain the valid tree inequalities

x+ ∑
j∈�R

�j�R�yj � b�R� ∀R⊆� � (15)

where �j�R�=min�aj�%j�R�� for all j ∈�R.
Note that the inequalities defining XSDK satisfy the

requirements of §3.2, and hence a tree inequality (15) for
a set R is dominated by the one for (R. The following
example illustrates this.

Example 3. Consider an instance of XSDK where the sce-
nario tree has five nodes as shown in Figure 2. The instance
parameters are

a1 = 40� a2 = 15� a3 = 20� a4 = 20� a5 = 40 and

b1 = 5� b2 = 15� b3 = 17� b4 = 20� b5 = 40�

Note that because b3 > b2, any tree inequality (15) obtained
from a set R that contains node 2 and either node 4 or 5,
but not node 3, will be dominated by the tree inequality
obtained from R∪ �3�. For example, the tree inequality
x+ 20y1 + 10y2 + 5y3 + 5y4 � 20 (16)

corresponding to R = �1�2�4� is dominated by the
inequality

x+ 20y1 + 10y2 + 5y3 + 3y4 � 20 (17)

Figure 2. Scenario tree for Example 3.

4

5

2

3

1

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

22
7.

12
5.

20
7]

 o
n 

15
 N

ov
em

be
r 

20
17

, a
t 0

8:
07

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Guan, Ahmed, and Nemhauser: Cutting Planes for Multistage Stochastic Integer Programs
292 Operations Research 57(2), pp. 287–298, © 2009 INFORMS

corresponding to (R = �1�2�3�4�. Moreover, the following
set of six affinely independent points,



x

y1

y2

y3

y4

y5




=




20

0

0

0

0

1




�




0

1

0

0

0

1




�




5

0

1

1

0

1




�




15

0

0

1

0

1




�




17

0

0

0

1

1




�




0

1

0

0

0

0




�

are feasible to XSDK and satisfy (17) at equality. Hence, (17)
defines a facet of the convex hull of XSDK.

Example 3 illustrates that the tree inequalities (15) can be
facet defining. A set of sufficient conditions on the problem
parameters under which the tree inequalities (15) are guar-
anteed to be facet defining is given in Guan (2005). A par-
ticularly interesting condition is when the coefficients aj
are large relative to the right-hand sides bi, which is studied
next.

4.1. Special Case: Large Coefficients

In this section, we consider instances of XSDK with large
coefficients, in particular, aj � max�bk� k ∈ � �j�� for all
j ∈� , so that XSDK simplifies to

X ′
SDK=

{
�x�y�∈�+×�0�1��� �� x+M

∑
j∈��i�

yj�bi� i∈�
}
�

where M > maxj∈� �bj�. We show that, in this case, the
tree inequalities (15) suffice to describe the convex hull
of X ′

SDK. We use the following result, which is a simpler
version of Theorem 7 in Miller and Wolsey (2003). Note
that conv(X) denotes the convex hull of a set X.

Theorem 4 (Miller and Wolsey 2003). Let

Z= ��w� z� ∈�+ ×�n
+� w+ zi � fi i= 1� � � � � n��

with 0� fi < 1 for all i. Then,

conv�Z�=
{
�w� z� ∈�+ ×�n

+� w+ ∑
ik∈R

�fik − fik−1�zik � fiK

∀R= �i1� � � � � iK�⊆ �1� � � � � n�
}
�

where R = �i1� � � � � iK� is such that 0 =� fi0 � fi1
� · · ·� fiK . Moreover, the set

conv�Z�∩ �z� Bz� d�

is integral if B is the transpose of a network flow matrix
and d is integral.

Theorem 5. The tree inequalities �15� for all R ⊆ � ,
together with x� 0 and 0� yj � 1 for each j ∈� , describe
the convex hull of X ′

SDK.

Proof. Consider the following system

Z′ = ��w� z� ∈�+ ×��� �
+ � w+ zi � fi�

0� zi − zi− � 1 ∀ i ∈� �

with z1− �= 0 and fi �= bi/M for all i ∈ � . Observe that
there is a one-to-one correspondence between the solu-
tions of the continuous relaxation of X ′

SDK and those of
the continuous relaxation of Z′ through the transforma-
tion w= x/M and zi =

∑
j∈��i� yj for all i ∈ � . Note that

the transformation from zi to yi is given by yi = zi − zi−
for all i ∈� . Because the constraint matrix of the system
0� zi − zi− � 1 for all i ∈� is the transpose of a Network
flow matrix and the right-hand sides are integral, it follows
from Theorem 4 that conv(Z′) is given by
{
�w� z� ∈�+ ×��� �

+ � w+ ∑
ik∈R

�fik − fik−1�zik � fiK

∀R= �i1� � � � � iK�⊆� � 0� zi − zi− � 1 ∀ i ∈�
}
�

where R = �i1� � � � � iK� is such that 0 =� fi0 �

fi1 � · · · � fiK . Transforming back to the (x� y)-space, we
obtain that conv�XSDK� is given by

{
�x� y� ∈�+ ×��� �

+ � x+ ∑
j∈�R

%j�R�yj � b�R�

∀R⊆� � 0� yi � 1 ∀ i ∈�
}
� �

Theorem 5 generalizes the convex hull results for the
deterministic case, i.e., �R� = 1, in Barany et al. (1984), and
the case where there are only two periods, i.e., t�j�� 2 for
each j ∈� , in Günlük and Pochet (2001).

Example 3 (continued). If we modify the coefficients
to a1 = a2 = a3 = a4 = a5 = 40, then inequali-
ties (15) corresponding to R= �1�, �1�2�, �1�3�, �1�3�4�,
�1�3�5�, �1�2�3�, �1�2�3�4�, �1�2�3�5�, �1�3�4�5�, and
�1�2�3�4�5�, together with x � 0 and 0 � y1� � � � � y5 � 1,
describe the convex hull of all feasible solutions.

4.2. Separation

For X ′
SDK, separation of the tree inequalities (15) can be

carried out by solving shortest-path problems on a directed
graph G with nodes � ∪ �0� (node 0 is a dummy node with
b0 = 0) and arcs (i� i′) for all i� i′ with bi′ � bi. Given a point
(x∗� y∗), the separation problem of determining whether
there exists a violated tree inequality can be reduced to find-
ing a shortest path from node 0 to node r for each r ∈ � ,
where the length of arc (i� i′) is given by

∑
j∈��i′��bi′ − bi�y

∗
j .

This is true because a path P = �0� i1� i2� � � � � iK�, where
iK = r in G corresponds to a valid tree inequality
of the form (15) with R = �i1� i2� � � � � iK� because the
length of the path P is

∑K
k=1

∑
j∈��ik��bik − bik−1�y

∗
j =∑

j∈�R
�
∑

ik∈R�j��bik − bik−1��y
∗
j = ∑

j∈�R
%j�R�y

∗
j , which
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plus x∗ is equal to the left-hand side of the inequality (15).
Therefore, there is a violated inequality with right-hand
side biK if and only if the length of a shortest path from
node 0 to node r = iK is less than biK − x∗. Using Dijk-
stra’s algorithm, the separation problem can be solved in
O��� �2� time and we can find as many as �� � violated
inequalities from the shortest paths from node 0 to node k
for each k ∈� .

Theorem 6. If aj � max�bk� k ∈ � �j�� for all j ∈ � ,
there exists a polynomial-time separation algorithm for the
tree inequalities �15�.

For XSDK, i.e., when the condition that aj �max�bk� k ∈
� �j�� does not hold, the above algorithm can be used as a
separation heuristic by first finding a tree inequality assum-
ing large coefficients—i.e., finding the set R and coeffi-
cients %j�R� as above—and then tightening the coefficient
%j�R� of each yj variable to min�aj�%j�R��.

4.3. Dominance of Sequential Pairing

Recall that the tree inequality (15) for a set R is obtained
by sequential pairing of the original inequalities of XSDK

corresponding to i ∈R according to the partial order on R.
In this subsection, we argue that this pairing order is in
some sense optimal.

Lemma 1. Given R⊆� , suppose that

x+ ∑
j∈�R

2j�R�yj � b�R�

is a valid inequality obtained by an arbitrary sequence of
pairings on the inequalities of X ′

SDK corresponding to i ∈R.
Then, the valid inequality corresponding to R obtained by
the same sequence of pairing operations for XSDK is

x+ ∑
j∈�R

min�aj� 2j�R��yj � b�R��

Proof. We show that the conclusion holds for each pairing
in the arbitrary sequence. Note that the first pairing involves
two inequalities of the form (14), so the result follows from
Theorem 2. For any subsequent operation, suppose that we
are pairing the two inequalities

x+ ∑
j∈�R1

min�aj� 2j�R1��yj � b�R1�

and

x+ ∑
j∈�R2

min�aj� 2j�R2��yj � b�R2�

with b�R1� � b�R2�. Then, the coefficient of each vari-
able yj for the new inequality corresponding to R=R1 ∪R2

will be as follows. (Recall that 2j�R� = min�2j�R1� +
b�R2�− b�R1��max�2j�R1�� 2j�R2���.)

(1) If aj � 2j�R1� and aj � 2j�R2�, then the coefficient
of yj is 2j�R�� aj because 2j�R��max�2j�R1�� 2j�R2��.
(2) If aj � 2j�R1� and aj � 2j�R2�, then the coefficient

of yj is min�2j�R1�+ b�R2�− b�R1�� aj�= min�2j�R1�+
b�R2� − b�R1�� 2j�R2�� aj� = min�2j�R��aj�, where the
first equality follows from aj � 2j�R2� and the second
equality follows from the definition of 2j�R�.
(3) If aj � 2j�R1� and aj � 2j�R2�, then the coefficient

of yj is aj � 2j�R� because 2j�R�= 2j�R1�, which is based
on the fact that 2j�R1�� 2j�R2�.
(4) If aj � 2j�R1� and aj � 2j�R2�, then the coefficient

of yj is aj � 2j�R� because 2j�R� � min�2j�R1�� 2j�R2��
by (3).
Therefore, the coefficient of yj is min�aj� 2j�R�� for all

cases and the conclusion holds. �

Theorem 7. A valid inequality generated by an arbitrary
sequence of pairing operations on a subset of the original
inequalities of XSDK is dominated by a convex combination
of the tree inequalities �15� for all R⊆� .

Proof. For X ′
SDK the claim is true because, by Theorem 5,

the tree inequalities suffice to describe conv�X ′
SDK�. Thus,

a valid inequality

x+ ∑
j∈�R

2j�R�yj � b�R�

obtained by an arbitrary sequence of pairing operations of
the original inequalities for a subset R⊆� , is dominated
by a convex combination of tree inequalities (15),

x+ ∑
j∈� k

R

%j�R
k�yj � b�Rk�� k= 1� � � � �K�

corresponding to subsets of nodes R1� � � � �RK . That is,
there exists a set of weights �1� � � � � �K with �k � 0 and∑K

k=1 �k = 1, such that for all j ,

2j�R��
K∑
k=1

�k%j�R
k� and b�R��

K∑
k=1

�kb�R
k�� (18)

Now consider XSDK. According to Lemma 1, a valid
inequality obtained by an arbitrary sequence of pairing
operations on the original constraints of XSDK correspond-
ing to R is of the form

x+ ∑
j∈�R

min�aj� 2j�R��yj � b�R��

Similarly, a tree inequality corresponding to Rk ⊆� is of
the form

x+ ∑
j∈� k

R

min�aj�%j�R
k��yj � b�Rk��

Because b�R��
∑K

k=1 �kb�R
k� from (18), we only need to

verify that for each j ∈� ,

min
{
aj� 2j�R���

K∑
k=1

�kmin�aj�%j�R
k�

}
�
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with �k � 0 and
∑K

k=1 �k = 1. Indeed, if aj � 2j�R�, then
we have

min�aj� 2j�R��= 2j�R��
K∑
k=1

�k%j�R
k�

�

K∑
k=1

�kmin�aj�%j�R
k���

where the first inequality follows from (18). On the other
hand, if aj � 2j�R�, then

min�aj�2j�R��=aj=
K∑
k=1

�kaj�
K∑
k=1

�kmin�aj�%j�R
k��� �

5. Stochastic Lot Sizing
A multistage stochastic integer programming formulation
of the single-item stochastic lot-sizing problem defined
over a scenario tree � = �� ��� is (cf. Guan et al. 2006)

min
∑
i∈�

pi��isi +	ixi + iyi�+�1−s1−

s.t. si− + xi = di + si� i ∈� �

0� xi � aiyi� i ∈� �

s1− � 0� si � 0� yi ∈ �0�1�� i ∈� �

where s, x, and y denote the inventory, production, and
setup variables, and the parameters d, �, 	,  , and a denote
demands, holding costs, production costs, setup costs, and
production capacities, respectively. Eliminating the inven-
tory variables si for i ∈� and using s to denote the initial
inventory variable s1− , the feasible region of the stochastic
lot-sizing problem is

XSLP =
{
�s� x� y� ∈�+ ×��� �

+ × �0�1��� ��

s+ ∑
j∈��i�

xj � d1i� xi � aiyi� i ∈�
}
� (19)

where d1i =
∑

j∈��i� dj is the cumulative demand up to
node i. Replacing xi with aiyi, we have the relaxation
of XSLP:

XRSLP =
{
�s� y� ∈�+ × �0�1��� ��

s+ ∑
j∈��i�

ajyj � bi� i ∈�
}
� (20)

where bi = d1i. Note that XRSLP is precisely the stochastic
dynamic knapsack set XSDK. Hence, the valid inequalities
developed in §4 are also valid for XRSLP, and therefore
for XSLP. The following lemma allows us to include the xj
variables in these valid inequalities.

Lemma 2. If s+∑
j∈�R

4jyj � 40 is a valid inequality for
XSLP for some R⊆� , and SR ⊆�R, then

s+ ∑
j∈SR

xj +
∑
j∈S̄R

4jyj �40� (21)

where S̄R =�R\SR is a valid inequality for XSLP.

Proof. Consider a point �s∗� x∗� y∗� ∈XSLP. Now construct
a point (ŝ� x̂� ŷ) such that x̂j = x∗j and ŷj = y∗j for each
j ∈�R\SR, x̂j = ŷj = 0 for each j ∈ SR, and ŝ = s∗ +∑

j∈SR x
∗
j . Then, for each i ∈� ,

ŝ+ ∑
j∈��i�

x̂i = s∗ + ∑
j∈SR

x∗i +
∑

j∈��i�\SR
x∗i � s∗ + ∑

j∈��i�
x∗i � d1i�

Thus, �ŝ� x̂� ŷ� ∈XSLP. Then,

40 � ŝ+ ∑
j∈�R

4j ŷj = s∗ + ∑
j∈SR

x∗j +
∑

j∈�R\SR
4jy

∗
j �

Therefore, inequality (21) is valid for XSLP. �

Theorem 8. Given a subset R⊆� and a subset SR ⊆�R,
the inequality

s+ ∑
j∈SR

xj +
∑
j∈S̄R

�j�R�yj � b�R� (22)

is valid for XSLP, where S̄R = �R\SR and �j�R� =
min�aj�%j�R��.

Proof. The result follows immediately by applying
Lemma 2 to inequality (15) for the stochastic dynamic
knapsack relaxation XRSLP. �

For constant production capacities, i.e., aj = a for all
j ∈� , valid inequalities derived from a mixing set relax-
ation of XSLP are presented in Di Summa and Wolsey
(2008).

5.1. The Uncapacitated Case

If aj �max�bk� k ∈� �j�� for all j ∈� , then the produc-
tion variables are uncapacitated and (22) simplifies to

s+ ∑
j∈SR

xj +
∑
j∈S̄R

%j�R�yj � b�R�� (23)

Inequalities of the form (23) were obtained by Guan et al.
(2006) for certain restricted subsets R. Specifically, Guan
et al. (2006) consider subsets � = �i1� � � � � iK� ⊆ � with
d1i1 � · · · � d1iK such that, for any j ∈ � , if �im� in� ⊆
��j� �= �∩� �j�, then �im+1� im+2� � � � � in−1�⊂ ��j�. Valid
path inequalities corresponding to the nodes in � are then
combined to obtain a valid inequality, called a ��� S��
inequality, for XSLP. It can be shown that every such ��� S��
inequality is an inequality of the form (23) with R =(�

(Guan et al. 2005). Clearly, not every tree inequality (23)
is a ��� S�� inequality, and moreover, such tree inequali-
ties may be required in the description of the convex hull
of XSLP. The following example illustrates this.
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Example 4. Consider a stochastic uncapacitated lot-sizing
problem for the scenario tree structure shown in Figure 1.
Let d1 = 10, d2 = 15, d3 = 5, and d4 = 20. The
tree inequality corresponding to R = �1�3�2�4� with
SR = �1� is

s+ x1 + 10y2 + 15y3 + 10y4 � 35�

This inequality is facet defining. However, it is not a
��� S�� inequality because the set �1�3�2�4� does not sat-
isfy the necessary requirements on � (note that b1 < b3 <
b2 < b4 and ��3�= �3�4� but 2 �∈ ��3�).

5.2. Separation

Consider the uncapacitated case first. Separation of the
tree inequalities (22) corresponds to finding a subset of
nodes R and a partition of �R into SR and S̄R. Unfor-
tunately, this does not appear to be easy, so we use a
heuristic approach. Recall that if we fix SR = �, then the
lot-sizing tree inequalities (22) are the dynamic knapsack
tree inequalities (15), and hence can be separated exactly
in polynomial time by a shortest-path scheme as in §4.2.
Once we have identified the most violated dynamic knap-
sack tree inequality (15), i.e., a subset of nodes R, we can
then set SR = �j ∈�R� x

∗
j < �j�R�y

∗
j �, where (x

∗� y∗) is the
current fractional solution, to find a tree inequality (22).
This heuristic can be further enhanced by setting SR as
above for each of the dynamic knapsack tree inequalities
identified in the course of the separation algorithm of §4.2
and obtaining a resulting lot-sizing tree inequality, and then
choosing the most violated lot-sizing tree inequality from
among these.
For the capacitated case, as in §4.2, we first use the above

scheme to find tree inequalities assuming aj �max�bk� k ∈
� �j�� and then tighten the coefficient of each yj variable
by taking the minimum value of aj and the coefficient
obtained by the shortest-path algorithm.

6. Computational Experiments
In this section, we present computational results with a
branch-and-cut algorithm to demonstrate the effectiveness
of the inequalities generated by our pairing scheme on
randomly generated instances of single-item uncapacitated
and capacitated stochastic lot-sizing problems. All compu-
tations have been carried out on a Linux workstation with
dual 2.4 GHz Intel Xeon processors and 2 GB RAM.

6.1. Instance Generation

Instances were generated based on different structures of
the underlying scenario trees, different ratios of the pro-
duction cost to the inventory holding cost, and different
ratios of the setup cost to the inventory holding cost.
We assumed that the underlying scenario tree is balanced
with T stages and K branches per stage. For the unca-
pacitated instances, we used stage-branch combinations

�T �K�= �9�2�, �10�2�, �6�3�, and �7�3�; production to
holding cost ratios 	/h = 2 and 4; and setup to holding
cost ratios  /h= 200 and 400.
Corresponding to each of the 16 combinations of K,

T ,  /h, and 	/h, three random instances were generated.
In these instances, corresponding to each node i of the
tree, the holding cost hi is a random number uniformly dis-
tributed in the interval 70�108; the production cost 	i is uni-
formly distributed in the interval 70�8��/h�h̄�1�2��/h�h̄8,
where h̄ is the average holding cost; the setup cost  i is uni-
formly distributed in the interval 70�8�	/h�h̄�1�2�	/h�h̄8;
and demand di is uniformly distributed in the interval
70�1008. Finally, all K children of a node occur with equal
probability 1/K.
For the capacitated instances, we used �T �K� = �9�2�

and �6�3�. Two sizes of production capacities ai were
used, a large capacity that is uniformly distributed in the
interval 740T �60T 8 and a small capacity that is uniformly
distributed in the interval 720T �40T 8. All other parame-
ters were generated in the same way as in the uncapaci-
tated case.

6.2. Results

We used CPLEX 8.1 in the default mode as a control
and compared its performance to our customized algorithm,
which augments default CPLEX by repeatedly solving the
linear programming relaxation and adding the most vio-
lated cut found by the separation heuristics until no more
cuts can be found, at each node of the branch-and-cut tree.
To get a better understanding of the value of our cuts, we
also evaluated how much they improved the LP at the root
node.
Computational results for the stochastic uncapacitated

case are shown in Tables 1 and 2. Table 1 gives the effec-
tiveness of the tree inequalities in tightening the LP relax-
ation gap at the root node. The LP relaxation gap of the
original formulation without adding any of our cuts is
shown in the column labelled “LP gap %.” It is calcu-
lated with respect to the best feasible solution found by
our branch-and-cut algorithm. The column labelled “Path”
corresponds to the results from adding all violated path
inequalities (i.e., �R� = 1); the column labelled “��� S��”
corresponds to the results after adding violated ��� S��
inequalities as done in Guan et al. (2006); the column
labelled “Tree” corresponds to the results after adding vio-
lated tree inequalities (22) in a separate experiment by the
heuristic separation algorithm.
For each combination of K, T ,  /h, and 	/h, there are

two rows corresponding to the columns labelled “Path,”
“��� S��,” and “Tree.” The first row gives the LP relaxation
gap after adding inequalities, and the second row gives
the number of inequalities added. Note that all reported
numbers are averages over three instances. Significant tight-
ening of the LP relaxation is achieved with the tree inequal-
ities. In most cases, the LP relaxation gap is reduced from
over 20% to less than 1%. Furthermore, in most cases,
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Table 1. Results of the root node for the uncapacitated
case.

K T  /h 	/h LP gap (%) Path ��� S�) Tree �R�
2 9 200 2 16�74 2.37 0.77 0.11 �2�8�28�

433 12,440 916
2 9 200 4 13�76 2.20 0.92 0.30 �2�8�28�

417 13,106 784
2 9 400 2 20�67 3.54 1.04 0.13 �2�9�31�

318 13,094 1,027
2 9 400 4 18�22 3.10 1.37 0.33 �2�8�24�

359 12,760 734
2 10 200 2 15�56 2.73 1.26 1.01 �2�7�23�

849 15,399 620
2 10 200 4 20�12 3.97 1.50 0.92 �2�7�23�

631 15,809 1,165
2 10 400 2 12�63 2.30 0.93 0.33 �2�9�30�

846 15,254 1,112
2 10 400 4 18�90 4.66 1.96 0.76 �2�9�30�

729 15,656 1,579

3 6 200 2 19�19 3.92 0.96 0.32 �2�12�34�
197 11,059 849

3 6 200 4 16�13 3.57 0.73 0.18 �2�12�33�
183 10,877 922

3 6 400 2 25�04 5.11 1.67 0.16 �2�14�36�
172 11,265 1,127

3 6 400 4 22�05 4.65 1.59 0.32 �2�13�40�
168 11,405 1,158

3 7 200 2 22�01 4.17 1.96 1.10 �2�9�31�
739 15,020 1,386

3 7 200 4 17�64 3.12 1.51 1.35 �2�10�30�
696 14,507 991

3 7 400 2 30�80 8.92 3.82 2.04 �2�12�35�
634 14,779 1,656

3 7 400 4 24�48 4.24 2.31 0.98 �2�12�38�
638 14,810 2,056

we observe significant improvement by adding tree inequal-
ities to the path inequalities. The tree inequalities also give
better performance than the ��� S�� inequalities, and many
fewer tree inequalities are needed to get this improved
performance.
The final column labelled “�R�” records the minimum,

average, and maximum number of elements in R corre-
sponding to each tree inequality, which gives an indication
of how much of the scenario tree is used by each inequality.
We observed that �R� ranges from 2 to 40 with an aver-
age around 10, and that the average �R� for the cases with
K = 2 is less than those with K = 3.
Table 2 presents our branch-and-cut results. We com-

pared the number of cuts added by default CPLEX and by
our branch-and-cut scheme, respectively, the relative opti-
mality gap upon termination, the number of nodes explored
(apart from the root node), and the total CPU time. For the
two rows corresponding to each combination of K, T ,  /h,
and 	/h in the table, the first one gives the performance
of default CPLEX and the second one gives the perfor-
mance of our branch-and-cut scheme. The reported data

Table 2. Results of the branch-and-cut algorithm for
the uncapacitated case.

No. of Optimality No. of
K T  /h 	/h cuts gap nodes CPU secs.

2 9 200 2 563 0.59 [3] 1�657�049 ∗ ∗ ∗
3�823 0 248 149�4

2 9 200 4 551 0.47 [3] 1�640�825 ∗ ∗ ∗
8�425 0 189 894�3

2 9 400 2 596 0.99 [3] 1�570�548 ∗ ∗ ∗
14�642 0.02 [1] 264 956�5

2 9 400 4 521 0.92 [3] 1�616�461 ∗ ∗ ∗
16�420 0.08 [1] 190 437

2 10 200 2 780 1.78 [3] 943�455 ∗ ∗ ∗
18�567 0.17 [2] 655 3�264

2 10 200 4 1�026 0.95 [3] 835�008 ∗ ∗ ∗
21�241 0.05 [2] 133 3�521

2 10 400 2 885 2.1 [3] 891�822 ∗ ∗ ∗
17�450 0.42 [3] 946 ∗ ∗ ∗

2 10 400 4 858 2.02 [3] 924�457 ∗ ∗ ∗
27�642 1.31 [3] 85 ∗ ∗ ∗

3 6 200 2 723 0.61 [3] 1�996�296 ∗ ∗ ∗
9�046 0.08 [1] 76 87

3 6 200 4 801 0.24 [3] 1�988�059 ∗ ∗ ∗
5�545 0 156 512�5

3 6 400 2 566 0.81 [3] 2�608�384 ∗ ∗ ∗
7�535 0 291 1�045

3 6 400 4 546 0.65 [3] 3�005�068 ∗ ∗ ∗
9�812 0.17 [1] 130 195�1

3 7 200 2 1�129 2.29 [3] 790�023 ∗ ∗ ∗
29�009 0.69 [3] 24 ∗ ∗ ∗

3 7 200 4 1�014 1.77 [3] 828�985 ∗ ∗ ∗
37�766 0.98 [3] 45 ∗ ∗ ∗

3 7 400 2 945 3.62 [3] 1�000�364 ∗ ∗ ∗
25�187 1.24 [3] 0 ∗ ∗ ∗

3 7 400 4 1�069 2.55 [3] 1�123�622 ∗ ∗ ∗
26�690 0.82 [3] 0 ∗ ∗ ∗

is averaged over three instances. In the column labelled
“Optimality gap,” the numbers in square brackets indicate
the number of instances not solved to default CPLEX opti-
mality tolerance within the allotted time limit of one hour.
The default CPLEX MIP solver added several types of cuts,
including cover cuts, flow cuts, Gomory fractional cuts, and
mixed-integer rounding cuts. Our branch-and-cut algorithm
added up to 500 tree inequalities as cuts at each node after
the CPLEX default cuts have been added. For the total
CPU time, as shown in the column labelled “CPU secs.” we
report the average CPU time for instances that are solved
to default CPLEX optimality tolerance within the allotted
time limit of one hour. Label “∗ ∗ ∗” represents the case
that no instance is solved to default CPLEX optimality tol-
erance within the allotted time.
Our branch-and-cut algorithm performs much better than

default CPLEX. Our algorithm solves to optimality half of
the instances for K = 2 and 10 out of 24 instances for
K = 3, whereas the default CPLEX cannot solve any of
the instances to optimality. For those instances unsolved
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Table 3. Results of the root node for the capacitated
case.

Capacity K T  /h 	/h LP gap (%) Path Tree �R�

U740T �60T 8 2 9 200 2 14�57 2.64 0.17 �2�6�19�
439 657

2 9 200 4 11�18 2.16 0.28 �2�6�20�
404 598

2 9 400 2 17�54 3.28 0.24 �2�8�24�
332 721

2 9 400 4 14�73 3.18 0.25 �2�9�28�
342 1,013

3 6 200 2 13�84 5.16 1.62 �2�8�27�
202 897

3 6 200 4 10�91 4.04 1.33 �2�8�21�
208 785

3 6 400 2 16�06 8.00 2.80 �2�10�29�
178 894

3 6 400 4 14�18 7.34 2.50 �2�12�32�
182 1,039

U720T �40T 8 2 9 200 2 12�82 3.16 0.49 �2�6�21�
403 696

2 9 200 4 9�56 2.65 0.43 �2�6�20�
383 701

2 9 400 2 15�07 4.56 1.23 �2�8�20�
316 893

2 9 400 4 12�33 4.06 1.03 �2�8�24�
339 944

3 6 200 2 12�36 4.35 0.48 �2�8�24�
189 773

3 6 200 4 8�64 3.85 0.43 �2�8�22�
185 877

3 6 400 2 14�08 6.35 1.19 �2�9�25�
162 918

3 6 400 4 11�28 5.79 1.12 �2�10�28�
175 1,004

by both algorithms, our algorithm yielded much smaller
optimality gaps. Moreover, our cuts dramatically reduced
the number of nodes in the branch-and-bound tree and,
although we added many more cuts, the running times were
smaller as well. Furthermore, by limiting the number of
cuts added as a function of tree depth, we were able to
decrease the running times a bit more than those shown in
Table 2.
Tables 3 and 4 present results for the capacitated case.

We also tested three instances for each combination.
Table 3 shows the optimality gap reduction after adding
path inequalities and the substantially bigger reductions
after adding tree inequalities at the root node. For the
branch-and-cut algorithm, as shown in Table 4, default
CPLEX cannot solve any of the large-capacity instances
to optimality, whereas our algorithm solves 16 out of 24
instances to optimality, including all two-branch instances.
For those unsolved instances, our algorithm obtains smaller
optimality gaps, and all final gaps are smaller than 0.5%.
For the small-capacity case, 21 out of the 24 instances

Table 4. Results of the branch-and-cut algorithm for
the capacitated case.

No. of Optimality No. of CPU
Capacity K T  /h 	/h cuts gap nodes secs.

U740T �60T 8 2 9 200 2 590 0.55 [3] 1�680�099 ∗ ∗ ∗
2�695 0 194 73�3

2 9 200 4 569 0.36 [3] 1�682�063 ∗ ∗ ∗
4�567 0 215 121�2

2 9 400 2 538 1.11 [3] 1�727�792 ∗ ∗ ∗
6�498 0 208 244�4

2 9 400 4 551 0.85 [3] 1�801�839 ∗ ∗ ∗
10�789 0 257 821�9

3 6 200 2 487 0.37 [3] 2�370�519 ∗ ∗ ∗
5�300 0 222 204�4

3 6 200 4 530 0.18 [3] 2�167�495 ∗ ∗ ∗
5�057 0 173 215�6

3 6 400 2 561 1.1 [3] 2�164�056 ∗ ∗ ∗
24�018 0.45 [3] 245 ∗ ∗ ∗

3 6 400 4 586 0.94 [3] 2�053�463 ∗ ∗ ∗
24�398 0.47 [3] 284 ∗ ∗ ∗

U720T �40T 8 2 9 200 2 561 0.45 [3] 1�762�030 ∗ ∗ ∗
3�396 0 248 138�6

2 9 200 4 589 0.30 [3] 1�732�004 ∗ ∗ ∗
4�328 0 266 269�1

2 9 400 2 653 0.82 [3] 1�667�112 ∗ ∗ ∗
6�915 0 414 626�3

2 9 400 4 573 0.63 [3] 1�806�365 ∗ ∗ ∗
8�940 0 497 835�6

3 6 200 2 630 0.23 [2] 1�494�500 2�444�6
10�948 0.15 [1] 211 1�269�3

3 6 200 4 520 0.21 [2] 1�800�160 2�404�0
5�096 0 209 222�7

3 6 400 2 571 0.26 [2] 1�504�807 2�428�7
14�879 0.15 [1] 230 1�448

3 6 400 4 483 0.24 [2] 1�835�754 2�411�3
11�406 0.06 [1] 384 1�323�3

are solved to optimality by our algorithm, whereas default
CPLEX can only solve 4 out of the 24 instances to opti-
mality. Our final optimality gaps are within 0.15%.

7. Conclusions and Future Research
We have presented a general method for generating valid
inequalities for multistage stochastic integer programs based
on combining inequalities that are valid for the individual
scenarios. We have applied the method to a stochastic ver-
sion of a dynamic knapsack problem and to stochastic lot-
sizing problems. Our computational results show that these
new inequalities are very effective in a branch-and-cut algo-
rithm and give much better results than default CPLEX.
Because multistage stochastic integer programs are very dif-
ficult to solve, and arise in many domains, including net-
work reliability, routing, capacity planning, and scheduling,
we are now investigating the application of our method to
different structural models. Decomposition methods involv-
ing Lagrangian relaxation (Carøe and Schultz 1999, Nowak
and Römisch 2000) and column generation (Lulli and Sen
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2004, Sen 2005, Singh et al. 2008) have been very effec-
tive in solving various classes of multistage stochastic inte-
ger programs. Integration of the proposed cut generation
scheme within such decomposition frameworks is an impor-
tant unresolved issue.
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