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Chvfital introduced the idea of viewing cutting planes as a system for proving that every integral 
solution of a given set of  linear inequalities satisfies another given linear inequality. This viewpoint 
has proven to be very useful in many studies of  combinatorial and integer programming problems. 
The basic ingredient in these cutting-plane proofs is that for a polyhedron P and integral vector 
w, if max(wx ]x ~ P, wx integer} = t, then wx ~ t is valid for all integral vectors in P. We consider 
the variant of  this step where the requirement that wx be integer may be replaced by the requirement 
that #x be integer for some other integral vector #. The cutting-plane proofs thus obtained may 
be seen either as an abstraction of Gomory 's  mixed integer cutting-plane technique or as a proof  
version of a simple class of  the disjunctive cutting planes studied by Balas and Jeroslow. Our 
main result is that for a given polyhedron P, the set of  vectors that satisfy every cutting plane for 
P with respect to a specified subset of  integer variables is again a polyhedron. This allows us to 
obtain a finite recursive procedure for generating the mixed integer hull of  a polyhedron,  analogous 
to the process of  repeatedly taking Chv~ital closures in the integer programming case. These results 
are illustrated with a number  of  examples from combinatorial optimization. Our work can be 
seen as a continuation of that of  Nemhauser  and Wolsey on mixed integer cutting planes. 

1. Introduction 

Cutting-plane techniques have been one of the most studied topics in the theory 
of integer programming. Early, fundamental work was carried out by Dantzig, 
Fulkerson and Johnson [12] and Gomory [14], resulting in Gomory's well known 
integer programming algorithm. Although a very important theoretical development, 
this method turned out to be considerably less important from a practical point of 
view, where enumerative techniques have generally ruled. In recent years, however, 
cutting planes have also come to the forefront of practical methods. One of the 
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developments which sparked this resurgence was Chv~ital's [8] treatment of 
Gomory's  early work. Rather than viewing Gomory's  technique as an algorithm, 
Chv~tal looked at cutting planes as a method for proving that every integral solution 
to a given set of linear inequalities satisfies another given linear inequality. His 
approach is as follows: Consider a system of  linear inequalities 

a,x<~b~ ( i=  1 , . . . ,  k). (1) 

If  we have nonnegative numbers y ~ , . . . ,  yk such that y l a l  + • • • +Ykak is integral, 
then every integral solution of (1) is satisfied by the inequality 

( y l a ,  +"  • • + ykak)X ~< 3' (2) 

for any number 3' which is greater than or equal to [y~b~ + • • • +ykbkJ (the number 
y lb l  + • • • +ykbk rounded down to the nearest integer). We say that the inequality 
(2) is derived from (1) using the numbers y l , . . . ,  Yk. A cut t ing-plane p r o o f  of an 
inequality wx  <~ t from (1) is a list of inequalities ak + iX <~ bk ÷ ~ ( i = 1 , . . . ,  M ), together 
with nonnegative numbers Yu (i = 1 , . . . ,  M , j  = 1 , . . . ,  k +  i - 1 ) ,  such that for each 
i the inequality ak+ix<~ bk+~ is derived from the inequalities a~x<~ bj ( j  = 1 . . . .  , 

k + i - l) using the numbers y~ (j  = 1 . . . .  , k + i - 1) and where the last inequality in 
the list is wx  <~ r Clearly, an inequality which has a cutting-plane proof  satisfies 
every integral solution of  the given system. Conversely, Chv~ital [8] and Schrijver 
[23; 24, Corollary 23.2b] showed: 

Theorem 1. Le t  P = { x l A x  <~ b} be a nonemp ty  polyhedron which is either rat ional  or 

bounded. 

(i) I f  wx  <~ t is satisf ied by all integral vectors in P ( w being integral) and  P contains 

at  least one such vector, then there is a cut t ing-plane p r o o f  o f  wx  <~ t f r o m  A x  <~ b. 

(ii) I f  P contains  no integral vectors, then there is a cut t ing-plane p r o o f  o f  Ox <~ - 1  

f r o m  A x  <~ b. [] 

This result may be viewed geometrically as giving a procedure which takes a 
polyhedron P and generates a linear description of Pj, the convex hull of the integral 
vectors in P, in the following sense. Call an inequality wx  <~ [6J a Chv6 ta l  cutt ing 

p lane  for P if w is integral and wx  <-~ is satisfied by all vectors in P (so if 
P = { x ] A x  <~ b} then wx  <~ [~J can be derived from A x  <~ b). Now denote by P '  the 
Chv6 ta l  closure of P, that is, the set of vectors which satisfy every Chvfital cutting 
plane for P, and let p~O~ = p and pO~ = p~i-1), for all i/> 1. The result of Chvfital 
and Schrijver gives: 

Theorem 2. Le t  P be a rat ional  polyhedron.  Then: 

(i) P '  is again a polyhedron.  

(ii) P~ = p~k9 f o r  s o m e  integer k. [] 
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Chv~ttal [8, 9, 10, 11] has shown that the viewpoints given in these two theorems 
lead to many nice results in combinatorics, and cutting-plane proof  arguments can 
be found in papers such as Barahona, Gr6tschel, and Majoub [2], Gr6tschel and 
Padberg [15], Gr6tschel and Pulleyblank [16], and others, which have laid the 
foundation for subsequent computational work. The frequency of cutting-plane 
proof  arguments in these papers lies in the fact that they provide a concrete model 
for approaching the task of finding useful valid inequalities for the problem at hand. 

In the description of Chv~tal cutting planes, we implicitly use the following simple 
principle. 

Principle A. For an integral vector w, i f  max{wx l A x  <~ b, wx integer} = t, then wx  <~ t 

is satisfied by all integral solutions o f  A x  <~ b. [] 

Chvfital cutting planes are precisely those inequalities wx <~ t which can be defined 
using this principle. In this paper we study the cutting planes which arise by relaxing 
this to the following, equally simple principle. 

Principle B. For an integral vector c, i f  m a x { w x l A x < ~  b, cx integer} = t, then wx<~ t 

is satisfied by all integral solutions o f  A x  <~ b. [] 

Here we do not require that c and w be identical. The cutting-plane proofs which 
can be obtained with this second principle can be seen either as an abstraction of 
Gomory's  [13] mixed integer programming technique or as a proof  version of a 
simple class of the disjunctive cutting planes studied by Balas [1], and Jeroslow 
[18] as we will make clear in the next section. We study the extent to which these 
cuts, when generalized to the context of mixed integer programming, preserve the 
nice features of Chvfital's cutting-plane proofs. Our main result is the analogue of 
Theorem 2(i) for these cutting planes, which gives, together with a rounding 
operation, analogues of Theorem I and Theorem 2(ii) for mixed integer programming 
problems. These theorems can be seen as a continuation of the work of Nemhauser 
and Wolsey [21] on cutting planes in the spirit of  Chvfital cuts, for mixed integer 
programming. The results are presented and discussed in Section 2 and proven in 
Section 3. The applicability of these cutting plane proofs is illustrated in Section 4 
with a number of examples from combinatorial optimization. Throughout  the paper 
we make use of results in polyhedral theory, for which we refer the reader to the 
book of Schrijver [24]. 

2. Split cuts 

An important feature of Chvittal cutting planes is that, given the nonnegative 
multipliers Yi, it is trivial to verify that a derived inequality is indeed satisfied by 
all integral solutions of the given system. The cutting planes we study have a similar 
property. First note the following. 
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Principle C. For a given system Ax  <~ b, integral vector c and integer k, i f  wx <~ t & 

valid for both {x lAx  <~ b, cx <~ k} and {x ]Ax <~ b, cx ~ k + 1}, then wx <~ t is satisfied 
by all integral solutions of  Ax  <~ b. [] 

Now observe that by letting k =  [cx*l where x* is any optimal solution to 
max{wx lAx  <-b}, we obtain Principle B. (If max{wx lAx  <~ b} does not exist, then 
either max{wxlAx<~b, cx integer} does not exist or there is an integer k with 
k < ex < k + 1 for all solutions of Ax  <~ b. To see the implication in general, notice 
that if ff is any optimal solution to max{wx]Ax<~ b, cx<~ [cx*J} then c~= [ex*J. 
Since [cx*J is integer, we must have max{wx]Ax<~b, ex<~ [ex*J}~ < t. Similarly, 
max{wxlax<~b,  ex>~ [cx*/+1} <~ t.) 

Thus, an inequality wx <~ t can be verified by checking separately that it is valid 
for {xlAx<- b, ex<~ k} and valid for {xlAx<~ b, cx>~ k + l }  (see Figure 1), each of 
which can be done, via Farkas' lemma, by using the appropriate nonnegative 
multipliers. Due to the form of this verification, we refer to the cutting planes we 
propose to study as split cuts. So wx <- t is a split cut for a polyhedron P if for some 
integral vector c and integer k, it is a valid inequality for both {x c P] cx <~ k} and 
{x c P[ cx >1 k + 1}. It follows immediately that these cutting planes are a simple class 
of disjunctive cuts, as mentioned in the introduction. In a mixed integer programming 
problem, only a subset of the variables are restricted to integral values. So the set 
of feasible solutions to such a problem has the form 

{ ( y )  ~ m + "  ] Ax  + By<~ b, x integral}. 

We extend the definition of  a split cut to such sets in the following way: An inequality 
wx + vy <~ t is a split cut for P ~_ R"+" with respect to the integer variables x if there 

cx=k/ / cx=k+l x-<:t 

Fig. 1. 
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exists an integral vector c c R m and an integer k such that wx + vy ~ t is valid for both 

{ ( y )  CP  cx<~k} and { ( ; ) e P I c x > - k + l } .  

It is again a simple fact that such an inequality is satisfied by all x-integral vectors 
in P (those vectors 

such that 9~ is integral). Analogous to the definition of the Chv~ital closure of a 
polyhedron, we define the split closure of P with respect to the integer variables x 
as the set of all vectors that satisfy every split cut for P with respect to x. One way 
to view this is as follows. For each c e 2 ~m let 

P~=convex hull{ ( ; )  c P I cx integer} . (3) 

Clearly, pc is a polyhedron (see [24, the proof  of Theorem 16.1, p. 231]) and the 
split closure of P is 

( - / / ,  c. 
C E Z  n 

Our main result is the following. 

Theorem 3. The split closure of a rational polyhedron P, with respect to any subset of 
integer variables, is again a polyhedron. 

The proof  of this theorem is given in the next section. 
For a polyhedron 

I 
let P~(x) denote the convex hull of the x-integral vectors in P. From Motzkin's 
decomposition theorem for polyhedra, it follows that if P is rational then P~(x) is a 
polyhedron (see [24, Section 16.7]). Thus, given Theorem 3, one may suspect that 
repeatedly taking the split closure of P would give P~(x) after a finite number of 
iterations, which of course follows from Theorem 2 when all variables are integer. 
This however is not the case. To see the difficulty, first consider the following direct 
extension of Chv~ttal closures, based on Principle A rather than Principle B: For a 
given polyhedron P ___ Nm+~, let P~ be the set of all vectors 

which satisfy each inequality wx + vy <~ ~, where w is integral and 

6=max{wx+vy:(Xy)~P,  wxinteger}. 
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N o w  if all variables are integral, then P"  is the Chv~ital closure o f  P, so, in that 

case, repeating the closure finitely many  times gives P~. In the general case however,  

- P~, that  is, the procedure  may get ' s tuck '  before it may  happen  that P ¢ PI(~ but P - ' 

reaching the convex hull of  the x-integral vectors. Consider  the following: 

Example 1. Let p c  ~2+1 be defined by 

x ~ + Y l ~ ½ ,  x 2 + Y l ~  1, 

and suppose that only x~ and x2 are restricted to integer values. Clearly P ¢ P~(x). 

(For  instance, (½, 1, 0) c P \ P ~ . )  Now consider  an inequality w~x~ + WzX2+ v~y~ <~ 6 
where Wl and w2 are integers and 

= max{wlx~ + w2x2+ v~y~[(x~, x2, y~) < P, wlx~ + w2x2 integer}. 

Since 6 is finite, 

max{wlxl + w2x2 + v~yl[(x~, x2, Yl) c P} (4) 

is also finite. So (4) is achieved by all vectors on the unique minimal face F =  

{(x~, x2, y~)l(x~ + y~ = ½, x2 + y~ = l } o f  P. We must  have w l ~> 0 and w2 ~> 0 (since (4) 
is finite), so there exists a number  q such that ½w~ + w2- (w~ + w2)q = 0. Now (½- q, 

1 - q, q) is a vector on F with WlX~ + w2x2 integer. Thus ~ is equal to (4). Since this 
is true for any choice o f  w~, w2, and Vl, it follows that P"  = P. 

It is easy to see that the split closure cannot  get ' s tuck'  in the sense of  the above 

example. Indeed,  if P # P~(x) then there exists a minimal face F of  P that contains 

no x-integral vectors. As F is a rational affine subspace o f  R"+" ,  the projection o f  

F onto the x variables is a rational affine subspace o f  N m that contains no integral 

vectors. So the ' integer Farkas lemma'  [24, Corol lary  4.1a] implies that there exists 
an integral vector c c N m and a rational (nonintegral)  number  y such that 

N o w  

c x = y  for all ( y )  ~ F. 

Fc_ { ( x )  ~ ' + ' l  tyJ < c x <  [yJ + l } .  
Y 

Thus,  letting wx + vy <~ q be a valid inequality for  P with 

for  a small enough e > 0 the inequality wx + vy ~ q - e is a split cut for  P. So, letting 
13 denote the split closure o f  P, we have F c~/3 = 0, which implies /3 ¢ P. 
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The problem that arises with split closures is that although /3 ¢ P, the difference 
between these two polyhedra may become arbitrarily small after the split closure 
operation has been repeated a number of times, as in the following: 

Example 2. Let P c_ ~2+1 be the convex hull of the four vectors 

(0,0,0) ,  (2,0,0) ,  (0,2,0),  (½,1, e) 

for some rational 0 <  e < 1, where the first two variables, xl and x2, are required to 
be integers and the third variable, y~, may be noninteger. Clearly, P~(x) is simply 
the convex hull of (0, 0, 0), (2, 0, 0) and (0, 2, 0). Now for any integers c~, c2, and 
k, there exists a rational e( ...... k)> 0 such that (½,½, e( ....... k)) is contained in the 
convex hull of the two polytopes 

and 

{(xl, x2 , Yl) e P ] ClXl + c2x2 <~ k} 

{(x~, x=, Yl) c P lClX 1 + c2x 2 ~ k + 1}. 

(As suggested by the referee, one way to see this is by noting that if 0 < A~ <~ 1 is 
chosen such that either l A l ( C l + C 2 ) ~ k  o r  ½ A l ( c l + c 2 ) ~ k q - 1  and A==A3 ¼ 1 = - - ~ A I ,  

then the convex combination ~ Al(~, ~, e) -b A2(2, 0, 0) + A3(2, 0, 0)-t- (l --)tl -- A2-- A3) x 
(0, 0, 0) gives a point of the desired form.) 

Thus, since the split closure, /3, of P is a polyhedron, it follows that there exists 
an el > 0 such that (212,1 1 /~1) C /3 # P~(x) and contains a polytope of the same form as 
P. So repeating the argument, for any k the polytope obtained from P by taking 
the split closure k times contains the vector (½,½, ek) for some ek > 0. Therefore, we 
cannot obtain P~(x) after a finite number of split closures. 

An immediate way to deal with this problem is to treat the continuous variables 
y in a discrete fashion by examining the numbers that appear in the inequalities 
A x +  B y ~  b. Indeed, if P is rational then we may assume that A, B and b are 
integral. Thus, for any vector 

such that 

max{wx + vy l A x  + By <~ b, x integral} (5) 

exists, there is an optimal solution 
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such that (det/~)y* is integral for some submatrix /3 of B. (This follows from 
Cramer's rule and the fact that if 

is an optimal solution to (5) then so is 

(;,) 
for any optimal solution y* of max{vy: By <~ b + A~}.) So if we replace each variable 
Yi by Myi where M is an upper bound on the product of the subdeterminants of 
B, then we may treat all variables as integers and consider Chvfital cuts on this 
transformed problem. Interpreting this directly on P gives that if 

(:) 
is integral and wx + vy <~ 6 is valid for P, then 

wx +vy<~ [ M 6 J / M  (6) 

is satisfied by all x-integral vectors in P. The trouble with this is that the size of M 
(in binary notation) may be exponential in the size of A x  + By <~ b. Thus it may be 
impossible to verify that (6) is valid for all x-integral solutions in polynomial time, 
which is counter to the idea behind cutting-plane proofs. 

As suggested by I~va Tardos (private communication), the difficulty with (6) can 
be overcome by employing a more sophisticated type of rounding. For an integral 
r x n matrix B, let AB denote the number n !~n where /3 is the maximum of the 
absolute values of the entries of  B. As AB is trivially an upper bound on the largest 
subdeterminant of B, it follows that if (5) exists then the maximum is achieved by 
a vector 

such that sy* is integral for some integer 1 ~< s ~ AB. Thus, if w and v are integral 
and wx + vy <~ 6 is valid for P then 

wx + vy <~ [SJa B (7) 

is satisfied by all x-integral vectors in P, where [8]aB is the greatest rational number 
p / q  <~ 8 such that 1 ~< q ~< AB. The point of this type of rounding is that [6]~, can 
be calculated easily (in polynomial time) using continued fractions (see [17, Chapter 
3; 20, Section 1.1; 24, Section 6.1]). Let ROUND(P,  AB) denote the set of vectors 
which satisfy every inequality of the type given in (7). Example 1 given above again 
shows that it may happen that P ~ P~x) but ROUND(P,  AB) = P. However, suppose 
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we combine split closures and rounding by letting SPLIT(P, AB) = ROUND(/3, AR) 
where fi is the split closure of P with respect to the integer variables x. Then letting 

SPLIT°(p, A~) = p 

and 

SPLIT~(P, a s )  = SPLIT(SPLIT'-~(P, AB), a . )  

we have: 

Theorem 4. Let 

for some integral A, B and b. Then, with respect to the set x o f  integer variables: 
(i) SPLIT(P, A~) is again a polyhedron. 

(ii) SPLITk(p, AB) = P.x~ for some integer k. 

The proof  of this theorem is also given in the next section. 
This result gives a finite cutting-plane proof  system for mixed integer programming 

problems. Of course, when looking for such proofs one would hope that the rounding 
cuts would not be required, as is the case in the combinatorial examples presented 
in Section 4. 

Remarks. (i) Although there is no finite bound on the number of split closures 
needed to obtain P,x> in general, it is easy to see that if the integer variables are 
bounded between 0 and 1 then m closures will suffice. 

(ii) A different recursive procedure for proving the validity of mixed integer 
cutting planes was developed by Nemhauser and Wolsey [23]. The cuts used in 
their proofs are a special type of split cut, as shown to us by Chvfital (private 
communication). 

(iii) For another approach to the problem of generalizing Chvfital's methods to 
mixed integer programming, we refer the reader to the papers of Blair and Jeroslow 
[5, 6], where the theory is treated in terms of 'Chvfital functions'. 

3. Proofs of Theorems 3 and 4 

Throughout  this section, we let 

where A is an integral r x (m + n) matrix and b is an integral vector, and consider 
the split cuts with respect to the integer variables x. (To shorten the notation, we 
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have combined the matrices A and B and the vectors v and w of the previous 
sections into a single matrix and vector.) 

Proof of Theorem 3. Define for each c c ~ " ,  

P~ = convex hull { ( ; )  ~ P l cx integer} • 

Since pc is a polyhedron and 

~ = N p  c. 
c c Z  n 

the following claim immediately implies the theorem. 
Claim. There exists a finite subset Up of Zm such that 

/S= N pc. 
c ~ p  

Proof of claim. The proof  is by induction on the dimension of P, the case when 
this is zero being trivial. We may assume that P'#  0 for all c ~ ~ m since otherwise 

the claim is trivial. This implies that 

char. cone (P ' )  = char. cone(P)  (8) 

(char. cone(K)  denotes the characteristic cone of K)  for each c c Z  r~ (see [24, 
Theorem 16.1]). This also implies that the affine hull of  P must contain x-integral 
vectors, since otherwise, by the 'integer Farkas lemma'  (see [24, Corollary 4.1a]), 

there would exist a hyperplane 

with c ~ Z '~ and 6 nonintegral, which contains P and hence p c =  0. Using this, we 

may assume that P is of  full dimension, by taking an appropriate affine transforma- 
tion of R "÷" if necessary (see [24, p. 341]). 

By induction, for each facet F of  P there exists a finite subset c~F of zm so that 

c e  ~ 

where F c denotes convex hull 

Let 

~= U %. 
F face t  o f  P 

So c¢ is finite. Let Q be the polyhedron 

Q = N u .  
c~cg  
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We use later that for each facet F of P, 

Fc~Q=Fc~ ~ pc= ~-~ (Fc~PC)=( -~  FC_c (-~ FC=/3. 
c ~  c~C~ c~CC c~q~ F 

I f  Q = 0  we can take qCp = % So we may assume Q # O. Let 

~ { ~ l  ~is.m,n,malface°r°;~,ac~t°of~} 

and 

165 

(9) 

K={wcNm÷nl[,wll=l; 

max{w(Xll(y)~ ',Y" Q} is finite and attained at some g ~ ~}. 

So K is compact.  Let h : K -~ R be defined by 

W X X h(w)=max{W(y)J(y)~P}-max{ (y) (y)CQ}. 

(This is well defined, since if w c K then 

m a x { W ( y )  ( ; ) c P }  

if finite, since by (8), char. cone(P)  = char. cone(Q).)  The function h is continuous, 
as it is the difference of two piece-wise linear functions. Moreover, h(w)> 0 for all 
w in K. Indeed, suppose to the contrary that 

W X X max{ (y)(y)~Q}=max{W(y)l(y)~P}=~ 
for some w c K and some/z .  As w c K, 

W X X max{  ( y ) ( y ) C Q }  

is attained at some g c ~q. Then 

and hence g would be contained in some facet of  P, a contradiction. 
It follows that there exists an e > 0 so that h(w)~ e for all w c K. Obviously, 

there exists a O > 0 (depending on e and P only) so that for each minimal face f 
of  P the set 
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contains a ball of radius p. Now for each w c K, there exists a minimal face f of P 
so that 

max{we)l(;) 
is attained at f, and therefore 

{(y)~P W(y)~max(w(~]l(~]~Q}},~,, ,,~/ 

= { ( ; ) e P  W ( y ) ~ > m a x { W ( y ) ( ; ) ~ P } - h ( w ) }  

_ D { ( ; ) e p  w ( ; ) ~ > m a x { w ( ; )  (y )  C P } - e }  

(as Ilwll = 1). Therefore: 

Foreach wc K, the set 0}} 
contains a ball of radius p. (10) 

We finally show that this implies that for each c c ~ _ "  with Ilcl[ > 1 /p  one has 

Q c _ P  c. (11) 

This implies that we may take 

(-] p c =  Q ~ (-] p c =  (--] p ~ =  ~. 
CE ~ p  C C ~  tn C E ~  m 

I]cll<~l/p 

In order to prove (11), observe that it suffices to show that 

max{W(y) l ( ; ) ~  o}~<max{(y)  l ( ; ) ~ P c }  

for each w e n  "+" with I]w[[ = 1 and 

m a x { w ( : )  I ( ;  ) ~O} 

finite (since by (9), char. cone(Q) = char. cone(PC)). 

since 
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We consider two cases: 
Case 1. 

is attained at a minimal face g of Q with g ~ ~. So g c_ F for some facet F of P. 
Then by (9): 

m a x { w ( ; ) l ( ; ) c Q } = m a x { w ( ; )  ( ; ) c F n Q }  

~ m a x { w ( ; ) ( ; )  e pc}. 

Case 2. 

max{w( )l(x)  O} 
is attained at a minimal face g of Q with g c (g. Then w c K. Hence by (10), 

B__c_ { ( ; ) c P I w ( ; ) > ~ m a x { W ( y ) l ( y ) C Q } }  (12) 

for some ball B of radius p. As ]lcll > 1/o, 

(since, for any t, the distance between the hyperplanes defined by 

is 1/llc[[ ). 
Hence B n pc # O. Choose 

So by (12), 

0), 
implying 

m a x { w ( ; ) l ( ; ) ~ Q } < ~ w ( ; )  < ~ m a x { w ( ; ) l ( ; ) ~ P C } .  [] 



168 W. Cook et aL / Chv6tal closures 

TO prove Theorem 4, we need the following lemma, which will be used in an 
inductive argument. 

Lemma 5. I f  F is a face o f  P, then for  any A > 0 we have 

SPLIT(F, A) = F n  SPLIT(P, A). 

Proof. For each c ~ Y '~ we have F c = F n p c  Therefore /3 = F n t6. So i f /3  = ~ the 
result follows. Suppose this is not the case. Then t3 is a face of the polyhedron /3. 
So there is a linear system 

such that 

and 

where M °, M 1, d °, and d I are all integral. Let 

be a valid inequality for /3 with w E y,~+n. For a large enough positive integer T, 
adding T times each inequality in 

' , y /  

to 

we obtain an inequality 

that is valid for /3. (This follows from Farkas' lemma.) Furthermore, since ~ =-6 
(rood 1), we have 

{ ( ~ )  ~ w ( ~ ) ~ [ ~ ] ~ } - - { ( ~ )  ~ F I ~ ( ~ t - ~ } "  
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It follows that 

ROUND = F c~ ROUND(P) ,  

which proves the lemma. [] 

Proof of Theorem 4. (i) By Theorem 3, it suffices to show that ROUND(P,  A) is a 
polyhedron for any A > 0. Now since A and b are integral, Farkas' lemma implies 
that ROUND(P,  Zi) is defined by the set of all inequalities of the form 

where to c 7/'+n and 

to=zA and 6 = z b  

for s o m e z = ( z l , . . . , Z r )  CN rwithO<~zi<l for each i = l  . . . .  , r  ( i f z i ~ l  for some 
i, then we could replace zi by zi - 1). As there are only finitely many such inequalities, 
the result follows. 

(ii) The proof  is again by induction on the dimension of P, the case when this 
is 0 being trivial. If the affine hull of P does not contain x-integral vectors, then, 
as in the proof  of Theorem 3, we have/3 = 0. So we may assume this is not the case. 

Suppose P~(x~ ¢ 0. There exists a linear system 

such that D is integral and 

x D x 

since P~(~ is a polyhedron. Let 

be an inequality in this system. Then it suffices to show that 

SPLITk(p, AB) ~ { ( ; )  I d ( y )  ~< a ) 

for some k, where B = [ A m + l ,  • • . ,  A m + n ] ,  the last n columns of A. Letting 

we have 

x d x 
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I f  [~]aB ~< a then we are done,  so suppose this is not  the case. Let 

x d x 

I f  F = O, then 

{(;) (¼) } 
since the difference between any two distinct rationals Pl/ql, P2/q2, with 1 ~ q~, q2 ~< 
As, is at least (1 /As)  2. I f  F ¢ 0, then it is a p roper  face o f  SPLIT(P,  As) and Fi~x~ -- 0. 

By induct ion we have 

SPLIT/(F,  As)  = 0 

for  some integer /. Thus,  by applying Lemma 5 1 times, we have 

F n SPLITt+~(P, As) = 0. 

So 

Thus,  repeating this p rocedure  at most  

times we obtain the result. 

Suppose P~x)= 0. As the affine hull o f  P contains x-integral vectors, we know P 

is not  an affine subspace.  Furthermore,  the dimension of  the characteristic cone o f  

P is less than the d imension  of  P (since P~x) = 0 and the affine hull o f  P contains 
x-integral vectors.) So 

for some nonzero  d 6 7/m+" and integers eel, 42, where for any number  t we have 

Thus, proceeding as above (letting 

etc.), we have SPLITk(P,  AB) = 0 for some integer k. []  
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4. Examples 

4.1. In teger  programs  with circular ones 

Split cuts occur in a natural way in the work of Bartholdi, Orlin and Ratliff [4] on 
cyclic scheduling problems, as pointed out to us by Jim Orlin (private communica- 
tion). The problems they consider are of  the form 

m i n { w x l A x  >1 b, x >~ O, x integer} 

where w and b are nonnegative integral vectors and A is a 0-1 matrix with the 
circular l ' s  property, that is, in each row of A the l ' s  occur consecutively, where 

the first and last components  are defined to be consecutive. Their work shows that 
if  P = { x [ A x  <~ b, x >~ O, x integer} then we have: 

The split closure of  P is identical to P~. (13) 

Indeed, if wx>1 t is valid for P then it may be obtained by letting c- -1-= 
(1, 1 , . . . ,  1). To see this, let x* be an optimal solution to m i n { w x [ A x  <~ b, x >~ 0} and 
let k = [wx*]. Consider the two linear programs 

m i n { w x [ A x  ~ b, I x  <~ k, x >~ 0} (14) 

and 

m i n { w x l A x  >i b, l x  >~ k +  1, x >~ 0}. (15) 

By the choice of  k, if (14) is feasible then it has an optimal solution 9~ with 12 = k 
(by taking a convex combination of  x* and any optimal solution to (14)). Thus we 
may subtract l x  = k from some of the inequalities in A x  >~ b without changing the 
value of (14). We may do this is such a way that we obtain a linear program 

m i n { w x l A x  >~ 6, I x  = k, x~>0} (16) 

with A a {0, 1, -1} matrix where each row is either 0, 1 or 0, - 1  and the nonzeros 
occur consecutively, where the first and last components  are not considered to be 
consecutive. Such a matrix A (together with the row 1 = (1, 1 , . . . ,  1)) is well known 
to be totally unimodular.  So (16), and hence (14), has an integral optimal solution. 
Applying the same argument,  we have that (15) also has an integral optimal solution. 

It follows that t is at most the minimum of  (14), if  it is feasible, and (15). Thus 
w x  >~ t is a split cut for P. 

4.2. F ixed  charge prob lems  

Sets of  the form 

arise in a number  of models in operations research. The integer variable xi represent 
the decision to make Yi positive, and are used to incorporate fixed costs into the 
objective function. Padberg, van Roy and Wolsey [22] introduced a class of valid 
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inequalities for Q, as a step towards developing an efficient cutting-plane, optimiz- 
ation algorithm. This class of inequalities is defined as follows: A set S c {1 . . . .  , n} 
is a cover if 

A -~ Y. mi-do>O. 
i~S 

For a cover S and a set L _ { 1 , . . . ,  n}\S let 

rh = max mi, 
i t S  

r~i =max(r~, mi) foral l  icL.  

If rh i> A, the (S, L) flow cover inequality 

y yi+ }~ ( m , - A ) + ( 1 - x , )  - ~ (l~i-~)Xl~do (17) 
i E S w L  i~S i~L 

is valid for Q, where (rag-A)+ =max{0, rag-A}. 
This can be proven with split cuts by letting 

{(:) ) p= cN "+n ~ yi<~do,O<~yi<~mixi, O < ~ x ~ l , i = l , . . . , n  

and noting that: 

The (S, L) inequality (17) is a split cut for P. (18) 

Proof of (18). Let S =  {i c SIm~ > A }. We will chop P with the inequalities ~ s , ~ r  Xi/> 
]5[ and Y~g~L X~ ~< 151- 1. In the first case, write ~i~e~L xi ~ 151 as 

Z ( l - x , ) - Z  xi ~<0. (19) 
iGS i~L 

Multiplying (19) by ( r ~ - A )  and taking its sum with 

~ yi~do, 
i 1 

-y~<~O fora l l i~SuL ,  

we obtain 

Z Yi + Z (ff/-A)(1-Xi)- Z ( f f t - A ) x i ~ d o  (20) 
i E S u L  i~S  i~L 

as a valid inequality for 

Now since ( m j - A ) + = 0  for all i c S \ S  and ( r ~ - A ) ~ ( r ~ - A )  for all icL,  (20) 
implies the inequality (17). 
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In the second case, write ~i~g~L Xi ~ IS[- 1 as 

- E ( l - x , ) +  E xi <~ - 1 .  (21) 
iES i~L 

Multiplying (21) by h and taking its sum with 

( m i - r ~ s ) x i ~ O  f o r a l l i c L ,  

ys - mixi <~ 0 for all i c S w L, 

E mix,+ E m,(1-x,)~< E m,, 
iES i~S i~S 

0 = d o + A -  ~ mi, 
i~S 

we obtain 

yg+ ~ ( m s - h ) ( 1 - x i ) -  ~ ( r ~ - h ) x ~ d o  (22) 
i~S~L i~S i~L 

as a valid inequality for 

P ( ' ~ I ( X ~  ~ X i ~ I S ] - - I  } • 
( \ y /  ]iESwL 

NOW since ( m i - A ) + = 0  for all i ~ S \ S ,  (22) is identical to the (S, L) inequality 
(17). [] 

4.3. Plant location and lot-sizing problems 

A number of results on valid inequalities for mixed integer programming formula- 
tions of plant location problems and economic lot-sizing problems have been 
obtained by B~trfiny, van Roy and Wolsey [3], Cho, Johnson, Padberg and Rao [7], 
Leung and Magnanti [19] and others. We do not discuss these inequalities in detail, 
but mention that (a) the validity of the 'residual capacity inequalities' for the 
capacitated plant location problem described in [19] can be established by showing 
they are split cuts for the linear programming relaxation (in fact, this is the way 
they are shown to be valid in [19]); (b) the validity of the '(S, L) inequalities' for 
the uncapacitated economic lot-sizing problem treated in [3] can be proven using 
at most m split cuts, where m is the number of integer variables (this is easy, the 
main point of [3] is that these inequalities completely describe the corresponding 
mixed integer hull); (c) the inequalities for the uncapacitated plant location problem 
given in (7) do not appear to have short split cut proofs, but this is not surprising 
since a polynomial length split cut proof for these inequalities would imply that 
NP = co-NP, as it would give a good characterization for the set cover problem. 
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