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Abstract We close three open problems on the separation complexity of valid
inequalities for the knapsack polytope. Specifically, we establish that the sep-
aration problems for extended cover inequalities, (1, k)-configuration inequal-
ities, and weight inequalities are all NP-complete. We also show that, when
the number of constraints of the LP relaxation is constant and its optimal
solution is an extreme point, then the separation problems of both extended
cover inequalities and weight inequalities can be solved in polynomial time.
Moreover, we provide a natural generalization of (1, k)-configuration inequal-
ity which is easier to separate and contains the original (1, k)-configuration
inequality as a strict sub-family.

Keywords Knapsack polytope · Separation problem · Complexity theory

1 Introduction

The multi-dimensional knapsack problem is the integer programming (IP)
problem

max{cTx : Ax ≤ d, x ∈ {0, 1}n}, (1)

where A ∈ Zm×n
+ , c ∈ Zn

+, and d ∈ Zm
+ . When the constraint matrix A only has

one row a and the right-hand side vector is a positive integer b, problem (1) is
referred to as knapsack problem, and the convex hull of the associated feasible
region, conv({x ∈ {0, 1}n : aTx ≤ b}), is referred to as the knapsack polytope.

The multi-dimensional knapsack problem is a fundamental problem in dis-
crete optimization, and valid inequalities for the feasible region have been
widely studied, see, e.g., [14,19,4] and the modern survey [11]. In this paper,
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2 A. Del Pia et al.

we study the complexity of the separation problem for well-known families of
valid inequalities for (1).

A standard and computationally useful way for generating cuts for (1) is to
construct cuts for the knapsack polytope defined by its individual constraints.
Suppose a is a row of the constraint matrix A, and let b be the correspond-
ing coordinate of the right-hand side d. We denote the associated knapsack
polytope by K := conv({x ∈ {0, 1}n : aTx ≤ b}).

Many families of valid inequalities for K are based on the notion of a cover,
which is a subset C of {1, 2, . . . , n} such that

∑

i∈C ai > b. Given a cover C,
the inequality

∑

i∈C

xi ≤ |C| − 1

is valid forK, and is called a cover inequality (CI). Cover inequalities can often
be strengthened through a process called lifting, and the resulting inequalities
are called lifted cover inequalities (LCIs) [3,8,16,22,17]. Balas [2] gave one
family of LCIs known as extended cover inequality (ECI), which have the form

∑

j /∈C:aj≥maxi∈C ai

xj +
∑

i∈C

xi ≤ |C| − 1.

A minimal cover is a cover C such that
∑

i∈C\{j} ai ≤ b for any j ∈ C. A

set N ∪ {t} with N ( {1, . . . , n} and t /∈ N is called a (1, k)-configuration
for k ∈ {2, . . . , |N |} if

∑

i∈N ai ≤ b and Q ∪ {t} is a minimal cover for every
Q ⊆ N with |Q| = k. Padberg [18] showed that for any (1, k)-configuration
N ∪ {t}, the inequality

(|S| − k + 1)xt +
∑

i∈S

xi ≤ |S|

is valid for K for every S ⊆ N with |S| ≥ k. This inequality is called a
(1, k)-configuration inequality.

Other valid inequalities for the knapsack polytope K arise from the con-
cept of a pack. For the knapsack polytope K, a set P ⊆ {1, . . . , n} is a
pack if

∑

i∈P ai ≤ b. Given a pack P , the corresponding pack inequality
∑

i∈P aixi ≤
∑

i∈P ai is trivially valid for K, as it is implied by the upper
bound constraints xi ≤ 1. However, pack inequalities can be lifted in several
different ways to obtain more interesting lifted pack inequalities (LPIs) [1].
Weismantel [21] derived the weight-inequalities, which are LPIs. To define the
weight inequalities, let r(P ) := b −

∑

i∈P ai be the residual capacity of the
pack P . The indices j /∈ P with aj > r(P ) are lifted to obtain the weight
inequality (WI):

∑

i∈P

aixi +
∑

j /∈P

max{aj − r(P ), 0}xj ≤
∑

i∈P

ai.

Consider the linear programming (LP) relaxation of (1):

max{cTx : Ax ≤ d, x ∈ [0, 1]n}. (2)
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For a given family F of valid inequalities for (1), the associated separation
problem is defined as follows: “Let x∗ be a feasible solution to (2), does there
exist an inequality in F that is violated by x∗? If so, return one such inequal-
ity from F .” In this paper, we are mainly interested in the weaker decision
version of the separation problem where we do not have to return a separating
inequality, even if it does exist, and we assume that x∗ is an optimal solu-
tion to (2). In fact, the separation of an optimal solution is not harder than
the separation of a general feasible solution, and from a computational point
of view, x∗ almost always corresponds to an optimal solution to some linear
relaxation.

The separation problem for several families of valid inequalities for the
knapsack polytope has been shown to be NP-complete, including CIs [15],
and LCIs [9]. On the other hand, the complexity of the separation problem
for extended cover inequalities, (1, k)-configuration inequalities, and weight
inequalities are, to the best of our knowledge, unknown. Kaparis and Letch-
ford stated that the separation problem seems likely to be NP-hard for ECIs
in [12]. It was conjectured explicitly in [6] that the separation problem for
(1, k)-configuration inequalities is NP-hard. Moreover, the complexity of the
separation problem for WIs is also open, as mentioned in [11]. In this paper,
we provide positive answers to all these conjectures. Namely, we show that the
separation problems for ECIs, for (1, k)-configuration inequalities, and for WIs
are all NP-complete. The first two results are proven via a reduction from the
separation problem for CIs, and the separation complexity for WIs is given
via a reduction from the Subset Sum Problem (SSP).

Along with these NP-hardness results, we also present some positive re-
sults for the separation problems of those cutting-planes. Specifically, we show
that when the number of constraints of the LP relaxation (2) is constant, and
the optimal solution x∗ is an extreme point, then the separation problems
for ECIs, (1, k)-configuration inequalities, and WIs, are all polynomial-time
solvable. See Corollary 1, Corollary 2, and Corollary 4.

We remark that several heuristics and exact separation algorithms are
present in the literature for these families of cuts. Both Gabrel and Minoux [7]
and Kaparis and Letchford [12] provide an exact separation algorithm for
ECIs that runs in pseudo-polynomial time. Ferreira et al. [6] presented simple
heuristics for the separation problem of (1, k)-configuration inequalities. For
the separation problem for WIs, Weismantel [21] proposed an exact algorithm
that runs in pseudo-polynomial time. Helmberg and Weismantel [10] presented
a fast separation heuristic for WIs that simply inserts items into the pack P
in non-increasing order of x∗ value. Kaparis and Letchford [12] gave two exact
algorithms and a heuristic for separating WIs and show how to convert these
methods into heuristics for separating LPIs.

Next, we formally define the separation problems considered in this paper.

Problem CI-SP
Input: (A, d, c) ∈ (Zm×n

+ ,Zm
+ ,Zn

+) and an optimal solution x∗ to the LP re-
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laxation (2).
Question: Is there a cover C with respect to some row constraint aTx ≤ b of
(2), such that

∑

i∈C x∗
i > |C| − 1?

Problem ECI-SP
Input: (A, d, c) ∈ (Zm×n

+ ,Zm
+ ,Zn

+) and an optimal solution x∗ to the LP re-
laxation (2).
Question: Is there a cover C with respect to some row constraint aTx ≤ b
of (2), such that

∑

j /∈C:aj≥maxi∈C ai
xj +

∑

i∈C xi > |C| − 1?

Problem CONFIG-SP
Input: (A, d, c) ∈ (Zm×n

+ ,Zm
+ ,Zn

+) and an optimal solution x∗ to the LP re-
laxation (2).
Question: Is there a (1, k)-configuration N ∪ {t} and a subset S ⊆ N
with |S| ≥ k with respect to some row constraint aTx ≤ b of (2), such that
(|S| − k + 1)x∗

t +
∑

i∈S x∗
i > |S|?

Problem WI-SP
Input: (A, d, c) ∈ (Zm×n

+ ,Zm
+ ,Zn

+) and an optimal solution x∗ to the LP re-
laxation (2).
Question: Is there a pack P with respect to some row constraint aTx ≤ b of
(2), such that

∑

i∈P aix
∗
i +

∑

j /∈P max{aj − r(P ), 0}x∗
j >

∑

i∈P ai?

For CI-SP, we have the following classic results.

Theorem 1 ([15]) CI-SP is NP-complete, even if m = 1, or if x∗ is an
extreme point.

We will show that the other three problems, ECI-SP, CONFIG-SP, and WI-SP
are all NP-complete.

Clearly, the NP-hardness of the above problems imply the NP-hardness of
the more general separation problem where x∗ is a feasible, and not necessarily
optimal, solution to (2). We should also remark that, since verifying if a given
point violates a given inequality can be obviously done in polynomial time with
respect to the input size of such point and inequality, the separation problems
for these families of cuts are clearly in the class NP . Therefore, when we
discuss the separation complexity for those families of cuts, the concepts of
NP-hardness and NP-completeness coincide.

This paper differs from the preliminary IPCO version [5] in the following
aspects. Firstly, we solve the conjecture presented in Section 3 of [5]. Secondly,
we propose a new family of cutting-planes for the knapsack polytope, which
can be seen as a natural extension of the (1, k)-configuration inequalities. For
this new family of inequalities, we obtain similar separation hardness result
and polynomially-solvable cases.

Notation. For an integer n, we set [n] := {1, 2, . . . , n}. We define en as the
n-dimensional vector of ones, where we often repress the n if the dimension of
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the vector is clear from the context. For a vector x ∈ Rn and S ⊆ [n], we set
x(S) :=

∑

i∈S xi. So for a vector a ∈ Rn, a([n]) = aTe =
∑n

i=1 ai. For a set

S ⊆ [n] and k ≤ |S|, we denote S[k] to be the set of the k largest elements in
S, and S[k] to be the set of the k smallest elements in S. Here, when k = 0,
the above two sets are defined as the empty set.

2 Extended Cover Inequalities

In this section, we establish the complexity of the separation problem for ex-
tended cover inequalities, with a simple reduction from the separation problem
for cover inequalities. In the case where the point to be separated has a small
number of fractional components, then extended cover inequality separation
can be accomplished in polynomial time.

Theorem 2 Problem ECI-SP is NP-complete, even if m = 1, or if x∗ is an
extreme point solution to the LP relaxation (2).

Proof We transform CI-SP to ECI-SP. Let (A, d, c, x∗) ∈ (Zm×n
+ ,Zm

+ ,Zn
+, [0, 1]

n)
be the input to CI-SP. We construct the input to ECI-SP with the property
that there is a yes-certificate to CI-SP with input (A, d, c, x∗) if and only if

there is a yes-certificate to ECI-SP with input (A′, d′, c′, y∗) ∈ (Z
m×(n+1)
+ ,Zm

+ ,Zn+1
+ , [0, 1]n+1).

The data for the ECI-SP instance are constructed as follows:

A′
ij = Aij ∀i ∈ [m], ∀j ∈ [n], A′

i,n+1 =
n
∑

j=1

Aij ∀i ∈ [m],

c′j = cj ∀j ∈ [n], c′n+1 = M,

d′i = di +

n
∑

j=1

Aij ∀i ∈ [m].

The constant M is chosen to be large enough so that if x∗ is an optimal
solution to the linear program (2), then y∗ = (x∗, 1) is an optimal solution to
the linear program

max{(c′)Ty : A′y ≤ d′, y ∈ [0, 1]n+1}. (3)

It is a consequence of linear programming duality that selectingM ≥ (π∗)TAe,
where π∗ are optimal dual multipliers for the inequality constraints in (2), will
ensure the optimality of y∗. Since there is an optimal solution π∗ whose en-
coding length is of polynomial size [20], the encoding size of M is a polynomial
function of the input size of CI-SP.

Let C ⊆ [n] be a cover with respect to a row constraint aTx ≤ b of Ax ≤ d
such that the associated CI does not hold at x∗, so x∗(C) > |C| − 1. Then
C′ := C∪{n+1} is a cover with respect to the constraint (aT, aTe)·y ≤ b+aTe
within A′y ≤ d′, and the associated ECI cuts off y∗, since y∗(C′) = 1+x∗(C) >
|C| = |C′| − 1.
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On the other hand, assume that C′ is a cover with respect to some row
constraint a′Ty = (aT, aTe) · y ≤ b + aTe = b′ within A′y ≤ d′ such that
the associated ECI cuts off y∗. Note that if n + 1 /∈ C′, then

∑

j∈C′ a′j ≤

a′([n]) = aTe < b + aTe, and C′ cannot be a cover with respect to that row
constraint. Thus, n + 1 ∈ C′, and the ECI of C′ is just its cover inequality
y(C′) ≤ |C′| − 1. By construction, the set C := C′ \ {n + 1} is a cover with
respect to the constraint aTx ≤ b within Ax ≤ d. The ECI of C′ cuts off y∗,
y∗(C′) = 1 + x∗(C) > |C′| − 1 = |C|, so x∗(C) > |C| − 1, and the CI from C
cuts off x∗.

We have shown that there is a yes-certificate to CI-SP with input (A, d, c, x∗)
if and only if there is a yes-certificate to ECI-SP with input (A′, d′, c′, y∗). To-
gether with Theorem 1, this establishes that ECI-SP is NP-complete, even
if m = 1, or if x∗ is an extreme point to the LP relaxation (2). To conclude
the proof, it suffices to realize that the input y∗ = (x∗, 1) for ECI-SP will be
an extreme point of {y ∈ [0, 1]n+1 : A′y ≤ d′} if x∗ is an extreme point of
{x ∈ [0, 1]n : Ax ≤ d}. ⊓⊔

In the next theorem, we show that, if the fractional support of the input
vector x∗ is “sparse”, then we can separate ECIs in polynomial time. Here,
the fractional support of x∗ denotes the set of index i with x∗

i ∈ (0, 1).

Theorem 3 Let x∗ be the input solution to ECI-SP. If |{i ∈ [n] : x∗
i ∈

(0, 1)}| ≤ α, then a separating ECI can be obtained in O(n2 · 2α · logn · m)
time, if one exists.

Proof For a given point x∗ and constraint aTx ≤ b of Ax ≤ d, there exists a
separating ECI from the constraint if and only if for some t ∈ [n], there exists
a cover C with maxi∈C ai = at, such that

∑

i∈[n]:ai≥at

x∗
i +

∑

i∈C:ai<at

x∗
i > |C| − 1. (4)

We partition C into four sets, C = T1 ∪ Tf ∪ T0 ∪ T , with T1 = {i ∈ C : ai <
at, x

∗
i = 1}, Tf = {i ∈ C : ai < at, x

∗
i ∈ (0, 1)}, T0 = {i ∈ C : ai < at, x

∗
i = 0},

and T = {i ∈ C : ai = at}. With this definition, (4) can be equivalently stated
as

∑

i∈[n]:ai≥at

x∗
i >

∑

i∈Tf

(1− x∗
i ) + |T0|+ |T | − 1. (5)

The algorithm loops over all t ∈ [n] and enumerates all Tf ⊆ {i ∈ [n] : ai <
at, x

∗
i ∈ (0, 1)}. By our assumption on the cardinality of fractional support of

x∗, there are O(n·2α) iterations. For a fixed t ∈ [n] and Tf ⊆ C, the separation
problem then amounts to completing the cover C so that

|T0|+ |T | <
∑

i∈[n]:ai≥at

x∗
i −

∑

i∈Tf

(1− x∗
i ) + 1. (6)
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The right-hand side of (6) is a constant, so separation for a fixed index t and
subset Tf amounts to solving the knapsack problem

min
z∈{0,1}|St|

{

∑

i∈St

zi :
∑

i∈St

aizi ≥ bt,Tf

}

, (7)

where St = {i ∈ [n] : ai = at or ai < at, x
∗
i = 0}, and bt,Tf

= b+1−
∑

i∈Tf
ai−

∑

i:ai<at,x∗
i
=1 ai. As the non-zero objective coefficients of the knapsack prob-

lem (7) are all the same, the problem can be solved by a simple greedy proce-
dure, after sorting {ai}i∈St

in O(n log n) time. Therefore, overall this algorithm
runs in O(n2 ·2α · logn) time, since there are O(n ·2α) iterations. The theorem
then follows by arguing for all m constraints. ⊓⊔

Theorem 3 immediately implies the following corollary.

Corollary 1 If m is polylogarithmic in n and x∗ is an extreme point solution
to (2), then a separating ECI can be obtained in polynomial time, if one exists.

Proof Since x∗ is an extreme point, we know that at most m components
of x∗ are fractional. Then Theorem 3 implies that ECI-SP can be solved in
O(n2 · 2m · logn ·m) time, which is polynomial in n since m is polylogarithmic
in n. ⊓⊔

3 (1, k)-Configuration Inequalities

In this section, we establish that the separation problem for (1, k)-configuration
inequalities is NP-complete using a reduction similar to the one in the proof
of Theorem 2.

Theorem 4 Problem CONFIG-SP is NP-complete, even if m = 1, or if x∗

is an extreme point solution to the LP relaxation (2).

Proof We transform CI-SP to CONFIG-SP. Given an input (A, d, c, x∗) to CI-
SP which is in (Zm×n

+ ,Zm
+ ,Zn

+, [0, 1]
n), we will construct a corresponding input

(A′, d′, c′, y∗) to CONFIG-SP such that there is a yes-certificate to CI-SP with
input (A, d, c, x∗) if and only if there is a yes-certificate to CONFIG-SP with
input (A′, d′, c′, y∗).

In the construction, the first n columns of A′ are the columns of A, while
the last two columns of A′ are the sum of all other columns; the right-hand
side vector in the construction is d′ = d+2Ae; and the first n components of c′

are the same as those of c, while the last two components are a large positive
constant:

A′
ij = Aij ∀i ∈ [m], ∀j ∈ [n], A′

ik =

n
∑

j=1

Aij ∀i ∈ [m], ∀k ∈ {n+ 1, n+ 2},

c′j = cj ∀j ∈ [n], c′n+1 = c′n+2 = M,

d′i = di + 2

n
∑

j=1

Aij ∀i ∈ [m].
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The constant M is chosen to be large enough so that if x∗ is an optimal
solution to the linear program (2), then y∗ = (x∗, 1, 1) is an optimal solution
to the linear program

max{(c′)Ty : A′y ≤ d′, y ∈ [0, 1]n+2}. (8)

It is a consequence of linear programming duality that selectingM ≥ (π∗)TAe,
where π∗ are optimal dual multipliers for the inequality constraints in (2), will
ensure the optimality of y∗. As it is know that there is an optimal solution π∗

whose encoding length is of polynomial size [20], we see that M exists and its
encoding size is a polynomial function of the input size of CI-SP.

Let C ⊆ [n] be a cover with respect to the row constraint aTx ≤ b of
Ax ≤ d such that the associated CI cuts off x∗ : x∗(C) > |C| − 1. Let C′ :=
C∪{n+1, n+2}. By definition of the input (A′, d′), C′ is a cover with respect
to the row constraint a′Ty = (aT, aTe, aTe)y ≤ b + 2aTe = b′ within A′y ≤ d′,
and the associated CI cuts off y∗ : y∗(C′) = 2 + x∗(C) > |C| + 1 = |C′| − 1.
As every cover inequality is dominated by a minimal cover inequality, there
is a a minimal cover contained in C′ whose associated minimal CI cuts off
y∗. Every minimal CI is a special case of (1, k)-configuration inequality, so we
have obtained a (1, k)-configuration inequality with respect to a row constraint
within A′y ≤ d′ that cuts off y∗.

To complete the proof, we must show that if N∪{t} is a (1, k)-configuration
with respect to some row constraint a′Ty ≤ b′ within A′y ≤ d′, and S ⊆ N
with |S| ≥ k, such that (|S|−k+1)y∗t +

∑

i∈S y∗i > |S|, then we can construct
a cover C with respect to the associated row constraint in Ax ≤ b such that
the associated CI cuts off x∗.

By construction of (A′, d′), we know that the row constraint a′Ty ≤ b′

takes the form (aT, aTe, aTe)y ≤ b + 2aTe, where aTx ≤ b is a row constraint
in Ax ≤ b. First, observe that in the constraint (aT, aTe, aTe)y ≤ b+2aTe, any
cover must contain both n+1 and n+2. By definition of a (1, k)-configuration,
for any subset Q ⊆ N with |Q| = k, Q ∪ {t} is a minimal cover. Specifically,
N ∪ {t} is a cover. This implies that {n+ 1, n+ 2} ⊆ N ∪ {t}, which means
N must contain n + 1 or n + 2. If k ≤ |N | − 1, then for any i′ ∈ N , the set
N∪{t}\{i′} will also be a cover. However, since N contains n+1 or n+2, then
when i′ = n+1 (or n+2), N∪{t}\{i′} will not be a cover. Therefore, |N | = k,
and the associated (1, k)-configuration inequality reduces to a minimal CI, so

y∗(N ∪ {t}) > |N |. (9)

Let C = N ∪{t}\{n+1, n+2}, so |C| = |N |−1. Since N ∪{t} is a cover with
respect to the constraint (aT, aTe, aTe)y ≤ b+2aTe, and n+1, n+2 ∈ N ∪{t},
we can infer that a(C) + 2aTe > b+ 2aTe, so C is a cover with respect to the
row constraint aTx ≤ b of Ax ≤ d. Furthermore, from (9) and the definition
of y∗ = (1, 1, x∗), we have x∗(C) > |N | − 2 = |C| − 1. Therefore, we end up
with a cover C whose associated CI cuts off x∗.

We have thereby shown that there is a yes-certificate to CI-SP with input
(A, d, c, x∗) if and only if there is a yes-certificate to CONFIG-SP with input
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(A′, d′, c′, y∗). Together with Theorem 1, our proof establishes that CONFIG-
SP is NP-complete, even if m = 1, or if x∗ is an extreme point to the LP
relaxation (2). To conclude the proof, it suffices to realize that the input y∗ =
(x∗, 1, 1) for CONFIG-SP will be an extreme point of {y ∈ [0, 1]n+2 : A′y ≤ d′}
if x∗ is an extreme point of {x ∈ [0, 1]n : Ax ≤ d}. ⊓⊔

We have settled the complexity of the separation problem for (1, k)-configuration
inequalities, for an input solution x∗ that is an extreme point to the LP-
relaxation (2). In our preliminary IPCO version [5], we conjectured the sepa-
ration problem to be NP-complete, even for points x∗ with a small number
of fractional components. However, we are able to refute this conjecture. We
show that, in this special case, the separation problem of (1, k)-configuration
inequalities is in fact polynomially solvable. The following easy lemma gives
an equivalent condition for a set N ∪ {t} to be a (1, k)-configuration.

Lemma 1 For knapsack constraint aTx ≤ b with a1 ≤ a2 ≤ . . . ≤ an, set
N ∪ {t} ⊆ [n] is a (1, k)-configuration with respect to the knapsack constraint
if and only if a(N) ≤ b, at + a(N [k−1]) ≤ b, and at + a(N[k]) > b.

Recall that, in the statement of Lemma 1, N [k−1] denotes the set of the
k−1 largest elements in N and N[k] denotes the set of the k smallest elements
in N .

Proof By definition of (1, k)-configuration, it suffices to check that, when
a(N) ≤ b, Q ∪ {t} is a minimal cover for every Q ⊆ N with |Q| = k if
and only if at + a(N [k−1]) ≤ b and at + a(N[k]) > b.

PickingQ = N[k],Q∪{t} being a cover implies that at+a(N[k]) > b. Picking

Q = N [k], Q ∪ {t} being a minimal cover implies that at + a(N [k−1]) ≤ b.
Next we want to show that, for any Q ⊆ N with |Q| = k, if a(N) ≤ b,
at + a(N [k−1]) ≤ b, and at + a(N[k]) > b, then Q ∪ {t} is a minimal cover. By
assumption a1 ≤ a2 ≤ . . . ≤ an, we know that a(Q) ≥ a(N[k]). So a(Q) + at ≥
a(N[k])+at > b implies that Q∪{t} is a cover. Now arbitrarily pick i′ ∈ Q∪{t}.

If i′ = t, then a(Q) ≤ a(N) ≤ b; If i′ ∈ Q, then a(Q \ {i′}) ≤ a(N [k−1]), which
gives a(Q \ {i′})+ at ≤ at + a(N [k−1]) ≤ b. Hence, Q∪ {t} is a minimal cover.

⊓⊔

Theorem 5 Let x∗ be the input solution to CONFIG-SP. If |{i ∈ [n] : x∗
i ∈

(0, 1)}| is bounded by a constant, then a separating (1, k)-configuration inequal-
ity can be obtained in polynomial time, if one exists.

Proof Throughout the proof, we assume that |{i ∈ [n] : x∗
i ∈ (0, 1)}| ≤ α, for

some constant α. Without loss of generality, we further assume that there does
not exist a separating cover inequality for x∗. Since if there exists a separating
cover inequality, then one can easily find it in polynomial time (see, e.g., Theo-
rem 2 in [15]), which is a special case of (1, k)-configuration inequality. Now, we
assume that

∑

i∈S xi+(|S|−k+1)xt ≤ |S| is a (1, k)-configuration inequality

from (1, k)-configuration N ∪{t} with respect to knapsack constraint aTx ≤ b,
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that is violated by point x∗. We want to show that one can find a separat-
ing (1, k′)-configuration inequality in polynomial-time. Here, the separating
inequality we find might be different from

∑

i∈S xi+(|S|−k+1)xt ≤ |S|, and
k′ might be different from k. Also, without loss of generality, here we assume
the knapsack constraint aTx ≤ b satisfies a1 ≤ a2 ≤ . . . ≤ an.

Since S ⊆ N , |S| ≥ k, and N ∪ {t} is a (1, k)-configuration, by definition,
S ∪ {t} is also a (1, k)-configuration with respect to constraint aTx ≤ b. First,
we have the following claim.

Claim 1 There exists S∗ ⊆ S, such that S∗∪{t} is a (1, k)-configuration whose
corresponding (1, k)-configuration inequality separates x∗, and x∗

i > 0 for any
i ∈ S∗ ∪ {t}.

Proof of claim From
∑

i∈S x∗
i + (|S| − k + 1)x∗

t > |S|, we know that x∗
t > 0.

If for some i′ ∈ S, there is x∗
i′ = 0, then consider S′ = S \ {i′}. Here |S′| ≥ k.

If not, then |S| = k, which means the original (1, k)-configuration inequality
is simply a cover inequality. From

∑

i∈S x∗
i + x∗

t > |S|, we know that x∗
i′ = 0

is impossible. Here S′ ∪ {t} is also a (1, k)-configuration. Moreover:

∑

i∈S′

x∗
i + (|S′| − k + 1)x∗

t =
∑

i∈S

x∗
i + (|S| − k + 1)x∗

t − x∗
t > |S| − 1 = |S′|.

Therefore, S′ ∪ {t} gives another separating (1, k)-configuration inequality.
Recursively removing index i ∈ S′ with x∗

i = 0, we end up obtaining a set
S∗ ⊆ S with the desired properties. ⋄

Due to the above claim, without loss of generality, we will assume x∗
i > 0

for any i ∈ S∪{t}. Denote S̄ := S[k−1]\S[k], S := S[k]\S
[k−1], T = S \(S̄∪S),

and N1 := {i ∈ [n] \ {t} : x∗
i = 1}. Throughout, we assume that S̄ 6= ∅, since

S̄ = ∅ corresponds to the case of |S| = k, which means the original separating
(1, k)-configuration inequality is simply a cover inequality. Since x∗ is a feasible
solution to the LP relaxation (2), we know a(N1) ≤ b. Denote ∆ := b−a(N1).

Claim 2 at ≤ ∆.

Proof of claim Consider set N1 ∪ {t}. If N1 ∪ {t} is a cover to knapsack
constraint aTx ≤ b, then the cover inequality

∑

i∈N1
xi + xt ≤ |N1| will be

violated by x∗, because x∗
i = 1 for any i ∈ N1 and x∗

t > 0. This contradicts
our initial assumption. Thus, a(N1) + at ≤ b = a(N1) +∆, which yields that
at ≤ ∆. ⋄

Claim 3 |S̄| < 2α and |S| < 2α+ 1.

Proof of claim First, let S[k],1 := {i ∈ S[k] : x
∗
i = 1}, S[k],f := {i ∈ S[k] :

x∗
i ∈ (0, 1)} denote the binary support and fractional support of S[k], let

S
[k−1]
1 := {i ∈ S[k−1] : x∗

i = 1}, S
[k−1]
f := {i ∈ S[k−1] : x∗

i ∈ (0, 1)} denote the

binary support and fractional support of S[k−1], and let S̄1 := {i ∈ S̄ : x∗
i = 1},
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1 2 4 5 6 9 10 12 14

S = S[k] S̄ = S[k−1]T

Fig. 1: An example for Case 1: S = {1, 2, 4, 5, 6, 9, 10, 12, 14} and k = 4. Here,
S[k] = {1, 2, 4, 5}, S[k−1] = {10, 12, 14}, and S[k] ∩ S[k−1] = ∅.

S̄f := {i ∈ S̄ : x∗
i ∈ (0, 1)} denote the binary support and fractional support

of x∗ over S̄. By Lemma 1, we have

at + a(S[k],1) + a(S[k],f ) = at + a(S[k]) > b = a(N1) +∆.

Hence, we obtain

a(N1 \ S[k],1) < a(S[k],f ) + at −∆. (10)

From Claim 2 and (10), we obtain that a(N1 \ S[k],1) < a(S[k],f ). Notice that
S̄1 ⊆ N1 and S̄1 ∩ S[k],1 = ∅, so S̄1 ⊆ N1 \ S[k],1 and

a(S̄1) ≤ a(N1 \ S[k],1) < a(S[k],f ). (11)

Here by definition, S̄ ⊆ S̄ = S[k−1] \S[k]. Since S
[k−1] denotes the k−1 largest

elements in S, S[k] denotes the k smallest elements in S, and a1 ≤ . . . ≤ an,
we know that for any i ∈ S̄1 and j ∈ S[k],f , we have ai ≥ aj . In this case, (11)
implies that |S̄1| < |S[k],f | ≤ α. Here, the inequality |S[k],f | ≤ α holds because
of our initial assumption that |{i ∈ [n] : x∗

i ∈ (0, 1)}| ≤ α. Therefore,

|S̄| = |S̄1|+ |S̄f | < 2α.

Here the last inequality also utilizes the fact that |S̄f | ≤ |{i ∈ [n] : x∗
i ∈

(0, 1)}| ≤ α. Since |S| = |S̄|+ 1, we also obtain that |S| < 2α+ 1. ⋄

Next, we continue our discussion by considering separately two cases, depend-
ing on whether S[k−1] ∩S[k] = ∅ or not. Here, we also decompose T = Tf ∪T1,
where T1 := {i ∈ T : x∗

i = 1}, Tf := {i ∈ T : x∗
i ∈ (0, 1)}. We remark that the

size of the fractional support Tf of T satisfies |Tf | ≤ α.

Case 1: S[k−1] ∩ S[k] = ∅. In this case, we know S[k] = S, S[k−1] = S̄. See
Fig. 1 for an example. By Claim 3, we have k = |S| < 2α+ 1. By Lemma 1,
in order for S ∪ {t} to be a (1, k)-configuration, we must have: a(S) + at > b,
a(S̄) + at ≤ b, and a(S) + a(S̄) + a(T ) = a(S) ≤ b. Then, for fixed t, S, S̄ and
Tf , set T1 satisfies the following:

a(T1) ≤ b− a(S)− a(S̄)− a(Tf ), (12)

|T1| > (|S̄|+ |S|+ |Tf |)
1− x∗

t

x∗
t

+ k − 1−
x∗(S̄) + x∗(S) + x∗(Tf )

x∗
t

, (13)

T1 ⊆ {i ∈ N1 : max
j∈S

j < i < min
j∈S̄

j}. (14)
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Here, (14) holds because T = S \ (S ∪ S̄), and (13) is derived from the fact
that

(|S| − k + 1)x∗
t +

∑

i∈S

x∗
i > |S|,

and |S| = |S|+ |T1|+ |Tf |+ |S̄|.
Notice that for fixed t, S, S̄, and Tf , the right hand side constants of (12)

and (13) are fixed as well, so the following greedy procedure will produce a
feasible T1 satisfying (12)–(14) if one exists: begin with T1 = ∅, within set {i ∈
N1 : maxj∈S j < i < minj∈S̄ j}, recursively add the smallest index i (which
corresponds to the smallest weight ai) into set T1, and stop when (12) becomes
invalid after the next addition, or T1 = {i ∈ N1 : maxj∈S j < i < minj∈S̄ j}.

Therefore, in the case S[k] ∩ S[k] = ∅, CONFIG-SP can be solved by the
following procedure:

1. Arbitrarily pick t ∈ [n], k ≤ 2α, and set S, S̄, Tf such that:

|S| = k = |S̄|+ 1,

max
j∈S

j < min
j∈S̄

j,

a(S) + at > b,

a(S̄) + at ≤ b,

a(S) + a(S̄) ≤ b,

Tf ⊆ {i ∈ [n] : x∗
i ∈ (0, 1),max

j∈S
j < i < min

j∈S̄
j}.

2. Begin with T1 = ∅, within set {i ∈ N1 : maxj∈S[k]
j < i < minj∈S[k−1] j},

recursively add the smallest index into set T1, and stop when (12) be-
comes invalid after the next addition, or T1 = {i ∈ N1 : maxj∈S j < i <
minj∈S̄ j}.

3. If (13) holds, then the set S ∪ T1 ∪ Tf ∪ S̄ ∪ {t} is a (1, k)-configuration
whose associated (1, k)-configuration inequality is violated by x∗.

Note that step 2 can be performed in O(n logn) time, step 1 can be performed
in O(n) time, and the total number of combination of different t ∈ [n], k ≤ 2α,
and set S, S̄, Tf with |S| = k = |S̄|+ 1 can be upper bounded by:

n · 2α ·
2α
∑

k=0

(

n

k

)

·
2α−1
∑

k=0

(

n

k

)

· 2α = O(n4α · 2α+1 · α).

Hence, the above procedure can be implemented in O(n4α+1 · 2α+1 · logn · α)
time.

Case 2: S[k−1] ∩ S[k] 6= ∅. In this case, T = S \ (S̄ ∪ S) = S[k−1] ∩ S[k]. See
Fig. 2 for an example. For fixed S and S̄, denote D1 := {i ∈ N1 : maxj∈S j <
i < minj∈S̄ j}. Then clearly, T1 ⊆ D1.

Claim 4 |D1 \ T1| < 2α.
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1 2 4 5 6 9 10 12 14

S S̄T

S[k]

S[k−1]

Fig. 2: An example for Case 2. S = {1, 2, 4, 5, 6, 9, 10, 12, 14} and k = 6. Here,
S[k] = {1, 2, 4, 5, 6, 9}, S[k−1] = {6, 9, 10, 12, 14}, and S[k] ∩ S[k−1] = T 6= ∅.

Proof of claim From

at + a(S[k]) = at + a(S) + a(T1) + a(Tf ) > b = a(D1) + b− a(D1),

we obtain that

a(D1 \ T1) < a(Tf ) + a(S) + at − (b− a(D1)) . (15)

Let S1 := {i ∈ S : x∗
i = 1}, Sf := {i ∈ S : x∗

i ∈ (0, 1)}, Nf := {i ∈ [n] \ {t} :

x∗
i ∈ (0, 1)}. Since aTx∗ ≤ b, we have

a(S1) +
∑

i∈Nf

aix
∗
i + atx

∗
t + a(D1) ≤ aTx∗ ≤ b. (16)

Moreover, from Claim 2 and ∆ = b− a(N1) ≤
∑

i∈Nf
aix

∗
i + atx

∗
t , we have

at ≤
∑

i∈Nf

aix
∗
i + atx

∗
t . (17)

Therefore,

a(S) + at = a(S1) + a(Sf ) + at

≤ a(S1) + a(Sf ) +
∑

i∈Nf

aix
∗
i + atx

∗
t (by (17))

≤ a(Sf ) + b− a(D1). (by (16))

Combined with (15), we obtain

a(D1 \ T1) < a(Tf ) + a(Sf ). (18)

Since at + a(S) + a(T ) = at + a(S[k]) > b ≥ at + a(S[k−1]) = at + a(S̄) + a(T ),
we have a(S) > a(S̄). Let i∗ := maxj∈S j and j∗ := minj∈S̄ j. Then we have

|S| · ai∗ ≥ a(S) > a(S̄) ≥ |S̄| · aj∗ .
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Since |S̄| = |S| − 1 ≥ 1, we obtain aj∗ < 2ai∗ . Together with (18), we have

|D1 \ T1| · ai∗ ≤ a(D1 \ T1) < a(Tf ∪ Sf ) ≤ |Tf ∪ Sf | · aj∗ ≤ α · aj∗ < 2α · ai∗ .

This concludes the proof of the claim. ⋄

From the above claim, we know that, for fixed S and S̄, there can only be
polynomially many sets T1 ⊆ D1. Therefore, in the case of S[k] ∩ S[k] 6= ∅,
CONFIG-SP can be solved by the following procedure:

1. Arbitrarily pick t ∈ [n] and set S, S̄, Tf , T
c
1 , such that:

|S| = |S̄|+ 1 ≤ 2α,

a(S) + a(S̄) ≤ b,

max
j∈S

j < min
j∈S̄

j,

Tf ⊆ {i ∈ [n] : x∗
i ∈ (0, 1),max

j∈S
j < i < min

j∈S̄
j},

T c
1 ⊆ {i ∈ [n] : x∗

i = 1,max
j∈S

j < i < min
j∈S̄

j},

|T c
1 | ≤ 2α− 1.

2. Let S = S ∪ Tf ∪ (D1 \ T c
1 ) ∪ S̄ and k = |S| − |S̄|, where D1 = {i ∈ N1 :

maxj∈S j < i < minj∈S̄ j}. If

a(S) ≤ b, at + a(S \ S̄) > b ≥ at + a(S \ S),

(|S| − k + 1)x∗
t + x∗(S) > |S|,

then S ∪ {t} gives a separating (1, k)-configuration inequality for x∗.

Here, the total number of combinations of different t ∈ [n] and sets S, S̄, Tf , T
c
1 ⊆

[n] with |S| = |S̄|+1 ≤ 2α, Tf ⊆ {i ∈ [n] : x∗
i ∈ (0, 1)}, and |T c

1 | ≤ 2α− 1 can
be upper bounded by

n ·
2α
∑

k=0

(

n

k

)

·
2α−1
∑

k=0

(

n

k

)

· 2α ·
2α−1
∑

k=0

(

n

k

)

= O(n6α−1 · 2α).

Hence, the above procedure can be implemented in polynomial time.
From the discussion provided in the above two cases, the proof is complete.

⊓⊔

Similarly to how Corollary 1 directly follows from Theorem 3, Theorem 5
implies the following corollary.

Corollary 2 If m is a constant and x∗ is an extreme point solution to (2),
then a separating (1, k)-configuration inequality can be obtained in polynomial
time, if one exists.
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4 Generalized (1, k)-Configuration Inequalities

In this section, we study a simple generalization of the (1, k)-configuration
inequalities, which we call generalized (1, k)-configuration inequalities.

Definition 1 For knapsack constraint aTx ≤ b, a set N ∪ {t} with N ( [n]
and t /∈ N is called a generalized (1, k)-configuration for k ≤ |N |, if Q ∪ {t} is
a cover for every Q ⊆ N with |Q| = k. For any generalized (1, k)-configuration
N ∪ {t}, the inequality

(n′ − k + 1)xt +
∑

i∈N

xi ≤ n′ (19)

is called a generalized (1, k)-configuration inequality. Here, n′ is the smallest
number such that inequality

∑

i∈N xi ≤ n′ is valid for K.

It is easy to see that any (1, k)-configuration inequality is a generalized
(1, k)-configuration inequality. In fact, when a(N) ≤ b and Q∪{t} is a minimal
cover for every Q ⊆ N with |Q| = k, then the inequality (19) becomes a (1, k)-
configuration inequality. The next simple theorem states that any generalized
(1, k)-configuration inequality is also valid for the knapsack polytope K.

Theorem 6 Let N ∪ {t} be a generalized (1, k)-configuration with respect to
knapsack constraint aTx ≤ b. Then inequality (19) is valid for K.

Proof Arbitrarily pick x′ ∈ {0, 1}n with aTx′ ≤ b. We consider the component
x′
t. If x

′
t = 0, then (19) reduces to

∑

i∈N x′
i ≤ n′, which is true because of

the assumption on n′. If x′
t = 1, then (19) reduces to

∑

i∈N x′
i ≤ k − 1. If

∑

i∈N x′
i ≥ k, then arbitrarily pick Q ⊆ {i ∈ N : x′

i = 1} with |Q| = k. By
definition of generalized (1, k)-configuration, we know that Q ∪ {t} is a cover.
However, a(Q ∪ {t}) ≤ aTx′ ≤ b, which gives the contradiction. ⊓⊔

The next two examples show that the class of generalized (1, k)-configuration
inequalities is strictly broader than the class of (1, k)-configuration inequali-
ties. In particular, by relaxing either the “minimal cover” assumption, or the
assumption a(N) ≤ b, in the definition of (1, k)-configuration inequality, one
is able to obtain different facet-defining inequalities.

Example 1 Consider the knapsack constraint (2, 4, 5, 6, 7, 20)Tx ≤ 30. For N =
{1, 2, 3, 4, 5} and k = 3, N ∪ {6} is a generalized (1, k)-configuration, but it is
not a (1, k)-configuration. This is because {4, 5, 6} is a cover, so {3, 4, 5}∪ {t}
cannot be a minimal cover. However, for any Q ⊆ N with |Q| = 3, we have
a6 + a(Q) ≥ a6 + a(N[3]) = a6 + a1 + a2 + a3 = 31 > 30. Furthermore, the

corresponding generalized (1, k)-configuration inequality
∑5

i=1 xi +3x6 ≤ 5 is
facet-defining. Similarly, another facet-defining inequality x1 + x2 + x4 + x5 +
2x6 ≤ 4 is a generalized (1, k)-configuration inequality from N = {1, 2, 4, 5},
t = 6, k = 3, while it is not a (1, k)-configuration inequality. Notice that in
both cases, the (1, k)-configuration N ∪ {t} satisfies a(N) ≤ b, so the only
assumption violated in the definition of (1, k)-configuration inequality is the
“minimal cover” assumption. ⋄
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Example 2 Consider the knapsack constraint (2, 4, 7, 10, 10, 20)Tx ≤ 30. Con-
sider N = {2, 3, 4, 5}, t = 6, k = 2. Then a(N) = 31 > 30, and

∑

i∈N xi ≤
n′ := 3 is valid for K, and for any Q ⊆ N with |Q| = 2, Q ∪ {t} is a
minimal cover. So N ∪ {t} is a generalized (1, k)-configuration and not a
(1, k)-configuration. The only assumption violated from the definition of (1, k)-
configuration is a(N) ≤ b. Furthermore, the corresponding generalized (1, k)-

configuration inequality
∑5

i=2 xi + 2x6 ≤ 3 is facet-defining. ⋄

We denote the separation problem associated with generalized (1, k)-configuration
inequalities by G-CONFIG-SP. The proof of the following NP-hardness re-
sult about G-CONFIG-SP uses the same reduction technique as in the proof
of Theorem 4.

Theorem 7 Problem G-CONFIG-SP is NP-complete, even if m = 1, or if
x∗ is an extreme point solution to the LP relaxation (2).

Proof Using the same reduction as in the proof of Theorem 4, we want to show
that: given an input (A, d, c, x∗) to CI-SP which is in (Zm×n

+ ,Zm
+ ,Zn

+, [0, 1]
n),

we can find a corresponding input (A′, d′, c′, y∗) to G-CONFIG-SP such that
there is a yes-certificate to CI-SP with input (A, d, c, x∗) if and only if there is
a yes-certificate to G-CONFIG-SP with input (A′, d′, c′, y∗).

Recall the construction in the proof of Theorem 4:

A′
ij = Aij ∀i ∈ [m], ∀j ∈ [n], A′

ik =
n
∑

j=1

Aij ∀i ∈ [m], ∀k ∈ {n+ 1, n+ 2},

c′j = cj ∀j ∈ [n], c′n+1 = c′n+2 = M,

d′i = di + 2

n
∑

j=1

Aij ∀i ∈ [m].

As shown previously, whenM is chosen to be large enough, then y∗ := (x∗, 1, 1)
is an optimal solution to LP

max{(c′)Ty : A′y ≤ d′, y ∈ [0, 1]n+2} (20)

if x∗ is an optimal solution to the linear program (2).
Let C ⊆ [n] be a cover with respect to the row constraint aTx ≤ b of

Ax ≤ d such that the associated CI cuts off x∗ : x∗(C) > |C| − 1. Let C′ :=
C∪{n+1, n+2}. By definition of the input (A′, d′), C′ is a cover with respect
to the row constraint a′Ty = (aT, aTe, aTe)y ≤ b + 2aTe = b′ within A′y ≤ d′,
and the associated CI cuts off y∗ : y∗(C′) = 2 + x∗(C) > |C| + 1 = |C′| − 1.
As every cover inequality is also a generalized (1, k)-configuration inequality,
we have obtained a generalized (1, k)-configuration inequality with respect to
a row constraint within A′y ≤ d′ that cuts off y∗.

To complete the proof, we must show that if N ∪{t} is a generalized (1, k)-
configuration with respect to some row constraint a′Ty ≤ b′ within A′y ≤ d′,
and (n′−k+1)y∗t +

∑

i∈N y∗i > n′, for some n′ such that
∑

i∈N xi ≤ n′ is valid
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for {x ∈ {0, 1}n+2 : a′Ty ≤ b′}, then we can construct a cover C with respect
to the associated row constraint in Ax ≤ b such that the associated CI cuts
off x∗.

By construction of (A′, d′), we know that the row constraint a′Ty ≤ b′

takes the form (aT, aTe, aTe)y ≤ b + 2aTe, where aTx ≤ b is a row constraint
in Ax ≤ b. Observe that in the constraint (aT, aTe, aTe)y ≤ b + 2aTe, any
cover must contain both n+ 1 and n + 2. By definition of generalized (1, k)-
configuration, we know {n + 1, n + 2} ⊆ N ∪ {t}. Next, we continue our
discussion by considering separately two cases.

Case 1: t /∈ {n+ 1, n+ 2}. Then {n+ 1, n+ 2} ⊆ N . By definition of (1, k)-
configuration, we know that, for any Q ⊆ N with |Q| = k, Q ∪ {t} is a cover.
This means {n+ 1, n+ 2} ⊆ Q for any Q ⊆ N with |Q| = k. Hence k = |N |,
and we have

(n′ − |N |+ 1)y∗t +
∑

i∈N

y∗i > n′. (21)

Here, n′ is such that
∑

i∈N xi ≤ n′ is valid for {x ∈ {0, 1}n+2 : a′Ty ≤ b′}.

Notice that N \ {n + 2} is not a cover to a′Ty ≤ b′, so n′ ≥ |N | − 1. If
n′ = |N | − 1, then N is a cover to a′Ty ≤ b′, and (21) is simply y∗(N) >
|N | − 1. Note that {n+1, n+2} ⊆ N , and a′T = (aT, aTe, aTe), b′ = b+2aTe,
y∗n+1 = y∗n+2 = 1, hence C := N \ {n + 1, n + 2} is a cover to aTy ≤ b,
and y∗(C) = y∗(N) − 2 > |N | − 3 = |C| − 1. If n′ = |N |, then (21) gives
y∗t +

∑

i∈N y∗i > |N |. Hence C := {t}∪N \ {n+1, n+2} is a cover to aTy ≤ b,
and y∗(C) = y∗t +

∑

i∈N y∗i − y∗n+1 − y∗n+2 > |N | − 2 = |C| − 1.

Case 2: t ∈ {n+1, n+2}. Since a′n+1 = a′n+2 = aTe, without loss of generality,
we assume t = n+2. Because for any Q ⊆ N with |Q| = k, Q∪ {t} is a cover,
and any cover to a′Tx ≤ b′ should contain both n + 1 and n + 2, we know
that k = |N | and n + 1 ∈ N . Moreover, since t = n + 2 /∈ N , then N is not
a cover to a′Tx ≤ b′. Hence n′ = |N |. Therefore, the separating generalized
(1, k)-configuration inequality gives:

y∗n+2 +
∑

i∈N

y∗i > |N |. (22)

Here N ∪{n+2} is a cover to a′T ≤ b′. By definition of a′, b′, and y∗, we know
that C := N \ {n+ 1} is a cover to aT ≤ b, whose associated CI separates x∗.

We have thereby shown that there is a yes-certificate to CI-SP with input
(A, d, c, x∗) if and only if there is a yes-certificate to G-CONFIG-SP with
input (A′, d′, c′, y∗). Together with Theorem 1, our proof establishes that G-
CONFIG-SP is NP-complete, even ifm = 1, or if x∗ is an extreme point to the
LP relaxation (2). To conclude the proof, it suffices to realize that the input
y∗ = (x∗, 1, 1) for G-CONFIG-SP will be an extreme point of {y ∈ [0, 1]n+2 :
A′y ≤ d′} if x∗ is an extreme point of {x ∈ [0, 1]n : Ax ≤ d}. ⊓⊔

Since the definition of generalized (1, k)-configuration inequalities is simpler
than the definition of (1, k)-configuration inequalities, from Theorem 5, one
can expect that G-CONFIG-SP is polynomially solvable when the fractional
support of x∗ has relatively small size.
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Theorem 8 Let x∗ be the input solution to G-CONFIG-SP. If |{i ∈ [n] : x∗
i ∈

(0, 1)}| ≤ α, then a separating generalized (1, k)-configuration inequality can
be obtained in O(n2 · 2α · logn ·m) time, if one exists.

Proof Let N ∪ {t} be a generalized (1, k)-configuration with respect to some
row aTx ≤ b, whose corresponding inequality (19) separates x∗:

(n′ − k + 1)x∗
t + x∗(N) > n′. (23)

We assume that a1 ≤ a2 ≤ . . . ≤ an.

Claim 5 There exists N∗ ⊆ [n] \ {t} and k′ ∈ N, such that N∗ ∪ {t} is a
generalized (1, k′)-configuration whose corresponding inequality (19) separates
x∗, and {i ∈ [n] \ {t} : x∗

i = 1} ⊆ N∗, {i ∈ N∗ : x∗
i = 0} = ∅.

Proof of claim If there exists i′ ∈ [n] \ {t} with x∗
i′ = 1 and i′ /∈ N , then for

N ′ := N∪{i′},N ′∪{t} is a generalized (1, k+1)-configuration. Since x(N) ≤ n′

is valid for {x ∈ {0, 1}n : aTx ≤ b}, then x(N ′) = x(N) + xi′ ≤ n′ + 1 is also
valid for {x ∈ {0, 1}n : aTx ≤ b}. Therefore, we obtain a generalized (1, k+1)-
configuration inequality (n′ − k + 1)xt + x(N ′) ≤ n′ + 1, which cuts off x∗

because of (23) and x∗
i′ = 1.

If there exists i′′ ∈ N such that x∗
i′′ = 0, then for N ′′ := N \ {i′′}, we have

|N ′′| ≥ k. This is because, otherwise, |N | = k, and (23) gives (n′−|N |+1)x∗
t +

x∗(N ′′) > n′. Note that x∗
t ≤ 1 and x∗(N ′′) ≤ |N ′′| = |N | − 1, thus we have

n′ < (n′ − |N |+ 1)x∗
t + x∗(N ′′) ≤ n′ − |N | + 1 + |N | − 1 = n′, which gives a

contradiction. Therefore, N ′′ ∪ {t} is a generalized (1, k)-configuration, whose
corresponding inequality (19) is (n′ − k + 1)xt + x(N ′′) ≤ n′, and which cuts
off x∗ because of (23) and x∗

i′′ = 0.

Applying the above arguments recursively, eventually we will end up with
a set N∗ ⊆ [n] \ {t} and k′ ≥ k, such that N∗ ∪ {t} is a generalized (1, k′)-
configuration whose corresponding inequality (19) separates x∗. ⋄

From the above claim, without loss of generality, we can assume that {i ∈
[n] \ {t} : x∗

i = 1} ⊆ N and {i ∈ N : x∗
i = 0} = ∅. Therefore, G-CONFIG-SP

can be solved by the following procedure:

1. Arbitrarily pick t ∈ [n] and set Nf ⊆ {i ∈ [n] \ {t} : x∗
i ∈ (0, 1)}.

2. Let N := {i ∈ [n] \ {t} : x∗
i = 1} ∪Nf . If a(N) + at ≤ b, then stop.

3. Let k be the smallest integer number such that at + a(N[k]) > b, and
let n′ be the smallest integer number such that x(N) ≤ n′ is valid for
{x ∈ {0, 1}n : aTx ≤ b}. Check if (23) holds.

4. If the answer to the previous check is yes for some t and Nf , then the cor-
responding N ∪ {t} provides a yes-certificate to G-CONFIG-SP, since the
associated generalized (1, k)-configuration inequality separates x∗; If the
answer is no for all t and Nf , then x∗ cannot be separated by any general-
ized (1, k)-configuration inequality from the knapsack constraint aTx ≤ b.
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Here step 2 runs in O(n) time, step 3 runs in O(n logn) time. Since |{i ∈
[n] : x∗

i ∈ (0, 1)}| ≤ α, we have

| {Nf : Nf ⊆ {i ∈ [n] \ {t} : x∗
i ∈ (0, 1)}} | ≤ 2α.

So the above procedure can be implemented in O(n2 · 2α · logn) time, and
we complete the proof by applying the above argument over all knapsack
constraint aTx ≤ b. ⊓⊔

Compared with the separating scheme in Theorem 5, the above theorem
suggests that it is in fact easier to separate the generalized (1, k)-configuration
inequality, compared with the standard (1, k)-configuration inequality, even
though the later one is a special case. For generalized (1, k)-configuration in-
equalities, we also directly obtain the following corollary.

Corollary 3 If m is polylogarithmic in n and x∗ is an extreme point solu-
tion to (2), then a separating generalized (1, k)-configuration inequality can be
obtained in polynomial time, if one exists.

5 Weight Inequalities

In this section, we show that WI-SP is NP-hard, and we present special cases
where it can be solved in polynomial time. For a pack P of a given knapsack
constraint aTx ≤ b, we denote by C(P ) := {i ∈ [n] \P : ai > r(P )}. With this
notation, the WI associated with P takes the form

∑

i∈P

aixi +
∑

j∈C(P )

(aj − r(P ))xj ≤ a(P ),

where we remind the reader that r(P ) := b− a(P ). We will need the following
auxiliary result.

Lemma 2 Let (a, b) ∈ Zn+1
+ with a([n])/b /∈ Z, and let x∗

1 = . . . = x∗
n =

b/a([n]). Then there exists a pack P of aTx ≤ b whose associated WI separates
x∗ if and only if there exists a pack P ′ of aTx ≤ b such that r(P ′) > 0,
P ′ ∪C(P ′) = [n], and |C(P ′)| = ⌊a([n])/b⌋.

Proof First, assume that there exists a pack P ′ of aTx ≤ b such that r(P ′) > 0,
P ′ ∪C(P ′) = [n], and |C(P ′)| = ⌊a([n])/b⌋. We have

∑

i∈P ′

aix
∗
i +

∑

j∈C(P ′)

(aj − r(P ′))x∗
j =

∑

i∈P ′∪C(P ′)

aix
∗
i − r(P ′)

∑

j∈C(P ′)

x∗
j

=
∑

i∈[n]

aix
∗
i − r(P ′)

∑

j∈C(P ′)

x∗
j

= b− r(P ′) · |C(P ′)| ·
b

a([n])

> b− r(P ′)

= a(P ′),
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where the inequality holds because r(P ′) > 0, a([n])/b /∈ Z, and |C(P ′)| =
⌊a([n])/b⌋. Therefore, we know that the WI associated with pack P ′ separates
x∗.

Next, assume that there exists a pack P of aTx ≤ b whose associated WI
separates x∗. Namely:

f(P ) :=
∑

i∈P

aix
∗
i +

∑

j∈C(P )

(aj − r(P ))x∗
j − a(P ) > 0.

Without loss of generality, we assume that P has the largest value f(P ) among
all packs of the knapsack constraint aTx ≤ b. By re-arranging the terms and
using some basic algebra, we have that f(P ) > 0 implies r(P ) > 0 and

∑

j∈C(P )

x∗
j <

∑

i∈P∪C(P ) aix
∗
i − a(P )

r(P )
.

Since
∑

i∈P∪C(P ) aix
∗
i ≤ b, we obtain

∑

j∈C(P )

x∗
j <

b − a(P )

r(P )
= 1.

Replacing
∑

j∈C(P ) x
∗
j = |C(P )| · b/a([n]), we have shown

|C(P )| <
a([n])

b
. (24)

Now let i′ ∈ P . Note that we have r(P \ {i′}) = r(P ) + ai′ , so we obtain

f(P )− f(P \ {i′}) = ai′





∑

j∈C(P\{i′})

x∗
j + x∗

i′ − 1



+
∑

j∈C(P )\C(P\{i′})

(aj − r(P )) x∗
j

∈



ai′





∑

j∈C(P\{i′})

x∗
j + x∗

i′ − 1



 , ai′





∑

j∈C(P )

x∗
j + x∗

i′ − 1







 ,

where the last relation holds because aj > r(P ) for every j ∈ C(P ) and
aj − r(P ) = aj − r(P \ {i′})+ ai′ ≤ ai′ for every j /∈ C(P \ {i′}). Since P \ {i′}
is clearly also a pack, our maximality assumption on f(P ) implies that f(P ) ≥

f(P \ {i′}). Hence we have ai′
(

∑

j∈C(P ) x
∗
j + x∗

i′ − 1
)

≥ 0. This implies that
∑

j∈C(P ) x
∗
j +x∗

i′ ≥ 1 for any i′ ∈ P . Since x∗
1 = . . . = x∗

n = b/a([n]), we obtain

|C(P )| ≥
a([n])

b
− 1.

Combined with (24) and the assumption that a([n])/b /∈ Z, we have:

|C(P )| =

⌊

a([n])

b

⌋

.
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To complete the proof, we only need to show that P ∪ C(P ) = [n]. If not,
there exists i′ ∈ [n] \ (P ∪ C(P )), such that P ∪ {i′} remains a pack. Hence

f(P ∪ {i′})− f(P ) = ai′





∑

j∈C(P )

x∗
j + x∗

i′ − 1



+
∑

j∈C(P∪{i′})\C(P )

(aj − r(P ∪ {i′}))x∗
j

∈



ai′





∑

j∈C(P )

x∗
j + x∗

i′ − 1



 , ai′





∑

j∈C(P∪{i′})

x∗
j + x∗

i′ − 1







 .

Since |C(P )| = ⌊a([n])/b⌋ and a([n])/b /∈ Z, we know that
∑

j∈C(P ) x
∗
j + x∗

i′ >

1, which implies that f(P ∪ {i′}) > f(P ). This contradicts the maximality
assumption on f(P ) and the fact that P ∪ {i′} is a pack. We have thereby
shown P ∪ C(P ) = [n]. ⊓⊔

To prove that the separation problem WI-SP is NP-hard, we establish a
reduction from the Subset Sum Problem (SSP) to WI-SP.

Problem SSP
Input: α ∈ Zn

+ and w ∈ Z+.
Question: Is there a subset S ⊆ [n] such that α(S) = w?

The SSP is among Karp’s 21 NP-complete problems [13]. It is simple to
check that SSP is NP-complete even if w > max(α). We are now ready to
prove that WI-SP is NP-hard.

Theorem 9 Problem WI-SP is NP-complete, even if m = 1, or if x∗ is an
extreme point solution to the LP relaxation (2).

Proof First, we prove the first part of the statement. We show that WI-SP
is NP-hard even in case of a single knapsack constraint. Given an instance
(α,w) ∈ Zn+1

+ of SSP with w > max(α), we construct a knapsack problem
max{cTx : aTx ≤ b, x ∈ {0, 1}2n+2} and give an optimal solution x∗ to the
associated LP relaxation. The data a, b, c of the constructed knapsack problem
is defined as follows:

ai := αi + 2, ∀i = 1, . . . , n,

an+1 := w · (n+ 1) + 2(n+ 1)2 − 3n− α([n]),

an+1+j := 2, ∀j = 1, . . . , n+ 1,

b := w + 2n+ 3,

c := a,

x∗
1 := . . . := x∗

2n+2 :=
w + 2n+ 3

w · (n+ 1) + 2n2 + 5n+ 4
.

(25)

It is simple to check that a, b, c are all integral, that (a, b, c, x∗) has polyno-
mial encoding size with respect to that of (α,w), and that aTx∗ = b. Further-
more, x∗ is an optimal solution to the knapsack problem described by (25),
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since cTx∗ = aTx∗ = b. Hence (a, b, c, x∗) is a feasible input to WI-SP where
m = 1. Note that (w·(n+1)+2n2+5n+4)/(w+2n+3) = n+1+1/(w+2n+3) /∈
Z. Hence, we can apply Lemma 2 and obtain that there exists a separating
WI for x∗ if and only if there exists a pack P such that:

r(P ) > 0, P ∪ C(P ) = [2n+ 2],

|C(P )| =

⌊

w · (n+ 1) + 2n2 + 5n+ 4

w + 2n+ 3

⌋

= n+ 1.
(26)

Claim 6 There exists a WI from constraint aTx ≤ b that separates x∗ if and
only if there exists a subset S ⊆ [n] such that α(S) = w.

Proof of claim It suffices to show that there exists pack P such that (26) holds
if and only if there exists a subset S ⊆ [n] such that α(S) = w.

First, we assume that P is a pack such that (26) holds. The two equations in
(26) imply |P | = 2n+2−|C(P )| = n+1. If {n+2, n+3, . . . , 2n+2}∩C(P ) = ∅,
then P∪C(P ) = [2n+2] implies that {n+2, n+3, . . . , 2n+2} ⊆ P , which means
P = {n+2, n+3, . . . , 2n+2} since |P | = n+1. However, since w > max(α), we
know that 2+max(α)+2(n+1) ≤ w+2n+3 = b, which implies that P ∪{i′} is
a pack for any i′ ∈ [n], and this contradicts the assumption C(P ) = [2n+2]\P
of (26). Therefore, there must exist some i′ ∈ {n+2, n+3, . . . , 2n+2}∩C(P ).
Hence r(P ) = b − a(P ) < ai′ = 2. Moreover, because r(P ) > 0, we have
r(P ) = 1, which implies a(P ) = b− 1 = w+2n+2. Since an+1 = w · (n+1)+
2(n+ 1)2 − 3n− α([n]) ≥ w + 2(n+ 1)2 − 3n+ (w · n− α([n])) > w + 2n+ 2,
we know n+ 1 /∈ P. Let S := P ∩ [n]. We then obtain a(S) = 2|S|+ α(S) and
a(P \ S) = 2(|P | − |S|) = 2(n + 1 − |S|). Therefore, w + 2n + 2 = a(P ) =
a(S) + a(P \ S) = α(S) + 2n+ 2, which gives us α(S) = w.

Next, we assume that S is a subset of [n] with α(S) = w. Clearly, n+ 1 /∈
S. Then, we define the set S̃ containing n + 1 − |S| arbitrary indices from
{n+ 2, . . . , 2n+ 2}. Then P := S ∪ S̃ is a pack such that (26) holds. In fact,
we have

r(P ) = b− a(P )

= w + 2n+ 3− a(S)− a(S̃)

= w + 2n+ 3− (2|S|+ α(S)) − 2(n+ 1− |S|)

= 1.

This further implies C(P ) = [2n+ 2] \ P and |C(P )| = 2n+ 2 − |P | = n+ 1,
since ai > 1 for all i ∈ [2n+ 2]. Hence (26) is satisfied by pack P . ⋄

Claim 6 completes the proof of the first part of the statement, since SSP
itself is NP-hard.

Next, we prove the second part of the statement. We show that WI-SP is
NP-hard, even if x∗ is an extreme point solution to the LP relaxation (2).
Given an instance (α,w) ∈ Zn+1

+ of SSP with w > max(α), we construct an
instance of the multi-dimensional knapsack problem max{cTx : Ax ≤ d, x ∈
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{0, 1}2N} and give an optimal solution x∗ to the associated LP relaxation,
where N = 2n + 2. Let G be a node-node adjacency matrix of a cycle on N
nodes. The constraints of the constructed multi-dimensional knapsack problem
are then defined as follows:

aTy ≤ b, Gz ≤ eN ,

yi + 2z1 + 2z2 + 2z3 ≤ 3 + ǫ, ∀i ∈ [N ].
(27)

Here (a, b) ∈ ZN+1
+ is defined as in (25), ǫ := (w + 2n + 3)/(w · (n + 1) +

2n2 + 5n+ 4) and eN is the N -dimensional vector with all components equal
to one. Now we define the objective vector c := (a, eN), and we let x∗ =
(y∗, z∗) := (ǫeN , eN/2). Note that we can multiply all the rows of (27) by
w · (n + 1) + 2n2 + 5n + 4 to get an instance of WI-SP with integral data.
The instance defined here clearly has polynomial encoding size with respect
to that of (α,w).

We now verify that this is a valid input for WI-SP. Clearly x∗ is feasible.
Furthermore, by summing all inequalities in Gz ≤ eN , it follows that x∗ is an
optimal solution to the LP relaxation.

Next, we show that x∗ is an extreme point of the polyhedron given by (27).
Since N = 2n+2 is even, then G is a square matrix with rank N − 1. We can
further verify that the first 2N constraints in (27) give a system of 2N linearly
independent constraints in 2N variables, and the only vector that satisfies all
of them at equality is x∗.

Claim 7 There exists a WI from (27) that separates x∗ if and only if there
exists a WI from the constraint aTy ≤ b that separates y∗.

Proof of claim First, we assume that P is a pack with respect to some con-
straint a′Tx ≤ b′ of (27) such that its corresponding WI separates x∗. If such
constraint a′Tx ≤ b′ comes from the subsystem Gz ≤ eN , say z1 + z2 ≤ 1,
then the only WI is z1 + z2 ≤ 1, which cannot be violated by x∗ since x∗ is
a feasible point. If a′Tx ≤ b′ is yi + 2z1 + 2z2 + 2z3 ≤ 3 + ǫ for some i ∈ [N ],
then all the nonempty packs that do not include variables with zero coeffi-
cient are {i}, {i, N +1}, {i, N +2}, {i, N +3}, {N +1}, {N +2}, {N +3}. The
corresponding WIs are yi ≤ 1 and:

yi + 2z1 + (2− ǫ)(z2 + z3) ≤ 3, 2z1 + (1− ǫ)(z2 + z3) ≤ 2,

yi + 2z2 + (2− ǫ)(z1 + z3) ≤ 3, 2z2 + (1− ǫ)(z1 + z3) ≤ 2,

yi + 2z3 + (2− ǫ)(z1 + z3) ≤ 3, 2z3 + (1− ǫ)(z1 + z2) ≤ 2.

It is simple to check that none of the above inequalities is violated by x∗ =
(ǫeN , eN/2). Hence the constraint a′Tx ≤ b′ is just aTy ≤ b. In other words,
we have shown that if (27) admits a separating WI that separates x∗, then
the constraint aTy ≤ b admits a separating WI that separates y∗.

On the other hand, any WI from the constraint aTy ≤ b is also a WI from
the entire linear system (27). We have thereby proven this claim. ⋄
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Note that y∗ = ǫeN in this proof coincides with the x∗ in Claim 6. From
Claim 7 and Claim 6, we have completed the proof for the second part of the
statement of this theorem, since SSP is NP-hard. ⊓⊔

Even though the problem WI-SP is NP-hard in general, in the next theo-
rem we provide a special case where it can be solved in polynomial time, and
a separating WI can be obtained in polynomial time, if one exists.

Theorem 10 Let x∗ be the input solution to WI-SP. If max{|S| : x∗
i ∈

(0, 1) ∀i ∈ S, x∗(S) < 1} is bounded by a constant, then a separating WI
can be obtained in polynomial time, if one exists.

Proof We assume without loss of generality that Ax ≤ d has only a single con-
straint aTx ≤ b, since we can always solve WI-SP with input (A, d, c, x∗) by
solving the corresponding WI-SP problems for each single constraint individu-
ally. For any P ⊆ [n], let f(P ) :=

∑

i∈P aix
∗
i +

∑

j∈C(P )(aj − r(P ))x∗
j − a(P ).

Then f(P ) > 0 implies

∑

j∈C(P )

x∗
j <

∑

i∈P∪C(P ) aix
∗
i − a(P )

r(P )
≤

b− a(P )

r(P )
= 1.

Among all the packs with the largest f(P ) value, let P ′ be one that is inclusion-
wise maximal. In other words, f(P ′) ≥ f(P ) for any pack P , and f(P ) = f(P ′)
implies that P ′ is not contained in P . Let C := C(P ′). Note that for any i′ ∈ P ′

we have

f(P ′)− f(P ′ \ {i′}) = ai′





∑

j∈C(P ′\{i′})

x∗
j + x∗

i′ − 1



+
∑

j∈C\C(P ′\{i′})

(aj − r(P ′))x∗
j

∈



ai′





∑

j∈C(P ′\{i′})

x∗
j + x∗

i′ − 1



 , ai′





∑

j∈C

x∗
j + x∗

i′ − 1







 .

Here, the last inequality f(P ′)− f(P ′ \ {i′}) ≤ ai′
(

∑

j∈C x∗
j + x∗

i′ − 1
)

holds

because aj ≤ ai′ + r(P ′) for any j ∈ C \ C(P ′ \ {i′}). Since P ′ \ {i′} is also a
pack and f(P ′) ≥ f(P ′ \ {i′}), we have

∑

j∈C

x∗
j + x∗

i′ ≥ 1, ∀i′ ∈ P ′. (28)

On the other hand, for any i′ ∈ [n] \ (C ∪ P ′):

f(P ′ ∪ {i′})− f(P ′) = ai′





∑

j∈C

x∗
j + x∗

i′ − 1



+
∑

j∈C(P ′∪{i′})\C

(aj − r(P ′ ∪ {i′}))x∗
j

∈



ai′





∑

j∈C

x∗
j + x∗

i′ − 1



 , ai′





∑

j∈C(P ′∪{i′})

x∗
j + x∗

i′ − 1







 .



On the Complexity of Separating Cutting Planes for the Knapsack Polytope 25

Since i′ ∈ [n] \ (C ∪ P ′), the set P ′ ∪ {i′} is still a pack, hence f(P ′ ∪ {i′})−
f(P ′) ≤ 0. Furthermore, since P ′ is an inclusion-wise maximal pack with the
largest f(P ′) value, we have f(P ′ ∪ {i′})− f(P ′) < 0. Therefore,

∑

j∈C

x∗
j + x∗

i′ < 1, ∀i′ ∈ [n] \ (C ∪ P ′). (29)

From (28) and (29), we obtain

P ′ = {i ∈ [n] \ C : x∗(C) + x∗
i ≥ 1}. (30)

We have thereby shown that there exists a WI from knapsack constraint
aTx ≤ b which separates x∗, if and only if there exists C ⊆ [n], such that the
corresponding P ′, as defined in (30), is a pack satisfying f(P ′) > 0. Therefore,
WI-SP can be solved by checking whether the set P ′ = {i ∈ [n] \ C : x∗(C) +
x∗
i ≥ 1} is a pack with f(P ′) > 0, for any possible C ⊆ [n] with x∗(C) < 1.
Let I0 := {i ∈ [n] : x∗

i = 0} and If := {i ∈ [n] : x∗
i ∈ (0, 1)}. From the

assumptions of this theorem, we know that α := max{|S| : x∗(S) < 1, S ⊆ If}
is a constant. For any T ⊆ I0 and S ⊆ If with x∗(S) < 1, it is easy to see that

{i ∈ [n] \ S : x∗(S) + x∗
i ≥ 1} = {i ∈ [n] \ (S ∪ T ) : x∗(S ∪ T ) + x∗

i ≥ 1}.

Hence, {i ∈ [n] \C : x∗(C) + x∗
i ≥ 1} is a pack with positive f value for some

C ⊆ [n] with x∗(C) < 1, if and only if {i ∈ [n] \ (C \ I0) : x∗(C \ I0) + x∗
i ≥ 1}

is a pack with positive value, where C \ I0 ⊆ If and x∗(C \ I0) = x∗(C) < 1.
Therefore, WI-SP can be solved by the following procedure:

1. For any S ⊆ If with x∗(S) < 1, construct the corresponding P ′ = {i ∈
[n] \ S : x∗(S) + x∗

i ≥ 1}.
2. Check if P ′ is a pack with f(P ′) > 0.
3. If the answer to the previous check is yes for some S ⊆ If with x∗(S) <

1, then the corresponding P ′ provides a yes-certificate to WI-SP, and its
corresponding WI separates x∗; If the answer is no for all S ⊆ If with
x∗(S) < 1, then x∗ cannot be separated by any WI from the knapsack
constraint aTx ≤ b.

Since α = max{|S| : x∗(S) < 1, S ⊆ If}, we have

|{S : x∗(S) < 1, S ⊆ If}| ≤
α
∑

k=0

(

n

k

)

= O(nα).

So this above procedure can be implemented in polynomial time, and we com-
plete the proof. ⊓⊔

In particular, Theorem 10 implies that, if x∗ has a constant number of
fractional components, then WI-SP can be solved in polynomial time. We
directly obtain the following corollary.

Corollary 4 If m is a constant and x∗ is an extreme point solution to (2),
then a separating WI can be obtained in polynomial time, if one exists.
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