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Abstract. Feasibility pumps are highly effective primal heuristics for mixed-
integer linear and nonlinear optimization. However, despite their success in
practice there are only few works considering their theoretical properties. We
show that feasibility pumps can be seen as alternating direction methods applied
to special reformulations of the original problem, inheriting the convergence
theory of these methods. Moreover, we propose a novel penalty framework that
encompasses this alternating direction method, which allows us to refrain from
random perturbations that are applied in standard versions of feasibility pumps
in case of failure. We present a convergence theory for the new penalty based
alternating direction method and compare the new variant of the feasibility
pump with existing versions in an extensive numerical study for mixed-integer
linear and nonlinear problems.

Due to their practical relevance, mixed-integer nonlinear problems (MINLPs)
form a very important class of optimization problems. One important part of
successful algorithms for the solution of such problems is finding feasible solutions
quickly. For this, typically heuristics are employed. These can be roughly divided
into heuristics that improve known feasible solutions (e.g., local branching [25] or
RINS [16]) and heuristics that construct feasible solutions from scratch. This article
discusses a heuristic of the latter type: The algorithm of interest in this article is the
so-called feasibility pump that has originally been proposed by Fischetti et al. in [24]
for MIPs and that has been extended by many other researchers, e.g., in [1–3, 6,
7, 17–19, 26, 34]. In addition, feasibility pumps have also been applied to MINLPs
during the last years; see, e.g., [4, 8, 9, 14, 15, 39, 40]. A more detailed review of
the literature about feasibility pumps is given in Section 1. For a comprehensive
overview over primal heuristics for mixed-integer linear and nonlinear problems in
general, we refer the interested reader to Berthold [4, 5] and the references therein.

In a nutshell, feasibility pumps work as follows: given an optimal solution of the
continuous relaxation of the problem, the methods construct two sequences. The
first one contains integer-feasible points, the second one contains points that are
feasible w.r.t. the continuous relaxation. Thus, one has found an overall feasible
point if these sequences converge to a common point. To escape from situations
where the construction of the sequences gets stuck and thus do not converge to a
common point, feasibility pumps usually incorporate randomized restarts.

The feasibility pumps described in the literature are difficult to analyze theoret-
ically due to the use of random perturbations. These random perturbations are,
however, crucial to the practical performance of the methods. The main object of
the existing theoretical analysis is the idealized feasibility pump, i.e., the method
without random perturbations. This is the method analyzed in the publications [17]
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and [6]. To be more specific, De Santis et al. show in [17] that idealized feasibility
pumps are a special case of the Frank–Wolfe algorithm applied to a suitable cho-
sen concave and nonsmooth merit function and Boland et al. showed in [6] that
idealized feasibility pumps can be seen as discrete versions of the proximal point
algorithm. However, the analysis presented in both mentioned publications cannot
be applied to feasibility pumps that use random perturbations. Recently, there has
been progress in the understanding of the randomization step. In [19], the authors
show that changing the randomization step can yield a method that, at least for
certain instances, is guaranteed to produce feasible solutions with high probability.

Our approach is similar to these publications. We show that the idealized
variant can be seen as an alternating direction method (ADM) applied to a special
reformulation of the mixed-integer problem at hand. To this end, we extend the
known theory on feasibility pumps by applying the convergence theory of general
ADMs. We then go one step further: The necessity to use random perturbations
comes from the need to escape from undesired points. We replace these random
perturbations of the original feasibility pump by a penalty framework. This allows
us to view feasibility pumps as penalty based alternating direction methods—a new
class of optimization methods for which we also present convergence theory. In
summary, we are able to give a convergence theory for a class of feasibility pumps
that incorporates deterministic restart rules. Another advantage is that our method
can be presented in a quite generic way that comprises both the case of mixed-integer
linear and nonlinear problems.

We further give extensive computational results to show that our replacement of
the random restarts also works well in practice. In particular, our method compares
favorably with published variants of feasibility pumps for MIPs and MINLPs w.r.t.
solution quality.

The paper is organized as follows: In Section 1 we review the main ingredients of
feasibility pumps and give a more detailed literature survey. Afterward, we discuss
general ADMs in Section 2 and show that idealized feasibility pumps can be seen
as ADMs applied to certain equivalent reformulations of the original problem. In
Section 3, we then present a penalty ADM, prove convergence results, and show
how this new method can be used to obtain a novel feasibility pump algorithm
that replaces random restarts with penalty parameter updates. In Section 4 we
discuss important implementation issues and Section 5 finally presents an extensive
computational study both for MIPs and MINLPs.

1. Feasibility Pumps

In this section we give an overview over feasibility pump algorithms for mixed-
integer linear problems (MIPs) as well as for mixed-integer nonlinear problems
(MINLPs). We start with the MIP case in Section 1.1 and afterward discuss
generalizations for nonlinear problems in Section 1.2. General surveys on this topic
can be found in Berthold [4] and Bonami et al. [10].

1.1. Feasibility Pumps for Mixed-Integer Linear Problems. The feasibility
pump has been introduced by Fischetti et al. [24] for binary MIPs and has been
extended to general MIPs by Bertacco et al. [3]. The goal of the feasibility pump is
to find a feasible point of a mixed-integer linear problem of the general form

min
x

c>x (1a)

s.t. Ax ≥ b, (1b)
xi ∈ Z for all i ∈ I, (1c)
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Algorithm 1 The basic feasibility pump for 0-1-MIPs

1: Compute x̄0 ∈ argmin{c>x : x ∈ P}.
2: if x̄0 is integer feasible then
3: return x̄0

4: end if
5: Set x̃0 = dx̄0c and k ← 0.
6: while not termination condition do
7: Compute x̄k+1 ∈ argmin{‖xI − x̃kI‖1 : x ∈ P}.
8: if x̄k+1 is integer feasible then
9: return x̄k+1

10: end if
11: Set x̃k+1 = dx̄k+1c.
12: if algorithm stalls or cycles then
13: perturb x̃k+1

14: end if
15: Set k ← k + 1.
16: end while

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and ∅ 6= I ⊆ {1, . . . , n}. Moreover, we assume
that variable bounds l ≤ x ≤ u with −∞ < li ≤ ui < ∞ for all i ∈ I are part
of Ax ≥ b. We refer to the polyhedron of the LP relaxation of (1) by P , i.e.,
P = {x ∈ Rn : Ax ≥ b}. Throughout the paper we assume that P 6= ∅. The
main idea of the feasibility pump is to create two sequences (x̄k) and (x̃k) such
that x̄k ∈ P and x̃k is integer feasible, i.e., x̃ki ∈ Z for all i ∈ I. In addition, the
construction of the sequences is tailored to minimize the distance of the pairs x̄k and
x̃k. The algorithm terminates after a given time, after an iteration limit has been
reached, or if the distance is zero, i.e., x̄k = x̃k. In the latter case, the algorithm
terminates with an MIP-feasible point, i.e., a point that is both in P and integer
feasible. We now describe the method in detail for the case of 0-1-MIPs, i.e., we
replace xi ∈ Z by xi ∈ {0, 1} in (1c). The initial point x̄0 is computed to be an
optimal solution of the LP relaxation of (1), i.e., x̄0 ∈ argmin{c>x : x ∈ P}, and the
initial point x̃0 of the other sequence is the rounding dx̄0c of the integer components
of x̄0. Note that the rounding operator d·c only rounds integer components, i.e.,

dxic :=

{
bxi + 0.5c, if i ∈ I,
xi, otherwise.

From then on, in each iteration k the new iterate x̄k+1 is the nearest point (w.r.t.
the integer components) to x̃k in the `1 norm, i.e.,

x̄k+1 ∈ argmin{‖xI − x̃kI‖1 : x ∈ P}
and x̃k+1 := dx̄k+1c. Here and in what follows, xI denotes the sub-vector of x only
consisting of the components indicated by the index set I. After every rounding
step a cycle and a stalling test decides whether a random perturbation of the integer
part of x̃k is applied. The details can be found in Bertacco et al. [3] and Fischetti
et al. [24]. A formal listing of the basic feasibility pump for binary MIPs is given
in Algorithm 1. In what follows, Line 7 of Algorithm 1 is referred to as the projection
step and Line 11 is called the rounding step. Note that the projection step can be
written as a linear program by reformulating the `1 norm objective as

‖xI − x̃I‖1 =
∑

i∈I:x̃i=0

xi +
∑

i∈I:x̃i=1

(1− xi).
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This is also possible for general MIPs but then requires the introduction of auxiliary
variables and constraints; see Bertacco et al. [3] for the details. The original feasibility
pump is very successful in quickly finding feasible solutions.

However, these solutions are often of minor quality. Thus, improvements of the
original version with the goal of developing variants of the feasibility pump that are
comparable in running time as well as success rate and provide solutions of better
quality are studied in many publications. Fischetti and Salvagnin [26] improved the
rounding step by replacing the simple rounding x̃k = dx̄kc with a procedure based
on constraint propagation. Other strategies of improving the rounding step are
given in Baena and Castro [2], where simple rounding is replaced with rounding of
different candidate points on a line segment between the solution of the projection
step and the analytic center of the LP polyhedron, and in Boland et al. [7], where
an integer line search is applied to find integer feasible points that are closer to P
than the points achieved by simple rounding. In contrast to these approaches,
Achterberg and Berthold [1] improved the projection step in order to achieve feasible
solutions of better quality by replacing the `1 norm objective ‖xI − x̃I‖1 with a
convex combination of this distance measure and the original objective function:

(1− α)‖xI − x̃I‖1 + αβc>x.

Here, α ∈ [0, 1] is the convex combination parameter and β ∈ R>0 is a problem
data depending scaling parameter; see [1] for the details.

None of the papers cited so far contains any theoretical results on the feasibility
pump. This situation changed with a remark in Eckstein and Nediak [23] notic-
ing that the idealized feasibility pump for binary MIPs can be interpreted as a
Frank–Wolfe algorithm (see Frank and Wolfe [27]) applied to the minimization of
a concave and nonsmooth objective function over a polyhedron. De Santis et al.
[17] seized this idea and proved this correspondence, yielding the first theoretical
result for the feasibility pump. To be more precise, they used the result shown
by Mangasarian in [36] that the Frank–Wolfe algorithm applied to the above given
situation terminates after a finite number of iterations and returns a so-called vertex
stationary point of the problem. We discuss the relation of this result with our
results in more detail in Section 2.1. In [18], De Santis et al. generalized their results
to general MIPs. Another theoretical result is presented by Boland et al. in [6],
where it is shown that the idealized feasibility pump can be interpreted as a discrete
version of the proximal point algorithm. We remark that both cited theoretical
investigations only consider the case of idealized feasibility pumps, i.e., the variants
of feasibility pumps without random perturbations used to handle cycling or stalling
issues.

1.2. Feasibility Pumps for Mixed-Integer Nonlinear Problems. We now
turn to feasibility pumps for mixed-integer nonlinear problems of the form

min
x

f(x) (2a)

s.t. h(x) ≥ 0, (2b)
xi ∈ Z ∩ [li, ui] for all i ∈ I, (2c)

where the objective function f : Rn → R and the constraints function h : Rn → Rp

are continuous. The feasible set of the NLP relaxation is denoted by Ωr := {x ∈ Rn :
h(x) ≥ 0}. Again, we assume that Ωr 6= ∅ holds and that Ωr is compact. Lastly, we
assume that all bounds on the discrete variables are finite, i.e., −∞ < li ≤ ui <∞
for all i ∈ I. The MINLP (2) is said to be convex if f and −h are convex.

For convex problems, the direct generalization of the feasibility pump for MIPs
to MINLPs is given in Bonami and Gonçalves [9]: the projection step LP is replaced
by an NLP and the rounding step stays the same, i.e., x̃k+1 := dx̄k+1c. Cycling and
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stalling issues are again handled by random perturbations of the integer components
of x. Variants of this method are then deduced by modifying the rounding step
and by replacing the `1 with the `2 norm in the projection step. The feasibility
pump for convex MINLP proposed in Bonami et al. [8] significantly differs from
the version in [9] because it replaces the simple rounding step by a MIP relaxation
of (2) that is successively tightened by adding outer approximation cuts (see Duran
and Grossmann [22]) based on the NLP feasible solutions obtained by solving the
`2 norm projection steps. Bonami et al. study two versions of their algorithm; a
basic and an enhanced one. For their basic version it is shown that it cannot cycle
if the LICQ holds for the NLP relaxation. For their enhanced version it is shown
that it cannot cycle and that it is an exact method for solving convex MINLPs if
all integer variables are bounded.

For nonconvex MINLPs the convergence results of Bonami et al. [8] do not hold
because the outer approximation cuts cannot be applied to the nonconvex NLP
relaxation and because the projection step is now a nonconvex problem, which is too
hard to be solved to global optimality in general. The article D’Ambrosio et al. [15]
is the first presentation of a feasibility pumps for nonconvex MINLPs. The above
mentioned issues are “resolved” by solving the nonconvex projection step NLP via a
multistart heuristic using local NLP solvers and the rounding step is realized by a
MIP using outer approximation cuts if they are globally valid for the nonconvex
problem. In the subsequent paper [14], D’Ambrosio et al. interpreted feasibility
pumps for general nonconvex MINLPs as variants of successive projection methods
(SPMs). Despite their strong similarity, the authors observe that typical feasibility
pumps do not fall exactly into the class of SPMs, which is why their convergence
theory is not applicable.

Finally, a generalization of the objective feasibility pump of Achterberg and
Berthold [1] is given in [39, 40] for convex MINLP and Berthold [4] discusses some
new algorithmic ideas for nonconvex MINLPs.

2. Alternating Direction Methods

In this section, we first briefly review classical alternating direction methods
(ADMs) and afterward prove that idealized feasibility pumps, i.e., the basic feasibility
pump (Algorithm 1) without random perturbations, can be seen as a special case of
alternating direction methods. This gives new theoretical insights since the complete
theory of ADMs can be applied to idealized feasibility pumps.

To this end, we consider the general problem

min
x,y

f(x, y) (3a)

s.t. g(x, y) = 0, h(x, y) ≥ 0, (3b)
x ∈ X, y ∈ Y, (3c)

for which we make the following assumption:

Assumption 1. The objective function f : Rnx+ny → R and the constraint func-
tions g : Rnx+ny → Rm, h : Rnx+ny → Rp are continuous and the sets X and Y
are non-empty and compact.

The feasible set is denoted by Ω, i.e.,

Ω = {(x, y) ∈ X × Y : g(x, y) = 0, h(x, y) ≥ 0} ⊆ X × Y,
and the corresponding projections onto X and Y are denoted by ΩX and ΩY ,
respectively. Classical alternating direction methods are extensions of Lagrangian
methods and have been originally proposed in Gabay and Mercier [28] and Glowinski
and Marroco [30]. More recently, ADM-type methods have seen a resurgence; see,
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Algorithm 2 A Standard Alternating Direction Method

1: Choose initial values (x0, y0) ∈ X × Y .
2: for k = 0, 1, . . . do
3: Compute

xk+1 ∈ argmin
x
{f(x, yk) : g(x, yk) = 0, h(x, yk) ≥ 0, x ∈ X}.

4: Compute

yk+1 ∈ argmin
y
{f(xk+1, y) : g(xk+1, y) = 0, h(xk+1, y) ≥ 0, y ∈ Y }.

5: Set k ← k + 1.
6: end for

e.g., [11] for a general overview and [29] for an application of ADMs to nonconvex
MINLPs from gas transport including heat power constraints. The latter application
also provided the motivation for this article. ADMs solve Problem (3) by solving
two simpler problems: Given an iterate (xk, yk) they solve Problem (3) for y fixed
to yk into the direction of x, yielding a new x-iterate xk+1. Afterward, x is fixed to
xk+1 and Problem (3) is solved into the direction of y, yielding a new y-iterate yk+1.
A formal listing is given in Algorithm 2. Note that we do not state a practical
termination criterion in Algorithm 2 in order to facilitate a more streamlined analysis.
For the implementation details we refer to Section 4.

If the optimization problem in Line 3 or Line 4 of Algorithm 2 has a unique
solution for all k, it is known that ADMs converge to so-called partial minima of
Problem (3), i.e., to points (x∗, y∗) ∈ Ω for which

f(x∗, y∗) ≤ f(x, y∗) for all (x, y∗) ∈ Ω,

f(x∗, y∗) ≤ f(x∗, y) for all (x∗, y) ∈ Ω

holds; see Gorski et al. [31] for the following result:

Theorem 2.1. Let
{

(xi, yi)
}∞
i=0

be a sequence with (xi+1, yi+1) ∈ Θ(xi, yi), where

Θ(xi, yi) := {(x∗, y∗) : ∀x ∈ X. f(x∗, yi) ≤ f(x, yi); ∀y ∈ Y. f(x∗, y∗) ≤ f(x∗, y)}.
Suppose that Assumption 1 holds and that the solution of the first optimization
problem is always unique. Then every convergent subsequence of

{
(xi, yi)

}∞
i=0

converges to a partial minimum. For two limit points z, z′ of such subsequences it
holds that f(z) = f(z′).

Stronger results can be obtained if additional assumptions are made on f and Ω:
If f is continuously differentiable, Algorithm 2 converges to a stationary point (in
the classical sense of nonlinear optimization). If, in addition, f and Ω are convex it
is easy to show that partial minimizers are also global minimizers of Problem (3).
For more details on the convergence theory of classical ADMs, see Gorski et al. [31]
as well as Wendell and Hurter [41].

2.1. Feasibility Pumps as ADMs. Recall that the basic feasibility pump algo-
rithm 1 tries to find a feasible solution for the binary variant of MIP (1). We now
consider the idealized feasibility pump, i.e., we omit the perturbation step in Line 13
of Algorithm 1, and show that the idealized feasibility pump is a special case of the
ADM (Algorithm 2) applied to a certain reformulation of MIP (1). To this end, we
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duplicate the variables xI using the new variable vector y ∈ {0, 1}I , yielding
min
x,y

c>x

s.t. x ∈ X := {x ∈ Rn : Ax ≥ b, xI ∈ [0, 1]
I},

y ∈ Y := {0, 1}I , g(x, y) = xI − y = 0,

which is obviously equivalent to the original MIP. Note that, compared to the
general problem (3), we do not explicitly require the inequality constraints vector h.
The feasibility pump is only interested in feasibility and thus ignores the objective
function. By deleting the objective from the reformulated model and instead moving
an `1 penalty term of the coupling condition y = xI into the objective, we obtain

min
x,y

‖xI − y‖1 (4a)

s.t. x ∈ X := {x ∈ Rn : Ax ≥ b, xI ∈ [0, 1]
I}, y ∈ Y := {0, 1}I . (4b)

If we define initial values (x0, y0) by x0 := argmin{c>x : x ∈ X} and y0 := dx0c,
it can be easily seen that solving Problem (4) with the ADM algorithm 2 exactly
corresponds to the idealized feasibility pump algorithm. To be more precise, finding
the new x-iterate within the ADM coincides with the projection step and finding
the new y-iterate corresponds to the rounding step.

In the context of Algorithm 2, we say that the sequence of iterates zk cycles if
there exists an iteration k and an l ≥ 2 with zk = zk+l. Next, we prove that the
ADM cannot cycle and thus terminates after a finite number of iterations. To this
end, we make the following observations: First, X and Y in (4) are non-empty and
compact sets. Second, we can assume uniqueness of the rounding step by resolving
tie-breaks choosing lexicographically minimal solutions. Thus, by using that norms
are continuous, we have the following result.

Lemma 2.2. Algorithm 2 does not cycle.

Proof. Assume the contrary, i.e., there exists an iteration k and an l ≥ 2 such
that zk, zk+1, . . . , zk+l = zk. Since f(xk+1, yk+1) ≤ f(xk+1, yk) ≤ f(xk, yk) holds
for all iterations k we directly see that f(zk) = f(zk+1) = · · · = f(zk+l−1) holds.
This, however, implies that zk is already a partial minimum at which the algorithm
stops. �

We note that this lemma is equivalent to Proposition 1 of De Santis et al. [17].
There, the authors show that the idealized feasibility pump for binary MIPs is
equivalent to the Frank–Wolfe algorithm (using an unitary stepsize) applied to the
problem

min
x∈P

∑
i∈I

min {xi, 1− xi} , (5)

where the objective function is a concave and nonsmooth merit function for measuring
integrality. Applying the convergence theory from [36] then also yields finite
termination at so-called vertex stationary points. Since we have now proven that the
ADM (Algorithm 2) applied to (4) is equivalent to the above mentioned special case
of the Frank–Wolfe method, we have also shown that partial minima of Problem (4)
are exactly the vertex stationary points of Problem (5).

From the theory reported above and the last lemma we can directly deduce the
following convergence theorem for the idealized feasibility pump.

Theorem 2.3. The idealized feasibility pump terminates at a partial mini-
mum (x∗, y∗) of Problem (4) after a finite number of iterations. If the partial
minimum (x∗, y∗) has objective value ‖x∗I − y∗‖1 = 0, the point (x∗, y∗) is feasible
for the MIP (1).
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This theorem also gives us a new view of the random perturbation steps of
feasibility pump algorithms: They can be interpreted as an attempt to escape from
non-integral partial optima of Problem (4).

So far, we have only discussed the case of binary MIPs. However, our theory is
still applicable as long as the optimization problems in Line 3 and 4 of Algorithm 2
are solved to global optimality. This is a realistic assumption for convex MINLPs of
type (2). The suitable generalization of Problem (4) for this problem class reads

min
x,y

‖xI − y‖1 (6a)

s.t. x ∈ X := {x ∈ Rn : h(x) ≥ 0, xI ∈ [0, 1]
I}, y ∈ Y := {0, 1}I . (6b)

We note that the resulting ADM is exactly the method presented in Bonami and
Gonçalves [9]. Using the same techniques as above, we get the following convergence
theorem for the idealized feasibility pump for convex MINLP.

Theorem 2.4. The idealized feasibility pump for convex MINLP (2) is equivalent
to the ADM algorithm 2 applied to Problem (6). Thus, it terminates at a partial
minimum (x∗, y∗) of Problem (6) after a finite number of iterations. If this partial
minimum has objective value ‖x∗I − y∗‖1 = 0, the point (x∗, y∗) is feasible for the
convex MINLP (2).

We close this section with two remarks. First, we note that we presented the
results in this section for binary MI(NL)Ps only for improving readability. The
extension to general mixed-integer problems is straightforward; see Section 4 for the
details. Second, we again want to highlight that the theoretical results presented in
this section only hold if the optimization problems in Line 3 and 4 of Algorithm 2 are
solved to global optimality. Since this is typically not possible for general nonconvex
MINLPs, the results are only practically valid for convex mixed-integer problems.

3. The Penalty Alternating Direction Method

In this section we first present a new penalty alternating direction method
in Section 3.1 and afterward prove the convergence results in Section 3.2. Finally, in
Section 3.3 we show how the new method can be used to obtain a novel feasibility
pump algorithm for general mixed-integer optimization. This new penalty alternating
direction method based feasibility pump replaces random perturbations with a
theoretically analyzable penalty framework for escaping from undesired intermediate
points. Thus, the complete theory presented for the new method also applies to the
new feasibility pump variant.

3.1. The Algorithm. We now present the novel weighted `1 penalty method based
on the classical ADM framework given in Section 2. To this end, we define the `1
penalty function

φ1(x, y;µ, ρ) := f(x, y) +

m∑
i=1

µi |gi(x, y)|+
p∑
i=1

ρi[hi(x, y)]
−
,

where [α]
− := max {0,−α} holds and µ = (µi)

m
i=1, ρ = (ρi)

p
i=1 ≥ 0 are the penalty

parameters for the equality and inequality constraints. Note that we allow for
different penalty parameters for the constraints instead of a single penalty parameter
as it is often the case for penalty methods.

The penalty ADM now proceeds as follows. Given a starting point and initial
values for all penalty parameters, the alternating direction method of Algorithm 2
is used to compute a partial minimum of the penalty problem

min
x,y

φ1(x, y;µ, ρ) s.t. x ∈ X, y ∈ Y. (7)
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Algorithm 3 The `1 Penalty Alternating Direction Method

1: Choose initial values (x0,0, y0,0) ∈ X × Y and penalty parameters µ0, ρ0 ≥ 0.
2: for k = 0, 1, . . . do
3: Set l = 0.
4: while (xk,l, yk,l) is not a partial minimum of (7) with µ = µk and ρ = ρk do
5: Compute xk,l+1 ∈ argminx{φ1(x, yk,l;µk, ρk) : x ∈ X}.
6: Compute yk,l+1 ∈ argminy{φ1(xk,l+1, y;µk, ρk) : y ∈ Y }.
7: Set l← l + 1.
8: end while
9: Choose new penalty parameters µk+1 ≥ µk and ρk+1 ≥ ρk.

10: end for

Afterward, the penalty parameters are updated and the next penalty problem is
solved to partial minimality. Thus, the algorithm produces a sequence of partial
minima of a sequence of penalty problems of type (7). More formally, the method
is specified in Algorithm 3.

3.2. Convergence Theory. We now present the convergence results for the penalty
ADM algorithm 3. We start by proving that partial minima of the penalty problems
are partial minima of the original problem if they are feasible.

Lemma 3.1. Assume that (x∗, y∗) is a partial minimum of φ1(x, y;µ, ρ) for arbi-
trary but fixed µ, ρ ≥ 0 and let (x∗, y∗) be feasible for Problem (3). Then (x∗, y∗) is
a partial minimum of Problem (3).

Proof. Let x ∈ X such that (x, y∗) is feasible for Problem (3). Then it holds

f(x, y∗) = f(x, y∗) +

m∑
i=1

µi |gi(x, y∗)|+
p∑
i=1

ρi[hi(x, y
∗)]
−

= φ1(x, y∗;µ, ρ) ≥ φ1(x∗, y∗;µ, ρ)

= f(x∗, y∗) +

m∑
i=1

µi |gi(x∗, y∗)|+
p∑
i=1

ρi[hi(x
∗, y∗)]

−

= f(x∗, y∗).

The analogous inequality holds for all y ∈ Y such that (x∗, y) is feasible. Thus,
(x∗, y∗) is a partial minimum of Problem (3). �

For the next theorem we need some more notation. Let χ be the `1 feasibility
measure of Problem (3), which we define as

χ(x, y) :=

m∑
i=1

|gi(x, y)|+
p∑
i=1

[hi(x, y)]
−
.

Obviously, χ(x, y) ≥ 0 holds and χ(x, y) = 0 if and only if (x, y) is feasible w.r.t. g
and h. Moreover, we define the weighted `1 feasibility measure as

χµ,ρ(x, y) :=

m∑
i=1

µi |gi(x, y)|+
p∑
i=1

ρi[hi(x, y)]
−
,

i.e., our `1 penalty function can be stated as

φ1(x, y;µ, ρ) = f(x, y) + χµ,ρ(x, y).

The next theorem states that the sequence of partial minima of the iteratively solved
penalty problems converges to a partial minimum of χµ,ρ.
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Lemma 3.2. Suppose that Assumption 1 holds and that µki ↗ ∞ for all i =
1, . . . ,m and ρki ↗ ∞ for all i = 1, . . . , p. Moreover, let (xk, yk) be a sequence
of partial minima of (7) (for µ = µk and ρ = ρk) generated by Algorithm 3 with
(xk, yk)→ (x∗, y∗). Then there exist weights µ̄, ρ̄ ≥ 0 such that (x∗, y∗) is a partial
minimizer of the feasibility measure χµ̄,ρ̄.

Proof. Let (xk, yk) be a partial minimizer of φ1(x, y;µk, ρk), i.e.,

φ1(x, yk;µk, ρk) ≥ φ1(xk, yk;µk, ρk) for all x ∈ X,

φ1(xk, y;µk, ρk) ≥ φ1(xk, yk;µk, ρk) for all y ∈ Y,
which is equivalent to

f(x, yk) +

m∑
i=1

µki
∣∣gi(x, yk)

∣∣+

p∑
i=1

ρki [hi(x, y
k)]
−

≥ f(xk, yk) +

m∑
i=1

µki
∣∣gi(xk, yk)

∣∣+

p∑
i=1

ρki [hi(x
k, yk)]

−
(8)

for all x ∈ X and

f(xk, y) +

m∑
i=1

µki
∣∣gi(xk, y)

∣∣+

p∑
i=1

ρki [hi(x
k, y)]

−

≥ f(xk, yk) +

m∑
i=1

µki
∣∣gi(xk, yk)

∣∣+

p∑
i=1

ρki [hi(x
k, yk)]

−
(9)

for all y ∈ Y . The sequence (µk, ρk) ⊆ Rm+p is unbounded but the normalized
sequence

(µk, ρk)

‖(µk, ρk)‖
⊆ Rm+p,

is bounded. Thus, there exists a subsequence (indexed by l) of the normalized
sequence such that

(µl, ρl)

‖(µl, ρl)‖
→ (µ̄, ρ̄) for l→∞.

Division of (8) and (9) by ‖(µl, ρl)‖ yields

1

‖(µl, ρl)‖
f(x, yl) +

m∑
i=1

µli
‖(µl, ρl)‖

∣∣gi(x, yl)∣∣+

p∑
i=1

ρli
‖(µl, ρl)‖

[hi(x, y
l)]
−

≥ 1

‖(µl, ρl)‖
f(xl, yl) +

m∑
i=1

µli
‖(µl, ρl)‖

∣∣gi(xl, yl)∣∣+

p∑
i=1

ρli
‖(µl, ρl)‖

[hi(x
l, yl)]

−

for all x ∈ X and

1

‖(µl, ρl)‖
f(xl, y) +

m∑
i=1

µli
‖(µl, ρl)‖

∣∣gi(xl, y)
∣∣+

p∑
i=1

ρli
‖(µl, ρl)‖

[hi(x
l, y)]

−

≥ 1

‖(µl, ρl)‖
f(xl, yl) +

m∑
i=1

µli
‖(µl, ρl)‖

∣∣gi(xl, yl)∣∣+

p∑
i=1

ρli
‖(µl, ρl)‖

[hi(x
l, yl)]

−

for all y ∈ Y . Finally, by using that the limit preserves non-strict inequalities,
linearity of the limit, and continuity of f, g, and h, for l→∞ we obtain

m∑
i=1

µ̄i |gi(x, y∗)|+
p∑
i=1

ρ̄i[hi(x, y
∗)]
− ≥

m∑
i=1

µ̄i |gi(x∗, y∗)|+
p∑
i=1

ρ̄i[hi(x
∗, y∗)]

−
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for all x ∈ X and
m∑
i=1

µ̄i |gi(x∗, y)|+
p∑
i=1

ρ̄i[hi(x
∗, y)]

− ≥
m∑
i=1

µ̄i |gi(x∗, y∗)|+
p∑
i=1

ρ̄i[hi(x
∗, y∗)]

−

for all y ∈ Y . This is equivalent to

χµ̄,ρ̄(x, y
∗) ≥ χµ̄,ρ̄(x∗, y∗) for all x ∈ X,

χµ̄,ρ̄(x
∗, y) ≥ χµ̄,ρ̄(x∗, y∗) for all y ∈ Y

and thus completes the proof. �

The two preceding lemmas now enable us to characterize the overall convergence
behavior of the penalty ADM algorithm 3.

Theorem 3.3. Suppose that Assumption 1 holds and that µki ↗ ∞ for all i =
1, . . . ,m and ρki ↗ ∞ for all i = 1, . . . , p. Moreover, let (xk, yk) be a sequence
of partial minima of (7) (for µ = µk and ρ = ρk) generated by Algorithm 3 with
(xk, yk)→ (x∗, y∗). Then there exist weights µ̄, ρ̄ ≥ 0 such that (x∗, y∗) is a partial
minimizer of the feasibility measure χµ̄,ρ̄.

If, in addition, (x∗, y∗) is feasible for the original problem (3), the following holds:
a) If f is continuous, then (x∗, y∗) is a partial minimum of (3).
b) If f is continuously differentiable, then (x∗, y∗) is a stationary point of (3).
c) If f is continuously differentiable and f and Ω are convex, then (x∗, y∗) is

a global optimum of (3).

Proof. The first part always holds by Lemma 3.2. If, in addition, the obtained
partial minimum of χµ̄,ρ̄ satisfies χµ̄,ρ̄(x∗, y∗) = 0, we can apply Lemma 3.1 and
obtain the statements a)–c). �

In the next theorem we generalize the classical result on the exactness of the
`1 penalty function (see, e.g., [33, 37]) to the setting of partial minima. For the
ease of presentation, we state and prove this result only for the case without
inequality constraints. However, the result can also be applied to problems including
inequality constraints by using standard reformulation techniques to translate
inequality constrained to equality constrained problems. Beforehand, we need two
assumptions:

Assumption 2. The objective function f : X × Y → R of Problem (3) is locally
Lipschitz continuous in the direction of x and of y, i.e., for every (x∗, y∗) ∈ Ω there
exists an open set N(x∗, y∗) containing (x∗, y∗) and a constant L ≥ 0 such that

|f(x, y∗)− f(x∗, y∗)| ≤ L‖x− x∗‖ for all x with (x, y∗) ∈ N(x∗, y∗),

|f(x∗, y)− f(x∗, y∗)| ≤ L‖y − y∗‖ for all y with (x∗, y) ∈ N(x∗, y∗).

Note that if one set, say Y , is discrete, the corresponding condition is trivially
satisfied. In this case any set of the form (U, {y∗}), where U ⊆ X is an open
neighborhood around x∗, is an open neighborhood around (x∗, y∗).

Assumption 3. For every constraint gi, i = 1, . . . ,m, there exists a constant li > 0
such that

li‖x− x∗‖ ≤ |gi(x, y∗)− gi(x∗, y∗)| for all x with (x, y∗) ∈ N(x∗, y∗),

li‖y − y∗‖ ≤ |gi(x∗, y)− gi(x∗, y∗)| for all y with (x∗, y) ∈ N(x∗, y∗).

Note that in the case of existing directional derivatives of gi, the latter assumption
states that the directional derivatives of the gi both in the direction of x and of y are
bounded away from zero. Before we state and proof the exactness theorem we briefly
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discuss the latter assumption. In the context of ADMs, the constraints g(x, y) = 0
are mostly so-called copy constraints of the type

g(x, y) = A(x− y) = 0

that are used to decompose the genuine problem formulation such that it fits into
the framework of Problem (3); see, e.g., Nowak [38]. If the matrix A is square and
has full rank—as it is typically the case for copy constraints—the constraints g are
bi-Lipschitz and thus fulfill Assumption 3. Now, we are ready to state and prove
the theorem on exactness of the `1 penalty function w.r.t. partial minima.

Theorem 3.4. Let (x∗, y∗) be a partial minimizer of

min
x,y

f(x, y) s.t. g(x, y) = 0, x ∈ X, y ∈ Y, (10)

and suppose that Assumptions 2 and 3 hold. Then there exists a constant µ̄ > 0
such that (x∗, y∗) is a partial minimizer of

min
x,y

φ1(x, y;µ) s.t. x ∈ X, y ∈ Y

for all µ ≥ µ̄ and

φ1(x, y;µ) := f(x, y) +

m∑
i=1

µi |gi(x, y)| .

Proof. Since (x∗, y∗) is a partial minimizer of Problem (10), it holds that

f(x, y∗) ≥ f(x∗, y∗) for all (x, y∗) ∈ Ω, (11a)
f(x∗, y) ≥ f(x∗, y∗) for all (x∗, y) ∈ Ω, (11b)

where Ω is the feasible region of Problem (10). First, assume that (x, y∗) is feasible
for Problem (10). Using (11) we obtain

φ1(x∗, y∗;µ) = f(x∗, y∗) +

m∑
i=1

µi |gi(x∗, y∗)|

= f(x∗, y∗) ≤ f(x, y∗)

= f(x, y∗) +

m∑
i=1

µi |gi(x, y∗)|

= φ1(x, y∗;µ)

for all µ. The inequality

φ1(x∗, y∗;µ) ≤ φ1(x∗, y;µ)

can be shown analogously assuming that (x∗, y) is feasible.
We now consider the case that (x, y∗) is not feasible for Problem (10). We set

µ̄ := L/(ml̄)e > 0, where l̄ := mini=1,...,m {li} , e = (1, . . . , 1)
> ∈ Rm, and show

that for all µ ≥ µ̄ the inequality

f(x, y∗) +

m∑
i=1

µi |gi(x, y∗)| ≥ f(x∗, y∗) +

m∑
i=1

µi |gi(x∗, y∗)| (12)

holds for all x ∈ X. Since (x∗, y∗) is feasible for Problem (10), Inequality (12) is
equivalent to

m∑
i=1

µi |gi(x, y∗)| ≥ f(x∗, y∗)− f(x, y∗).
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In the following, we use that for each (x, y) ∈ X × Y , Assumption 2 also implies the
global Lipschitz continuity of f on the compact sets X × {y} and {x} × Y . From
the definition of µ̄ and the Assumptions 2 and 3 we obtain

m∑
i=1

µi |gi(x, y∗)| ≥ µ̄
m∑
i=1

|gi(x, y∗)| = µ̄

m∑
i=1

|gi(x, y∗)− gi(x∗, y∗)|

≥ µ̄

m∑
i=1

li‖x− x∗‖ ≥ µ̄ml̄‖x− x∗‖ = L‖x− x∗‖

≥ |f(x∗, y∗)− f(x, y∗)| ≥ f(x∗, y∗)− f(x, y∗).

Thus, (12) holds for all µ ≥ µ̄. Analogously, it can be shown that the inequality

f(x∗, y) +

m∑
i=1

µi |gi(x∗, y)| ≥ f(x∗, y∗) +

m∑
i=1

µi |gi(x∗, y∗)|

holds for all y ∈ Y . �

3.3. The Penalty ADM as a Feasibility Pump. In this section we discuss the
application of the proposed penalty alternating direction method as a new variant of
a feasibility pump algorithm for convex MINLPs. The motivation is the following:
We have seen in the last section that idealized, i.e., perturbation-free, feasibility
pumps for convex MINLPs terminate at partial minima after a finite number of
iterations. However, it is possible that the obtained partial minimum is not integer
feasible. Feasibility pumps typically try to resolve this problem by applying a random
perturbation of the integer components. This procedure has the significant drawback
that it renders a convergence theory of the overall method (almost) impossible. In
contrast to these random perturbations, the method we propose uses a theoretically
analyzable penalty framework to escape integer infeasible partial minima.

We start by rewriting Problem (2) by again duplicating the integer components xI
of x and obtain

min
x,y

f(x) s.t. h(x) ≥ 0, xI = y, y ∈ ZI ∩ [lI , uI ]. (13)

With the compact sets

X := {x : h(x) ≥ 0}, Y := ZI ∩ [lI , uI ]

and the additional equality constraints

g(x, y) = xI − y = 0

we can apply Algorithm 3 to Problem (13). Note that the problem interfaced to
the penalty ADM does not contain any inequality constraints explicitly since we
moved them to the set X. This also simplifies the `1 penalty function φ1(x, y;µ, ρ)
to φ1(x, y;µ). In the lth ADM iteration of the kth penalty iteration of Algorithm 3
the two subproblems being solved are

min
x∈X

φ1(x, yk,l;µk),

which can be written as

min
x

f(x) +
∑
i∈I

µki

∣∣∣xi − yk,li ∣∣∣ s.t. h(x) ≥ 0, (14)

and
min
y∈Y

φ1(xk,l+1, y;µk),

which can be written as

min
y

f(xk,l+1) +
∑
i∈I

µki

∣∣∣xk,l+1
i − yi

∣∣∣ s.t. y ∈ ZI ∩ [lI , uI ]. (15)
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Note that Problem (14) is the NLP relaxation of (2), where the original objective
function is augmented by a weighted `1 penalty term. Note further that solving
Problem (15) simply means to apply a weighted rounding of the variables yi, i ∈ I.

4. Implementation Issues

In this section we comment on important implementation issues. First, we rewrite
Problem (13) by replacing the coupling equality xI = y by inequality constraints
in order to be able to penalize a coupling error xi > yi, i ∈ I, different than the
error yi > xi. In addition, we also explicitly state all variable bounds from now on.
Thus, we obtain

min
x,y

f(x)

s.t. h(x) ≥ 0, x ∈ [l, u],

xI ≥ y, y ≥ xI , y ∈ ZI ∩ [lI , uI ].

In other words, we slightly modified the compact and non-empty constraint sets to

X := {x ∈ [l, u] : h(x) ≥ 0}, Y := ZI ∩ [lI , uI ]

and replaced the coupling equalities by coupling inequalities. The two subprob-
lems (14) and (15) that are solved within the lth ADM iteration of the kth penalty
iteration are now given by

min
x

f(x) +
∑
i∈I

(
¯
ρki [xi − yk,li ]

−
+ ρ̄ki [yk,li − xi]

−)
(16a)

s.t. h(x) ≥ 0, x ∈ [l, u], (16b)

and

min
y

f(xk,l+1) +
∑
i∈I

(
¯
ρki [xk,l+1

i − yi]
−

+ ρ̄ki [yi − xk,l+1
i ]

−)
(17a)

s.t. y ∈ ZI ∩ [lI , uI ], (17b)

i.e., we also replaced the single penalty parameters µi for the equality coupling
constraints in Problem (13) by two new penalty parameters

¯
ρi and ρ̄i for the lower

and upper violation of the coupling.
In order to actually implement the penalty ADM based feasibility pump for

MINLPs, we follow Achterberg and Berthold [1] and scale the objective function of
Problem (16) such that the impact of the `1 penalty terms and the original objective
function f can be balanced. This balancing between feasibility and optimality is
done using the parameter αk ∈ [0, 1]. Additionally, we again rewrite the `1 penalty
terms in the objective function. To this end, we denote the set of indices of binary
variables by B ⊆ I, introduce the variables d+

i , d
−
i ≥ 0 for all i ∈ I \B, and rewrite

Problem (16) as

min
x,d

αk
√
|I|

‖∇f(x(0,0))‖
f(x) + (1− αk)χ̃(xB , dI\B ; ρ±I )

s.t. h(x) ≥ 0, x ∈ [l, u],

d+
i ≥ xi − y

k,l
i for all i ∈ I \B,

d−i ≥ y
k,l
i − xi for all i ∈ I \B,

d−i , d
+
i ≥ 0

(18)

with

χ̃(xB , dI\B ; ρ±I ) :=
∑
i∈B0

¯
ρki xi +

∑
i∈B1

ρ̄ki (1− xi) +
∑
i∈I\B

(
¯
ρki d

+
i + ρ̄ki d

−
i

)
,
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where B0 := {i ∈ B : yk,li = 0} and B1 := {i ∈ B : yk,li = 1}. For binary MINLPs,
i.e., I = B, only the objective function of Problem (18) may change from one
iteration to the next. This is of special importance for mixed-integer linear problems
since then the optimal simplex basis obtained in iteration k yields a primal feasible
starting basis for iteration k + 1. However, when I 6= B, the optimal basis obtained
from iteration k is generally (primal and dual) infeasible for the LP that has to be
solved in iteration k + 1.

Since f(xk,l+1) is constant and αk ∈ [0, 1], solving Problem (17) is equivalent to
solving the |I| independent problems

yk,l+1
i := argmin

yi

{
¯
ρki [xk,l+1

i − yi]
−

+ ρ̄ki [yi − xk,l+1
i ]

− ∣∣∣ yi ∈ Z ∩ [li, ui]
}
, i ∈ I.

The solutions to these problems can be stated explicitly:

yk,l+1
i =

{
dxk,l+1
i e, if ρ̄ki (dxk,l+1

i e − xk,l+1
i ) ≤

¯
ρki (xk,l+1

i − bxk,l+1
i c),

bxk,l+1
i c, otherwise.

Finally, we have a look on the update of the penalty parameters. An update
takes place, whenever the inner ADM loop terminates. In our implementation, we
terminate the kth penalty iteration if ‖(xk,l, yk,l) − (xk,l−1, yk,l−1)‖∞ ≤ ε holds,
where ε = 10−5. For the actual update of the penalty parameters, we set

¯
ρk+1
i =

{
inc(

¯
ρki ), if yk,l+1

i = dxk,l+1
i e,

¯
ρki , otherwise,

ρ̄k+1
i =

{
inc(ρ̄ki ), if yk,l+1

i = bxk,l+1
i c,

ρ̄ki , otherwise,

where the penalty parameter update operator inc(a) may be any function with
inc(a) > a, e.g., inc(a) = a+ 1 or inc(a) = 10a are used in our computational study.
This way, unsuccessful rounding down of the same variable is eventually followed by
rounding up of this variable due to increasingly penalizing rounding down and vice
versa. Similarly, the conventional feasibility pump algorithm tries to escape from
repeated rounding in the “wrong” direction by randomly switching the rounding
direction from time to time; see Fischetti et al. [24]. Finally, we set αk+1 = λαk

with λ ∈ (0, 1) whenever the penalty parameters are updated.
We note that choosing α0 = 0 in our penalty alternating direction method based

feasibility pump is similar to the feasibility pump presented in Bertacco et al. [3]
and Fischetti et al. [24], while choosing α0 = 1 yields an algorithm the behaves
similar to the objective feasibility pump algorithm presented by Achterberg and
Berthold [1]. Lastly, we note that for α0 = 0, we also have αk = 0 for all k > 0. In
this case the first term of the objective function of Problem (18) vanishes for all k, l.
In any other case, we can divide the entire objective function by αk to be conformal
to the theoretical setting presented in previous sections.

5. Computational Results

In this section we present extensive numerical results for the penalty ADM based
feasibility pump introduced in Section 3 and 4. Since our method is completely
generic in terms of the problem type to which it is applied, we present computational
results both for MIPs in Section 5.1 and for (convex as well as nonconvex) MINLPs
in Section 5.2.

Throughout this section we use log-scaled performance profiles as proposed
by Dolan and Moré [20] to compare running times and solution quality. As it
is always the case for log-scaled performance profiles the axes have the following
meaning: If (x, y) lies on a profile curve, this means that the respective solver is
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Figure 1. Non-dominated parameterizations λ ∈ {0.9, 0.95, 0.99},
inc ∈ {incm, inca} (all with activated Gurobi presolve) for the
penalty ADM based feasibility pump for MIPs. Top: primal-dual
gap. Bottom: running times.

not more than 2x-times worse than the best solver on 100y% of the problems of
the test set. Running times are always given in seconds and, following [35], solution
quality is measured by the primal-dual gap defined by

gap =
bp − bd

inf{|z| : z ∈ [bd, bp]}
, (19)

where bp is the primal and bd is the dual bound, respectively. Additionally, we set
gap =∞ whenever bd < 0 ≤ bp and gap = 0 if bd = bp = 0.

All computational experiments have been executed on a 12 core Xeon 5650
“Westmere” chip running at 2.66 GHz with 12 MB shared cache per chip and 24 GB
of DDR3-1333 RAM. The time limit is set to t+ = 1 h without any limit on the
number of iterations for the outer penalty and the inner ADM loop. Additional
information about the computational setup and the implementation details are given
in the respective sections.

5.1. Mixed-Integer Linear Problems. We start with discussing the results of
our algorithm applied to mixed-integer linear problems. For MIPs, our algorithm
is implemented in C++ and uses Gurobi 6.5.0 [32] for solving the LP subproblems.
We use Gurobi’s option deterministic concurrent for the first LP and solve
all succeeding LPs using the primal simplex method; see Section 4. The C++
code has been compiled with gcc 4.8.4 using the optimization flag o3. First, we
present a parameter study. Our penalty ADM based feasibility pump can be
instantiated using different choices for certain algorithmic parameters: The initial
convex combination parameter α0 for weighting the objective function and the
distance function χ̃ (see Problem (18)) is always set to α0 = 1, emulating the
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Figure 2. Performance profiles of primal-dual gap (left) and run-
ning times (right) for the winner parameterizations λ = 0.9, acti-
vated Gurobi presolve, and inc ∈ {incm, inca} for MIPs

objective feasibility pump of Achterberg and Berthold [1]. The parameter λ for
updating the convex combination parameter is varied in the set {0.9, 0.95, 0.99} in
our parameter study and the penalty parameter update operator can be chosen to
be the additive variant inca(x) = x+ 1 or the multiplicative variant incm(x) = 10x.
In addition, we also tested the impact of (de)activating the MIP presolve of Gurobi
before applying our method. Thus, combining the different choices for λ, inc,
and the (de)activation of Gurobi’s presolve leads to 12 parameter combinations.
We applied every of these 12 variants of our method to solve the MIPLIB 2010
benchmark test set excluding the infeasible instances ash608gpia-3col, enlight14, and
ns1766074. This yields a test set of 84 instances; see Koch et al. [35]. In order to
determine the best parameterization, we compare all 12 variants using performance
profiles, where the performance measure is chosen as defined in (19). We then
exclude a parameterization p if another parameterization p′ exists that dominates
p. Here, domination is defined by a performance profile completely left-above the
other one. This yields the exclusion of deactivating Gurobi’s presolve and, thus,
6 remaining parameterizations; λ ∈ {0.9, 0.95, 0.99} and inc ∈ {incm, inca}. The
corresponding performance profiles are given in Figure 1. It can be seen that lower
values for λ yield more robust instantiations of the algorithm, i.e., the number of
instances for which a feasible solution can be found is larger. Additionally, all tested
variants solve 5 out of 84 instances to global optimality, except for the variant
with λ = 0.95 and inca penalty parameter update rule, which solves 6 instances
to global optimality. Altogether, the six parameter choices are quite comparable.
Turning to running times, it can be clearly seen that smaller values of λ also lead
to shorter running times. Thus, our parameter study suggests to activate the
MIP presolve of Gurobi, to choose λ = 0.9, and to leave the choice of the penalty
parameter update rule inc ∈ {incm, inca} as an option for the user. Figure 2 shows
the performance profiles for solution quality (left) and running times (right) for
these “winning” parameterizations. We again see that some instances are solved to
global optimality1 and that both parameterizations of our algorithm find a feasible
solution for approximately 90 % of the MIPLIB 2010 benchmark instances (75 out
of 84 instances for the inca update rule and 76 for the multiplicative rule incm).
Moreover, the multiplicative update operator incm yields a slightly more robust
algorithm, i.e., it finds a feasible solution for a few more instances than the additive

1The instances triptim1, pigeon-10, enlight13, ex9, and ns1758913 are solved to global optimality
using the incm penalty update rule and ns1208400, triptim1, acc-tight5, enlight13, ex9, and ns1758913
are solved to global optimality using inca.
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Figure 3. The two winner parameterizations (see Figure 2) with
and without local branching compared to the objective feasibility
pump (OFP) by Achterberg and Berthold [1]

version inca. The right part of Figure 2 compares the two winner instantiations
w.r.t. running times. It can be seen that the additive inca update operator tends to
result in a faster algorithm for significantly more instances than the multiplicative
version (59.5 % vs. 38.1 %).

Next, we compare our penalty ADM based feasibility pump with the objective
feasibility pump of Achterberg and Berthold [1]. In order to achieve a fair comparison,
we extend our method with a local branching strategy with an additional k-opt
neighborhood constraint with k = min {20, b|I|/10c} and a time limit t+ − t∗;
see Fischetti and Lodi [25]. Here t∗ denotes the time spent in the penalty ADM based
feasibility pump itself. Thus, the local branching stage serves as an improvement
heuristic as it is also the case in [1]. As test instances we use all MIPLIB 2010
and MIPLIB 2003 instances that have been used in [1] as well. Figure 3 shows the
primal-dual gap performance profiles of the two winner parameterizations (λ = 0.9
and inc ∈ {incm, inca}) with and without local branching applied as an additional
improvement heuristic as well as the corresponding performance profile curve based
on the results reported by Achterberg and Berthold [1]. First of all, it can be
seen that all five methods find a feasible solution for at least 90.2 % of the tested
instances, which underpins the strength of feasibility pumps in general. Comparing
only the different parameterization of our method we see that the incm update rule
with local branching outperforms the version without local branching and both
variants using the additive penalty update rule. The latter also performs similar
independent of whether local branching is used or not, whereas the local branching
stage significantly improves the solution quality when the incm rule is used (in
which case we find a global optimal solution for 11.5 %; compared to 8.2 % for
the objective feasibility pump of Achterberg and Berthold [1]). One sees that the
multiplicative update rule together with local branching slightly outperforms the
objective feasibility pump of Achterberg and Berthold [1] w.r.t. solution quality.

We now turn to a comparison with the MIP solver SCIP 3.2.1. We used SCIP
instead of, e.g., Cplex or Gurobi, for our comparison with a state-of-the-art MIP
solver because SCIP is the only solver that allows to completely de-activate all
other components of the solution process such that we can compare solution quality
and running times. To this end, we de-activated SCIP’s presolve, all cuts, and all
heuristics except for the feasibility pump.2 We also use a time limit of 1 h, stop the
algorithm after finding the first feasible solution, and use Cplex 12.6 as the internal

2The feasibility pump specific SCIP parameters are heuristics/feaspump/maxloops=-1,
heuristics/feaspump/maxlpiterofs=2147483647, heuristics/feaspump/maxlpiterquot=1e10,
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and without local branching compared to the feasibility pump
implementation for MIPs of SCIP: primal dual gap (left) and running
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Figure 5. Left: Cumulative distribution function of absolute
running times (x-axis; in s) for two winner parameterizations inc ∈
{incm, inca} on all MIPLIB 2010 instances. Right: Cumulative
distribution function of absolute running times (x-axis; in s) on all
MINLPLib2 instances

LP solver. To be comparable with our feasibility pump implementation that uses
Gurobi’s preprocessing, we presolved all 84 MIPLIB 2010 instances with Gurobi and
solved these presolved instances with SCIP’s feasibility pump implementation. The
results are given in Figure 4. The left figure shows the performance profile of the
primal-dual gap. We see that we are again comparable in terms of solution quality
and that our solutions tend to have a slightly better objective value. Moreover, we
find a feasible solution for up to approximately 90 % of all instances, whereas SCIP
finds a feasible point for slightly more than 75 %. However, this comes at the price
of significantly larger running times; see Figure 4 (right). SCIP is faster for almost
all instances and solves most of them within approximately 10 s. Although we did
not try to tune our code extensively so far, the latter comparison shows that there
is still a strong potential and a lot of work to do if our code should be competitive
with a state-of-the-art heuristic w.r.t. running times.

In Figure 5 (left) cumulative distribution functions for absolute running times are
given for both winner parameterizations of our algorithm for MIPs. It can be seen
that for approximately 25 % of all instances a feasible solution is found in at most

and heuristics/feaspump/maxstallloops=-1. They are used to avoid a too early stopping of
SCIP’s feasibility pump.
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Figure 6. Number of fractional integer components (dots) and to-
tal fractionality (solid line) vs. ADM iterations. Penalty parameter
updates are marked with small black vertical lines on top of the
ADM iteration axis.

1 s and 50 % to 60 % of all instances have been solved to feasibility within 10 s. The
geometric mean of the running times taken over all instances for which a feasible
solution has been found within the time limit is 4.56 s for inc = incm and 4.94 s for
inc = inca. The running times for all instances can be found in Appendix A.

We close this section with an exemplary discussion of the course of integer
(in)feasibility during the iterations of our method. Figure 6 shows the approximately
50 last iterations of our method applied to the MIPLIB 2010 instance rococoC10-
001000. Dots correspond to numbers of fractional integer components and the solid
line represents the course of the total fractionality measure∑

i∈I
|xi − bxi + 0.5c|

of solutions x of the continuous subproblems over the subsequent ADM iterations.
The small black lines on top of the ADM iteration axis denote iterations at which
the penalty parameters are updated.

First of all, we see that penalty parameter updates are applied whenever the
ADM of the inner loop stalls, i.e., whenever the ADM of the inner loop entered an
undesired integer infeasible partial minimum. The method stops after 295 ADM
iterations with an integer feasible partial minimum. As expected, we typically see a
sawtooth phenomenon: The total fractionality decreases between two consecutive
penalty parameter updates and increases after a penalty parameter update. The
number of fractional integer components follows this behavior qualitatively. The
number of ADM iterations between two consecutive penalty parameter updates
varies between 3 to 6 iterations. Thus, convergence to partial minima does not seem
to be challenging for this specific instance.

5.2. Mixed-Integer Nonlinear Problems. We now turn to mixed-integer nonlin-
ear programs. The penalty based ADM for this class of models has been implemented
in C++ using the so-called GAMS Expert-level API with GAMS 24.5.4 [13]. The
continuous relaxation models are solved with CONOPT 3.17A [21]. According to the
results from Section 5.1 we choose the parameters α0 = 1 and λ = 0.9. The penalty
parameter update rule is chosen to be inca(x) = x+ 1 since this variant turned out
to be favorable for MINLPs. We set the time limit to 1 h as for the MIP experiments
and we do not incorporate any iteration limits for the inner ADM and the outer
penalty loop. Throughout this section we declare an MINLP instance as solved to
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Figure 7. Left: Performance profiles for the primal-dual gap of
the penalty ADM based feasibility pump (red) and all six feasibility
pump variants (blue) for MINLPs presented in [14] on subset of
61 MINLPLib instances. Right: Performance profiles for the primal-
dual gap of the penalty ADM based feasibility pump (red) and
different feasibility pump variants (blue) proposed by Berthold [4]

feasibility if CONOPT finds a feasible solution (w.r.t. its default tolerances) with all
integer components fixed to integral values.

We compare the results of our method with other recently published numerical
results concerning feasibility pump algorithms for convex and nonconvex MINLPs.
Most of the results from the literature that we use for these comparisons are based
on the first and second version of the MINLPLib; see Bussieck et al. [12]. Since a
reasonable comparison of running times is not possible due to differences in the used
hardware, we focus on the comparison of success rates and solution quality.

We also compared the obtained results separately for convex and nonconvex
instances. As expected, the results of our method are slightly better for the convex
case. However, the results are qualitatively rather similar and we thus present
the following analysis of our computational results without distinguishing between
convex and nonconvex instances.

First, we start with a comparison of different feasibility pump versions presented
by D’Ambrosio et al. in [14] and our method on selected MINLPLib instances.
D’Ambrosio et al. test their method on 65 MINLPLib instances. However, it turned
out in the meantime that the used test set contained 4 duplicate instances. Thus,
the following comparison is carried out on 61 MINLPLib instances. Figure 7 (left)
displays the performance profiles using the primal-dual gap as the performance
measure; see (19). It can be clearly seen that the penalty ADM based feasibility
pump outperforms all feasibility pump variants presented in [14], although we used
a time limit of 1 h in contrast to 2 h used in [14]. Although the number of instances
solved to optimality is comparably low for all algorithms, the overall solution quality
of our penalty ADM based algorithm is significantly higher than the quality of
solutions obtained in D’Ambrosio et al. [14]. Additionally, the number of instances
for which we found a feasible solution is 60.7 % whereas the percentage of instances
solved to feasibility in D’Ambrosio et al. [14] ranges from 54.1 % to only 16.4 %.

Complementing this comparison on the MINLPLib test set we also tested our
method on 889 out of 1385 instances of the more recent MINLPLib2 test set. Here,
we neglected all instances containing only continuous variables. Again, our method
behaves quite satisfactory. It computes a feasible solution for 642 instances (72.2 %),
leaving 247 instances unsolved. We compare our solutions with the dual bound given
in the MINLPLib2. The penalty ADM based feasibility pump computes solutions
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with a vanishing primal-dual gap for 83 instances; i.e., for 9.3 % of all instances
of the test set. The running times on all MINLPLib2 instances are given in the
cumulative distribution function in Figure 5 (right). Remarkably, the results are
quite comparable with those for the MIP instances: For approximately 50 % of all
MINLPLib2 instances a feasible solution has been found within 10 s and slightly
more than 25 % of the instances are solved to feasibility within 1 s. The geometric
mean of the running times taken over all instances for which a feasible solution
has been found within the time limit is 5.36 s. Nevertheless, the running times are
fast enough so that the method could, in principle, be embedded in a global solver
as a primal heuristic. As for the MIP results, a table with all running times and
additional information is given in the appendix.

Finally, we discuss the most recent (at least to the best of our knowledge)
results on a new variant of feasibility pumps for nonconvex mixed-integer nonlinear
problems that are published by Berthold in his PhD thesis [4]. The test set used
by Berthold is neither a sub- nor a superset of the current MINLPLib. Thus, we
compare our method with the algorithms proposed by Berthold on all instances of
his test set that are also part of the current MINLPLib version, yielding a test set
of 154 instances. Again, we compare the methods by performance profiles of the
primal-dual gap, see Figure 7 (right). The penalty ADM based feasibility pump
significantly outperforms all variants of the feasibility pump for MINLPs proposed
by Berthold. First, the methods of Berthold do not solve any instance to optimality,
whereas we close the primal-dual gap for 15.6 % of the instances. Second, our method
finds a feasible solution for 79.9 % of the tested instances, whereas the methods
of Berthold solve approximately 43.5 % to 64.9 % to feasibility.

6. Summary

In this paper we have shown that idealized feasibility pumps, i.e., feasibility
pumps without random perturbations, can be seen as alternating direction methods
applied to a special reformulation of the original mixed-integer problem. This yields
that idealized feasibility pumps converge to a partial minimum of the reformulated
problem. If this partial minimum is not an integer feasible point, feasibility pumps
apply a random perturbation to escape this undesired point. We replace this
random restart with a penalty framework that encompasses the alternating direction
method in the inner loop and that replaces random perturbations by tailored penalty
parameter updates. This way it is possible for the first time to perform a theoretical
study for a variant of the feasibility pump including restarts. The resulting penalty
based alternating direction method can be applied to both MIPs and MINLPs. Our
numerical results indicate that this new version of the feasibility pump is comparable
(w.r.t. most recent publications) for the case of MIPs and clearly outperforms other
feasibility pump algorithms on MINLPs in terms of solution quality.
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Appendix A. Detailed Results for the MIPLIB 2010

Table 1: Detailed numerical results for the penalty ADM based
feasibility pump on all 84 feasible MIPLIB 2010 instances; see Sec-
tion 5.1 Mixed-Integer Linear Problems. Objective function value,
running times (s), outer penalty iterations (#Pen.), and inner ADM
iterations (#ADM) for the method with λ = 0.9, multiplicative
penalty parameter update rule incm, activated Gurobi presolve, and
deactivated local branching.

Instance Objective Time #Pen. #ADM

30n20b8 906.00 40.42 892 3828
acc-tight5 — — — —
aflow40b 3565.00 2.48 146 437
air04 71018.00 60.42 41 190
app1-2 -30.00 3189.86 4133 15567
bab5 -78587.20 34.25 178 540
beasleyC3 863.00 0.19 24 67
biella1 3743460.00 65.50 26 238
bienst2 73.25 0.21 20 76
binkar10_1 7263.57 0.23 32 112
bley_xl1 285.00 4.62 37 149
bnatt350 — — — —
core2536-691 692.00 31.37 19 106
cov1075 120.00 0.17 12 24
csched010 — — — —
danoint 78.00 1.70 24 101
dfn-gwin-UUM 125512.00 0.28 66 166
eil33-2 1373.60 0.74 19 64
eilB101 1513.00 0.94 17 66
enlight13 0.00 0.00 1 1
ex9 0.00 0.00 1 1
glass4 3390030000.00 0.28 103 353
gmu-35-40 -2159090.00 1.89 298 1073
iis-100-0-cov 100.00 0.27 12 24
iis-bupa-cov 100.00 2.16 12 38
iis-pima-cov 74.00 3.23 12 44
lectsched-4-obj 9.00 3.46 66 287
m100n500k4r1 -20.00 0.76 30 203
macrophage 522.00 0.32 14 30
map18 -280.00 250.17 120 317
map20 -371.00 159.76 127 306
mcsched 228737.00 1.37 13 56
mik-250-1-100-1 284980.00 0.48 71 202
mine-166-5 -22751900.00 1.16 22 54
mine-90-10 -558839000.00 1.69 58 173
msc98-ip 25797700.00 146.92 48 307
mspp16 407.00 1399.15 91 249
mzzv11 -16438.00 94.84 102 440
n3div36 170600.00 13.36 103 321
n3seq24 53600.00 271.77 71 315
n4-3 13980.00 0.28 13 35
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Table 1: Detailed numerical results for the penalty ADM based
feasibility pump on all 84 feasible MIPLIB 2010 instances; see Sec-
tion 5.1 Mixed-Integer Linear Problems. Objective function value,
running times (s), outer penalty iterations (#Pen.), and inner ADM
iterations (#ADM) for the method with λ = 0.9, multiplicative
penalty parameter update rule incm, activated Gurobi presolve, and
deactivated local branching.

Instance Objective Time #Pen. #ADM

neos-1109824 687.00 3.93 93 295
neos13 -28.04 5.54 23 91
neos-1337307 -201818.00 2.99 29 100
neos-1396125 — — — —
neos-1601936 23409.00 266.56 66 629
neos18 17.00 0.87 21 86
neos-476283 407.01 66.98 78 226
neos-686190 16410.00 1.87 47 143
neos-849702 — — — —
neos-916792 44.56 5.64 100 335
neos-934278 264.00 1091.80 57 225
net12 337.00 29.06 53 217
netdiversion — — — —
newdano 89.75 0.44 19 77
noswot -38.00 0.17 61 240
ns1208400 — — — —
ns1688347 35.00 6.14 49 227
ns1758913 -1454.67 18.37 5 15
ns1830653 — — — —
opm2-z7-s2 -1519.00 35.30 13 37
pg5_34 -12628.50 0.76 65 195
pigeon-10 -9000.00 2.51 1091 2732
pw-myciel4 13.00 3.99 20 130
qiu 1235.01 0.44 19 51
rail507 183.00 30.66 35 158
ran16x16 4734.00 0.12 52 144
reblock67 -18739300.00 1.14 51 169
rmatr100-p10 494.00 2.49 12 41
rmatr100-p5 1327.00 5.18 11 39
rmine6 -239.11 3.21 32 93
rocII-4-11 -0.52 18.74 292 1162
rococoC10-001000 34598.00 1.43 68 295
roll3000 18404.00 2.83 48 207
satellites1-25 33.00 44.26 24 98
sp98ic 558066000.00 12.55 84 313
sp98ir 244287000.00 4.73 49 168
tanglegram1 6478.00 114.05 16 35
tanglegram2 1445.00 2.51 16 34
timtab1 1415540.00 0.27 41 153
triptim1 22.87 317.56 7 16
unitcal_7 20426600.00 40.69 112 400
vpphard 44.00 85.31 38 242
zib54-UUE 13164400.00 0.44 27 75
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Appendix B. Detailed Results for the MINLPLib2

Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

4stufen 118114.00 9 74 169
alan 3.00 0 5 7
autocorr_bern20-03 -64.00 0 1 1
autocorr_bern20-05 -396.00 2 1 1
autocorr_bern20-10 -2912.00 1 1 1
autocorr_bern20-15 -5936.00 1 1 1
autocorr_bern25-03 -80.00 0 1 1
autocorr_bern25-06 -936.00 0 3 4
autocorr_bern25-13 -7984.00 0 1 1
autocorr_bern25-19 -14472.00 0 1 1
autocorr_bern25-25 -10352.00 0 1 1
autocorr_bern30-04 -288.00 0 1 1
autocorr_bern30-08 -2912.00 0 1 1
autocorr_bern30-15 -15384.00 0 1 1
autocorr_bern30-23 -30240.00 1 1 1
autocorr_bern30-30 -22640.00 1 1 1
autocorr_bern35-04 -344.00 0 1 1
autocorr_bern35-09 -4976.00 0 1 1
autocorr_bern35-18 -30712.00 0 1 1
autocorr_bern35-26 -54960.00 0 1 1
autocorr_bern35-35 -40272.00 1 1 1
autocorr_bern40-05 -908.00 0 1 1
autocorr_bern40-10 -8192.00 0 1 1
autocorr_bern40-20 -50228.00 1 5 7
autocorr_bern40-30 -94040.00 1 1 1
autocorr_bern40-40 -66832.00 1 1 1
autocorr_bern45-05 -1004.00 0 3 4
autocorr_bern45-11 -12532.00 0 1 1
autocorr_bern45-23 -84844.00 0 1 1
autocorr_bern45-34 -151768.00 0 1 1
autocorr_bern45-45 -108528.00 1 1 1
autocorr_bern50-06 -2072.00 1 3 4
autocorr_bern50-13 -23176.00 0 1 1
autocorr_bern50-25 -123764.00 1 3 4
autocorr_bern50-38 -232808.00 0 1 1
autocorr_bern50-50 -166168.00 1 1 1
autocorr_bern55-06 -2288.00 0 3 4
autocorr_bern55-14 -32280.00 1 3 4
autocorr_bern55-28 -189404.00 0 1 1
autocorr_bern55-41 -335980.00 0 1 1
autocorr_bern55-55 -238296.00 1 1 1
autocorr_bern60-08 -6712.00 0 1 1
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

autocorr_bern60-15 -44368.00 0 1 1
autocorr_bern60-30 -258304.00 0 1 1
autocorr_bern60-45 -476456.00 1 1 1
autocorr_bern60-60 -347372.00 1 1 1
batch 309205.00 2 22 43
batch0812 2838520.00 5 64 107
batch0812_nc 3534900.00 4 32 70
batchdes 185769.00 0 7 13
batch_nc 363583.00 5 60 105
batchs101006m 776397.00 5 24 65
batchs121208m 1336450.00 7 22 73
batchs151208m 1588930.00 12 37 120
batchs201210m 2408440.00 17 72 157
bchoco05 0.95 1 3 4
bchoco06 0.96 0 3 4
bchoco07 0.96 2 3 4
bchoco08 — — — —
beuster 128512.00 15 99 254
blend029 — — 68919 68961
blend146 29.93 8 76 110
blend480 -8.24 56 655 753
blend531 — — 53222 53555
blend718 1.23 6 30 77
blend721 -0.87 4 27 56
blend852 46.13 9 87 126
blendgap -0.00 0 1 1
cardqp_inlp 3843.61 0 1 1
cardqp_iqp 3843.61 0 1 1
carton7 303.88 368 4645 5010
carton9 340.75 15 77 155
casctanks 9.16 3 40 46
case_1scv2 7791.24 16 33 86
cecil_13 -115564.00 9 65 92
chp_partload — — 25492 25701
clay0203h 41709.80 81 1498 1519
clay0203m 41737.50 50 1002 1022
clay0204h 7830.00 5 50 82
clay0204m 10340.00 3 35 48
clay0205h 23484.20 43 609 715
clay0205m 9715.00 5 57 86
clay0303h 36613.00 56 954 996
clay0303m 41737.50 8 101 170
clay0304h 61315.90 52 764 859
clay0304m 61831.50 38 694 748
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

clay0305h 43405.70 10 132 161
clay0305m 24593.10 7 92 121
contvar 829318.00 7 8 35
crossdock_15x7 14467.00 6 62 99
crossdock_15x8 16765.00 1856 26313 27298
crudeoil_lee1_05 79.35 75 808 851
crudeoil_lee1_06 78.75 70 555 655
crudeoil_lee1_07 78.75 2868 24641 25051
crudeoil_lee1_08 79.35 18 72 106
crudeoil_lee1_09 78.75 918 5556 5841
crudeoil_lee1_10 78.75 32 103 153
crudeoil_lee2_05 90.00 31 117 158
crudeoil_lee2_06 97.59 114 265 401
crudeoil_lee2_07 90.00 329 949 1114
crudeoil_lee2_08 — — 12801 13253
crudeoil_lee2_09 — — — —
crudeoil_lee2_10 — — 7412 8007
crudeoil_lee3_05 82.00 173 996 1033
crudeoil_lee3_06 84.49 125 574 606
crudeoil_lee3_07 82.90 29 35 65
crudeoil_lee3_08 — — 13112 13645
crudeoil_lee3_09 82.75 66 85 108
crudeoil_lee3_10 77.50 144 145 198
crudeoil_lee4_05 132.48 13 15 21
crudeoil_lee4_06 132.49 16 15 22
crudeoil_lee4_07 132.55 170 272 333
crudeoil_lee4_08 131.54 175 192 299
crudeoil_lee4_09 — — 5326 5417
crudeoil_lee4_10 — — 4329 4802
crudeoil_li01 4852.37 1247 19259 19368
crudeoil_li02 — — — —
crudeoil_li03 — — 31637 32220
crudeoil_li05 3030.59 34 225 312
crudeoil_li06 3303.84 111 869 947
crudeoil_li11 — — 26706 27063
crudeoil_li21 — — 19307 19619
csched1 -30174.60 0 4 5
csched1a -29903.30 1 7 13
csched2 -160668.00 2 9 20
csched2a -162047.00 7 44 120
deb10 209.43 1 9 13
deb6 251.66 1 3 4
deb7 176.08 2 3 4
deb8 176.08 1 3 4
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

deb9 176.08 1 3 4
densitymod — — 4 8
dosemin2d 173.98 11 5 11
dosemin3d 1.32 29 7 13
du-opt 5.34 0 3 4
du-opt5 112.02 0 5 8
edgecross10-010 4.00 0 1 1
edgecross10-020 19.00 0 1 1
edgecross10-030 53.00 0 3 4
edgecross10-040 142.00 0 3 4
edgecross10-050 301.00 1 1 1
edgecross10-060 470.00 0 1 1
edgecross10-070 735.00 0 1 1
edgecross10-080 1048.00 0 1 1
edgecross10-090 1387.00 0 1 1
edgecross14-019 5.00 0 1 1
edgecross14-039 123.00 1 1 1
edgecross14-058 391.00 0 1 1
edgecross14-078 725.00 0 1 1
edgecross14-098 1392.00 0 1 1
edgecross14-117 2168.00 1 3 4
edgecross14-137 2880.00 0 1 1
edgecross14-156 4342.00 0 3 4
edgecross14-176 5956.00 1 1 1
edgecross20-040 73.00 1 1 1
edgecross20-080 530.00 1 1 1
edgecross22-048 97.00 2 1 1
edgecross22-096 980.00 4 3 4
edgecross24-057 213.00 3 1 1
edgecross24-115 1429.00 3 1 1
eg_all_s 8.67 11 20 44
eg_disc2_s 5.68 3 3 4
eg_disc_s 6.03 6 7 15
eg_int_s 8.32 7 6 13
elf 1.68 1 1 1
eniplac -120713.00 43 636 764
enpro48pb 188887.00 1 10 23
enpro56pb 266762.00 3 24 56
ethanolh -157.59 0 4 5
ethanolm -31.27 9 116 168
ex1221 7.67 0 1 1
ex1222 1.08 0 6 10
ex1223 5.81 1 6 10
ex1223a 5.81 1 5 8



32 REFERENCES

Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

ex1223b 5.81 1 6 10
ex1224 -0.88 1 12 19
ex1225 31.00 0 6 9
ex1226 -17.00 0 1 1
ex1233 201540.00 3 21 49
ex1243 135552.00 2 18 47
ex1244 95046.40 1 13 17
ex1252 — — — —
ex1252a 143555.00 3 23 54
ex1263 69.60 86 1665 1773
ex1263a 38.60 55 1101 1142
ex1264 31.60 11 185 222
ex1264a 10.00 5 90 108
ex1265 22.30 16 231 343
ex1265a 15.10 4 60 87
ex1266 — — 62770 64607
ex1266a 16.30 1 7 13
ex3pb 103.58 2 19 37
ex4 659.57 4 46 77
fac1 172954000.00 9 85 185
fac2 407585000.00 5 35 97
fac3 34789500.00 3 23 53
faclay20h 16941.00 0 1 1
faclay25 5107.00 1 1 1
faclay30 8970.00 3 1 1
faclay30h 50775.00 3 1 1
faclay33 67677.00 6 1 1
faclay35 77040.00 8 1 1
faclay60 1564130.00 15 1 1
faclay70 1656440.00 2316 1 1
faclay75 — — 1 0
faclay80 — — 1 0
feedtray -13.41 1 1 1
feedtray2 — — — —
fin2bb 0.00 2 19 26
flay02h 37.95 2 20 40
flay02m 37.95 2 24 45
flay03h 48.99 4 26 60
flay03m 48.99 3 29 61
flay04h 54.99 6 50 100
flay04m 54.99 4 42 85
flay05h 80.99 7 36 97
flay05m 64.50 5 41 96
flay06h 106.88 11 38 121
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

flay06m 66.93 6 43 102
fo7 25.60 87 1643 1691
fo7_2 40.43 15 171 236
fo7_ar2_1 55.38 317 5449 5627
fo7_ar25_1 — — 65860 66079
fo7_ar3_1 34.49 13 97 212
fo7_ar4_1 41.66 1369 25281 25479
fo7_ar5_1 38.09 7 53 110
fo8 47.40 7 66 99
fo8_ar2_1 — — 62624 62999
fo8_ar25_1 — — 61119 61451
fo8_ar3_1 45.34 38 469 590
fo8_ar4_1 38.66 36 384 529
fo8_ar5_1 51.84 370 5769 5963
fo9 52.78 7 60 109
fo9_ar2_1 — — 52908 53324
fo9_ar25_1 — — 57149 57561
fo9_ar3_1 49.40 46 446 592
fo9_ar4_1 — — 54254 54687
fo9_ar5_1 51.17 11 72 131
fuel 8566.12 2 16 42
fuzzy — — 1 10135
gams01 26878.30 36 100 261
gams02 99281400.00 3427 7309 8005
gams03 — — 10477 10747
gasnet 6999380.00 10 97 194
gasprod_sarawak01 -31599.40 1 5 7
gasprod_sarawak16 -31399.40 5 11 16
gasprod_sarawak81 -31399.40 60 11 16
gastrans — — 71678 71681
gastrans040 0.00 1 3 4
gastrans135 0.00 63 517 524
gastrans582_cold13 — — 24865 24973
gastrans582_cold13_95 — — 26008 26017
gastrans582_cold17 0.00 12 34 40
gastrans582_cold17_95 0.00 13 38 45
gastrans582_cool12 0.00 10 22 27
gastrans582_cool12_95 — — 25893 25904
gastrans582_cool14 — — 6717 20655
gastrans582_cool14_95 — — 24012 24195
gastrans582_freezing27 — — 21961 22878
gastrans582_freezing27_95 — — 649 19415
gastrans582_freezing30 — — 25209 25221
gastrans582_freezing30_95 0.00 108 728 736



34 REFERENCES

Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

gastrans582_mild10 — — 23990 23997
gastrans582_mild10_95 — — 25798 25810
gastrans582_mild11 0.00 49 295 304
gastrans582_mild11_95 — — 25515 25527
gastrans582_warm15 — — 24775 25032
gastrans582_warm15_95 — — 24674 24934
gastrans582_warm31 0.00 44 271 279
gastrans582_warm31_95 — — 26392 26403
gbd 2.20 0 1 1
gear 0.00 1 3 4
gear2 0.01 0 4 6
gear3 0.00 1 3 4
gear4 120.67 5 70 87
genpooling_lee1 — — — —
genpooling_lee2 — — — —
genpooling_meyer04 — — — —
genpooling_meyer10 — — — —
genpooling_meyer15 — — — —
ghg_1veh 7.78 0 1 1
ghg_2veh 7.78 0 1 1
ghg_3veh 7.77 0 4 5
gkocis -1.41 1 7 9
graphpart_2g-0044-1601 -789955.00 1 1 1
graphpart_2g-0055-0062 — — 68626 68626
graphpart_2g-0066-0066 -2082170.00 11 110 215
graphpart_2g-0077-0077 — — 66436 66436
graphpart_2g-0088-0088 -5701630.00 0 1 1
graphpart_2g-0099-9211 -4495840.00 0 4 5
graphpart_2g-1010-0824 -6583360.00 0 1 1
graphpart_2pm-0044-0044 -11.00 0 1 1
graphpart_2pm-0055-0055 — — 70312 70312
graphpart_2pm-0066-0066 -27.00 1 6 9
graphpart_2pm-0077-0777 — — 64537 64537
graphpart_2pm-0088-0888 -46.00 0 4 5
graphpart_2pm-0099-0999 -56.00 1 18 22
graphpart_3g-0234-0234 — — 69513 69513
graphpart_3g-0244-0244 -2702200.00 0 1 1
graphpart_3g-0333-0333 — — 66677 66677
graphpart_3g-0334-0334 -3279970.00 0 1 1
graphpart_3g-0344-0344 — — 66770 66770
graphpart_3g-0444-0444 -6621100.00 0 1 1
graphpart_3pm-0234-0234 — — 74786 74786
graphpart_3pm-0244-0244 -27.00 0 1 1
graphpart_3pm-0333-0333 — — 71653 71653
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

graphpart_3pm-0334-0334 -33.00 0 1 1
graphpart_3pm-0344-0344 — — 68708 68708
graphpart_3pm-0444-0444 -57.00 1 4 5
graphpart_clique-20 147.00 0 1 1
graphpart_clique-30 495.00 0 1 1
graphpart_clique-40 1183.00 0 1 1
graphpart_clique-50 — — 60889 60889
graphpart_clique-60 4010.00 2 34 36
graphpart_clique-70 — — 50784 50784
hda -4322.55 6 18 39
heatexch_gen1 410804.00 2 19 42
heatexch_gen2 739019.00 1 20 26
heatexch_gen3 109097.00 4 28 46
heatexch_spec1 219858.00 2 18 42
heatexch_spec2 849922.00 0 3 4
heatexch_spec3 319465.00 1 8 13
heatexch_trigen 977262.00 144 2367 2602
hmittelman 16.00 2 22 39
hybriddynamic_fixed 1.47 0 7 12
hybriddynamic_var 1.54 0 5 9
hydroenergy1 207178.00 2 29 39
hydroenergy2 369251.00 4 31 42
hydroenergy3 742404.00 7 31 44
ibs2 4.88 1032 55 125
jit1 173983.00 0 3 4
johnall -222.37 5 54 57
kport20 33.50 2 14 37
kport40 42.02 70 1184 1289
lip 5428650.00 0 3 6
lop97ic 4535.18 7 10 31
lop97icx 4590.48 3 13 31
m3 55.80 2 21 32
m6 123.98 13 105 206
m7 — — 66377 66664
m7_ar2_1 — — 65520 65796
m7_ar25_1 — — 69125 69424
m7_ar3_1 — — 66925 67206
m7_ar4_1 450.97 127 1993 2166
m7_ar5_1 511.21 61 857 1025
mbtd 5.58 66 13 41
meanvarx 14.37 1 23 26
meanvarxsc — — — —
milinfract 2.63 8 5 7
minlphix 345.51 3 53 63
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

multiplants_mtg1a 363.57 2 17 35
multiplants_mtg1b 212.21 33 602 617
multiplants_mtg1c 406.98 5 31 52
multiplants_mtg2 7051.41 4 65 75
multiplants_mtg5 4706.88 75 1228 1258
multiplants_mtg6 4032.27 13 155 177
multiplants_stg1 250.44 1000 16363 16375
multiplants_stg1a 38.85 19 267 284
multiplants_stg1b 136.38 35 498 506
multiplants_stg1c — — 61799 61808
multiplants_stg5 — — 52743 52952
multiplants_stg6 — — 45323 46702
ndcc12 108.11 8 59 106
ndcc12persp — — — —
ndcc13 94.17 6 17 56
ndcc13persp — — — —
ndcc14 130.16 19 70 247
ndcc14persp — — — —
ndcc15 95.28 4 22 50
ndcc15persp — — — —
ndcc16 131.63 7 28 67
ndcc16persp — — — —
netmod_dol1 -0.01 18 22 40
netmod_dol2 -0.49 37 16 44
netmod_kar1 0.00 3 17 31
netmod_kar2 0.00 3 17 31
no7_ar2_1 — — 66159 66423
no7_ar25_1 175.87 156 2635 2871
no7_ar3_1 149.22 13 142 201
no7_ar4_1 188.94 141 2040 2246
no7_ar5_1 153.84 148 2440 2576
nous1 1.57 0 3 4
nous2 0.63 0 3 4
nuclear104 — — — —
nuclear10a — — 1737 2056
nuclear10b -1.15 1604 31 124
nuclear14 -1.13 3 4 5
nuclear14a -1.13 1 1 1
nuclear14b -1.09 13 51 73
nuclear25 -1.12 7 22 29
nuclear25a -1.12 5 22 29
nuclear25b -1.09 29 63 153
nuclear49 -1.15 30 13 17
nuclear49a -1.15 26 25 33
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

nuclear49b -1.13 133 25 74
nuclearva -1.01 3 33 45
nuclearvb -1.02 1 1 1
nuclearvc -0.98 5 49 59
nuclearvd -1.04 10 63 75
nuclearve -1.02 1 7 9
nuclearvf — — — —
nvs01 13.10 1 5 7
nvs02 5.96 2 35 38
nvs03 16.00 0 11 14
nvs04 — — — —
nvs05 5.47 0 3 4
nvs06 1.86 1 3 4
nvs07 4.00 1 5 6
nvs08 23.83 1 10 14
nvs09 -43.13 0 1 1
nvs10 -308.40 0 4 7
nvs11 -416.40 3 69 74
nvs12 -477.00 0 3 5
nvs13 -585.20 1 3 5
nvs14 -40358.20 2 35 38
nvs15 1.00 0 3 4
nvs16 14.20 7 55 108
nvs17 -1078.20 3 52 57
nvs18 -778.40 0 3 5
nvs19 -1070.00 1 10 17
nvs20 230.92 1 7 13
nvs21 -4.27 8 172 174
nvs22 6.06 0 4 6
nvs23 -1078.40 1 3 5
nvs24 -1001.00 1 7 14
o7 190.62 25 374 418
o7_2 161.38 17 147 281
o7_ar2_1 — — 61789 62056
o7_ar25_1 160.47 173 2936 3100
o7_ar3_1 162.83 34 446 562
o7_ar4_1 182.29 69 971 1138
o7_ar5_1 166.99 85 1274 1443
o8_ar4_1 345.47 22 130 256
o9_ar4_1 341.57 55 497 691
oaer -1.92 1 4 5
oil -0.87 2 3 4
oil2 -0.73 1 3 4
ortez -9532.04 2 13 20
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

parallel — — 65520 65520
pb302035 4052260.00 28 25 34
pb302055 4087020.00 152 155 200
pb302075 4624370.00 62 49 77
pb302095 — — 3207 4701
pb351535 5474850.00 180 240 306
pb351555 5256790.00 26 21 41
pb351575 6457260.00 16 15 21
pb351595 11847500.00 915 919 1524
pooling_epa1 -280.81 8 110 134
pooling_epa2 -4268.72 3 36 44
pooling_epa3 — — — —
portfol_buyin 0.04 1 3 4
portfol_card 0.03 1 5 8
portfol_classical050_1 -0.09 1 10 21
portfol_classical200_2 -0.06 8 18 50
portfol_robust050_34 -0.00 1 11 16
portfol_robust100_09 -0.08 2 11 23
portfol_robust200_03 -0.08 12 16 44
portfol_roundlot 0.15 3412 5488 69538
portfol_shortfall050_68 -1.06 1 10 15
portfol_shortfall100_04 -1.07 3 13 25
portfol_shortfall200_05 -1.06 7 14 27
primary — — — —
prob02 112235.00 1 10 13
prob03 11.00 2 18 31
prob10 3.45 0 3 4
procsel -1.41 0 5 7
product -2075.33 16 56 103
product2 — — — —
qap 411560.00 6 13 28
qapw 395664.00 48 106 345
ravempb 269590.00 1 10 23
risk2bpb -55.48 1 17 21
routingdelay_bigm — — 27714 27777
routingdelay_proj 149.70 25 145 170
rsyn0805h 1280.01 1 17 26
rsyn0805m 928.36 3 24 50
rsyn0805m02h 2121.61 5 9 24
rsyn0805m02m 923.55 6 34 80
rsyn0805m03h 2996.90 7 8 19
rsyn0805m03m 2256.38 8 33 77
rsyn0805m04h 7145.11 7 5 11
rsyn0805m04m 4641.20 10 32 78
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

rsyn0810h 1675.12 2 18 26
rsyn0810m 801.54 3 21 49
rsyn0810m02h 1631.39 5 9 24
rsyn0810m02m 987.64 6 32 76
rsyn0810m03h 2671.49 8 7 18
rsyn0810m03m 2355.46 20 162 226
rsyn0810m04h 6472.92 23 12 26
rsyn0810m04m 4525.62 11 25 71
rsyn0815h 1262.05 1 11 21
rsyn0815m 923.47 3 26 52
rsyn0815m02h 1579.85 6 11 30
rsyn0815m02m 598.63 6 32 71
rsyn0815m03h 2702.87 10 8 20
rsyn0815m03m 2697.07 10 35 81
rsyn0815m04h 3220.26 21 9 24
rsyn0815m04m 1329.02 13 30 79
rsyn0820h 1138.41 2 9 17
rsyn0820m 723.84 4 24 56
rsyn0820m02h 1005.44 6 8 18
rsyn0820m02m 258.97 7 32 84
rsyn0820m03h 1984.43 14 8 16
rsyn0820m03m 1800.99 17 52 113
rsyn0820m04h 2363.62 25 8 23
rsyn0820m04m 1642.15 18 30 89
rsyn0830h 506.70 2 10 19
rsyn0830m 203.31 4 30 64
rsyn0830m02h 661.04 4 8 18
rsyn0830m02m -273.98 6 33 68
rsyn0830m03h 1431.22 10 8 18
rsyn0830m03m 137.73 12 34 85
rsyn0830m04h 2284.01 21 9 19
rsyn0830m04m 128.87 19 36 90
rsyn0840h 297.64 2 6 14
rsyn0840m 54.73 5 30 69
rsyn0840m02h 612.11 5 10 18
rsyn0840m02m -362.91 7 29 70
rsyn0840m03h 2664.97 15 11 20
rsyn0840m03m 2121.79 12 30 72
rsyn0840m04h 2327.32 21 8 16
rsyn0840m04m -18.45 21 32 84
saa_2 12.75 35 50 78
sep1 -510.08 0 5 7
sepasequ_complex 538.16 12 55 97
sepasequ_convent 514.98 11 24 34
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

sfacloc1_2_80 13.55 1 3 4
sfacloc1_2_90 29.57 0 3 4
sfacloc1_2_95 18.85 0 1 1
sfacloc1_3_80 9.10 0 3 4
sfacloc1_3_90 11.88 0 3 4
sfacloc1_3_95 12.46 0 1 1
sfacloc1_4_80 8.46 1 3 4
sfacloc1_4_90 12.00 0 3 4
sfacloc1_4_95 11.24 1 3 4
sfacloc2_2_80 — — 38561 38572
sfacloc2_2_90 29.96 7 77 109
sfacloc2_2_95 30.30 92 1745 1788
sfacloc2_3_80 25.20 15 82 127
sfacloc2_3_90 29.73 9 103 143
sfacloc2_3_95 25.17 3 27 54
sfacloc2_4_80 21.03 156 1403 1510
sfacloc2_4_90 28.72 87 1272 1390
sfacloc2_4_95 26.74 682 11503 11784
slay04h 14763.90 3 20 44
slay04m 12200.30 1 20 37
slay05h 24164.50 3 16 38
slay05m 23290.00 1 14 28
slay06h 38850.80 3 19 46
slay06m 33168.50 2 16 35
slay07h 69708.50 5 26 58
slay07m 70870.80 3 27 60
slay08h 105595.00 7 28 71
slay08m 85921.30 3 25 52
slay09h 156117.00 10 30 83
slay09m 160234.00 5 31 86
slay10h 197463.00 18 37 106
slay10m 176821.00 4 29 73
smallinvDAXr1b010-011 — — — —
smallinvDAXr1b020-022 — — — —
smallinvDAXr1b050-055 — — — —
smallinvDAXr1b100-110 — — — —
smallinvDAXr1b150-165 — — — —
smallinvDAXr1b200-220 — — — —
smallinvDAXr2b010-011 — — — —
smallinvDAXr2b020-022 — — — —
smallinvDAXr2b050-055 — — — —
smallinvDAXr2b100-110 — — — —
smallinvDAXr2b150-165 — — — —
smallinvDAXr2b200-220 — — — —
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

smallinvDAXr3b010-011 — — — —
smallinvDAXr3b020-022 — — — —
smallinvDAXr3b050-055 — — — —
smallinvDAXr3b100-110 — — — —
smallinvDAXr3b150-165 — — — —
smallinvDAXr3b200-220 — — — —
smallinvDAXr4b010-011 — — — —
smallinvDAXr4b020-022 — — — —
smallinvDAXr4b050-055 — — — —
smallinvDAXr4b100-110 — — — —
smallinvDAXr4b150-165 — — — —
smallinvDAXr4b200-220 — — — —
smallinvDAXr5b010-011 — — — —
smallinvDAXr5b020-022 — — — —
smallinvDAXr5b050-055 — — — —
smallinvDAXr5b100-110 — — — —
smallinvDAXr5b150-165 — — — —
smallinvDAXr5b200-220 — — — —
smallinvSNPr1b010-011 — — — —
smallinvSNPr1b020-022 — — — —
smallinvSNPr1b050-055 — — — —
smallinvSNPr1b100-110 — — — —
smallinvSNPr1b150-165 — — — —
smallinvSNPr1b200-220 — — — —
smallinvSNPr2b010-011 — — — —
smallinvSNPr2b020-022 — — — —
smallinvSNPr2b050-055 — — — —
smallinvSNPr2b100-110 — — — —
smallinvSNPr2b150-165 — — — —
smallinvSNPr2b200-220 — — — —
smallinvSNPr3b010-011 — — — —
smallinvSNPr3b020-022 — — — —
smallinvSNPr3b050-055 — — — —
smallinvSNPr3b100-110 — — — —
smallinvSNPr3b150-165 — — — —
smallinvSNPr3b200-220 — — — —
smallinvSNPr4b010-011 — — — —
smallinvSNPr4b020-022 — — — —
smallinvSNPr4b050-055 — — — —
smallinvSNPr4b100-110 — — — —
smallinvSNPr4b150-165 — — — —
smallinvSNPr4b200-220 — — — —
smallinvSNPr5b010-011 — — — —
smallinvSNPr5b020-022 — — — —
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

smallinvSNPr5b050-055 — — — —
smallinvSNPr5b100-110 — — — —
smallinvSNPr5b150-165 — — — —
smallinvSNPr5b200-220 — — — —
space25 919.99 279 3235 4234
space25a 657.73 5 80 106
space960 7985000.00 106 39 111
spectra2 14.04 3 25 53
sporttournament06 10.00 0 3 4
sporttournament08 22.00 0 1 1
sporttournament10 38.00 0 1 1
sporttournament12 58.00 0 1 1
sporttournament14 80.00 0 1 1
sporttournament16 100.00 0 3 4
sporttournament18 134.00 0 1 1
sporttournament20 162.00 1 3 4
sporttournament22 198.00 0 3 4
sporttournament24 230.00 0 1 1
sporttournament26 282.00 0 1 1
sporttournament28 298.00 0 3 4
sporttournament30 318.00 0 1 1
sporttournament32 384.00 0 1 1
sporttournament34 438.00 1 1 1
sporttournament36 472.00 0 1 1
sporttournament38 526.00 0 1 1
sporttournament40 590.00 0 1 1
sporttournament42 666.00 0 1 1
sporttournament44 706.00 0 1 1
sporttournament46 806.00 0 1 1
sporttournament48 904.00 0 1 1
sporttournament50 948.00 1 1 1
spring 1.35 1 19 27
squfl010-025 233.69 3 20 41
squfl010-025persp 214.11 247 3 776
squfl010-040 283.98 5 21 43
squfl010-040persp 240.60 72 1 100
squfl010-080 523.50 8 22 45
squfl010-080persp 509.70 1418 4 1684
squfl015-060 422.51 5 24 49
squfl015-060persp 366.62 522 8 367
squfl015-080 596.93 10 29 56
squfl015-080persp 407.13 994 3 608
squfl020-040 286.55 4 23 45
squfl020-040persp 221.02 339 11 249



REFERENCES 43

Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

squfl020-050 323.25 7 25 50
squfl020-050persp 244.05 331 11 193
squfl020-150 1131.79 113 36 73
squfl020-150persp 562.07 2348 15 384
squfl025-025 244.44 4 22 43
squfl025-025persp 178.63 719 10 645
squfl025-030 215.34 3 19 37
squfl025-030persp 215.34 1367 10 1057
squfl025-040 299.01 7 24 47
squfl025-040persp 225.39 650 29 385
squfl030-100 766.47 36 33 66
squfl030-100persp — — 3 535
squfl030-150 628.11 374 31 61
squfl030-150persp — — 10 307
squfl040-080 294.95 50 22 43
squfl040-080persp 578.72 2651 23 378
sssd08-04 203796.00 2 12 36
sssd08-04persp 413575.00 2 18 38
sssd12-05 421690.00 3 18 51
sssd12-05persp 458644.00 2 21 52
sssd15-04 266257.00 1 14 37
sssd15-04persp 281947.00 3 21 47
sssd15-06 782066.00 4 21 61
sssd15-06persp 553100.00 2 12 28
sssd15-08 882079.00 5 26 77
sssd15-08persp 599059.00 3 17 49
sssd16-07 666186.00 4 25 78
sssd16-07persp 421588.00 2 14 29
sssd18-06 438633.00 3 14 41
sssd18-06persp 484779.00 2 18 47
sssd18-08 949385.00 5 46 100
sssd18-08persp 1054060.00 4 21 67
sssd20-04 402023.00 7 16 42
sssd20-04persp 403765.00 3 20 58
sssd20-08 522836.00 3 14 59
sssd20-08persp 568422.00 3 21 55
sssd22-08 600312.00 5 22 59
sssd22-08persp 567598.00 3 22 59
sssd25-04 302373.00 2 19 46
sssd25-04persp 300946.00 2 30 55
sssd25-08 585480.00 3 19 55
sssd25-08persp 601061.00 3 20 51
st_e13 — — — —
st_e14 5.81 0 6 10
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

st_e15 — — — —
st_e27 2.00 0 1 1
st_e29 -0.88 1 12 19
st_e31 — — — —
st_e32 -0.72 14 243 289
st_e35 71468.10 1 3 4
st_e36 — — 8225 51928
st_e38 7197.73 0 1 1
st_e40 — — — —
st_miqp1 380.50 1 15 28
st_miqp2 2.00 1 12 16
st_miqp3 — — — —
st_miqp4 — — — —
st_miqp5 -333.89 0 1 1
stockcycle 260786.00 12 147 218
st_test1 0.00 1 6 11
st_test2 — — — —
st_test3 — — — —
st_test4 — — — —
st_test5 -110.00 2 28 46
st_test6 664.00 3 46 75
st_test8 -29605.00 0 4 5
st_testgr1 -12.76 1 11 15
st_testgr3 -20.50 2 19 29
st_testph4 -80.50 0 3 5
super1 — — — —
super2 — — — —
super3 — — — —
super3t — — — —
supplychain — — — —
supplychainp1_020306 593975.00 0 3 5
supplychainp1_022020 3378850.00 5 5 9
supplychainp1_030510 1215690.00 0 3 5
supplychainp1_053050 8543940.00 111 5 11
supplychainr1_020306 628623.00 0 5 9
supplychainr1_022020 4050140.00 8 14 43
supplychainr1_030510 1568450.00 1 10 16
supplychainr1_053050 8588080.00 180 32 122
syn05h 837.73 0 3 4
syn05m 831.45 1 10 18
syn05m02h 3032.74 0 3 4
syn05m02m 3026.74 1 13 25
syn05m03h 4027.37 0 3 4
syn05m03m 3987.03 1 10 22
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

syn05m04h 5510.39 0 3 4
syn05m04m 5499.39 1 13 28
syn10h 1267.35 0 3 4
syn10m 560.25 0 10 14
syn10m02h 2310.30 1 3 4
syn10m02m 2275.85 2 13 25
syn10m03h 3354.68 1 3 4
syn10m03m 2773.64 2 25 38
syn10m04h 4557.06 0 3 4
syn10m04m 3814.77 3 26 41
syn15h 853.28 0 3 4
syn15m 503.63 1 10 25
syn15m02h 2832.75 0 3 4
syn15m02m 2777.75 1 14 25
syn15m03h 3850.18 0 3 4
syn15m03m 3795.18 3 17 34
syn15m04h 4937.48 1 3 4
syn15m04m 4882.48 2 18 31
syn20h 924.26 1 3 4
syn20m 722.64 2 8 19
syn20m02h 1752.13 1 3 4
syn20m02m 1693.13 2 23 38
syn20m03h 2646.95 1 3 4
syn20m03m 2574.01 3 18 41
syn20m04h 3532.74 1 3 4
syn20m04m 3475.74 3 18 35
syn30h 134.03 0 3 5
syn30m -38.75 2 15 28
syn30m02h 393.25 1 3 5
syn30m02m -13.34 2 16 29
syn30m03h 646.05 2 3 5
syn30m03m 31.70 3 15 34
syn30m04h 859.05 3 3 5
syn30m04m 111.41 5 13 33
syn40h 58.66 1 3 5
syn40m -25.08 2 27 46
syn40m02h 379.76 1 3 4
syn40m02m 149.17 3 11 30
syn40m03h 390.15 4 4 6
syn40m03m -12.17 6 28 51
syn40m04h 896.96 4 3 4
syn40m04m 609.95 6 12 32
synheat 219858.00 2 18 43
synthes1 7.09 1 8 14
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

synthes2 80.29 2 17 34
synthes3 82.37 1 14 28
tanksize 1.27 0 6 10
telecomsp_metro — — 1 1
telecomsp_njlata — — 1 2
telecomsp_nor_sun — — 1 0
telecomsp_pacbell 336210.00 3146 35 176
tln12 315.60 207 2860 3350
tln2 23.30 15 284 313
tln4 9.30 5 92 103
tln5 16.50 3 47 65
tln6 20.50 13 177 209
tln7 39.00 157 3173 3239
tloss 24.30 2 41 62
tls12 — — 37596 45964
tls2 11.30 193 3385 3543
tls4 22.00 492 9538 9781
tls5 15.50 81 1319 1590
tls6 36.10 152 2418 2859
tls7 48.80 1693 27458 28995
tltr 54.60 2 23 32
transswitch0009p — — — —
transswitch0009r — — — —
transswitch0014p — — — —
transswitch0014r — — — —
transswitch0030p — — — —
transswitch0030r — — — —
transswitch0039p — — — —
transswitch0039r — — — —
transswitch0057p — — — —
transswitch0057r — — — —
transswitch0118p — — — —
transswitch0118r — — — —
transswitch0300p — — — —
transswitch0300r — — — —
transswitch2383wpp — — 1 0
transswitch2383wpr — — — —
transswitch2736spp — — 1 0
transswitch2736spr — — — —
tspn05 191.25 0 1 1
tspn08 290.57 0 1 1
tspn10 225.13 0 1 1
tspn12 270.90 0 1 1
tspn15 334.73 2 3 6
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

unitcommit1 585256.00 14 35 58
unitcommit2 632283.00 44 23 90
uselinear — — — —
util 999.84 2 34 39
var_con10 452.69 1 5 7
var_con5 285.87 1 3 4
waste 1169.08 18 82 139
wastepaper3 0.03 3 16 32
wastepaper4 0.03 2 22 32
wastepaper5 0.04 2 24 42
wastepaper6 0.01 2 19 37
water3 — — — —
water4 1323.97 70 1294 1381
watercontamination0202 129.15 467 43 95
watercontamination0202r 2690.24 25 97 196
watercontamination0303 580.69 811 60 137
watercontamination0303r 8654.50 91 131 277
waterful2 — — — —
waternd1 — — — —
waternd2 — — — —
waternd_blacksburg 518613.00 21 271 315
waternd_fossiron 346062.00 1035 14379 14507
waternd_fosspoly0 93204600.00 10 61 126
waternd_fosspoly1 — — 10 33692
waternd_hanoi 7438010.00 36 525 640
waternd_modena 346062.00 1080 14379 14507
waternd_pescara 4575970.00 1060 11611 11743
waternd_shamir 434000.00 1 10 15
waterno1_01 306.82 10 181 187
waterno1_02 331.56 5 50 58
waterno1_03 1257.91 9 106 117
waterno1_04 1202.02 63 817 840
waterno1_06 1093.12 7 33 54
waterno1_09 1516.33 17 50 76
waterno1_12 1826.62 35 140 166
waterno1_18 2398.41 40 46 74
waterno1_24 3130.12 1745 6004 6042
waterno2_01 29.08 4 63 69
waterno2_02 156.66 7 86 94
waterno2_03 134.20 8 81 105
waterno2_04 257.23 11 81 118
waterno2_06 442.50 16 88 137
waterno2_09 1422.16 31 87 159
waterno2_12 3119.55 48 99 211
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Table 2: Detailed numerical results for the penalty ADM based
feasibility pump on all 889 MINLPLib 2 instances with integer
variables. Objective function value, running times (s), outer penalty
iterations (#Pen.), and inner ADM iterations (#ADM) for the
method with λ = 0.9, additive penalty parameter update rule inca,
and deactivated local branching.

Instance Objective Time #Pen. #ADM

waterno2_18 7359.11 105 107 253
waterno2_24 9711.81 301 477 653
waters — — — —
watersbp — — — —
watersym1 — — — —
watersym2 — — — —
watertreatnd_conc — — — —
watertreatnd_flow 349525.00 19 294 297
waterx 934.86 0 7 12
waterz 315610.00 1575 13551 26704
windfac 0.25 2 26 28
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