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This article comprises the first theoretical and computational study on mixed integer programming

(MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and

Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection

nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open

facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner

tree, facility opening costs and the assignment costs need to be minimized.

We model ConFL using seven compact and three mixed integer programming formulations of

exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full

hierarchy between the models is provided. For two exponential size models we develop a branch-and-

cut algorithm. An extensive computational study is based on two benchmark sets of randomly

generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented

models with respect to the quality of obtained bounds and the corresponding running time. We report

optimal values for all but 16 instances for which the obtained gaps are below 0.6%.

& 2010 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Preliminary discussion

Improving the quality of broadband connections is nowadays
one of the highest priorities of telecommunication companies.
Solutions are sought that search for the optimal way of ‘‘pushing’’
rapid and high-capacity fiber-optic connections closer to the
customers. Developing respective models and answering ques-
tions related to the design of ‘‘last-mile’’ networks defines a new
challenging area of computer science and operations research. The
Connected Facility Location Problem (ConFL) models the following
telecommunication network design problem: Traditional wired
local area networks require copper cable connections between
end users. To reduce the signal loss, these lines are limited by a
maximum distance. To increase the quality of internet commu-
nications, telecommunication companies may decide to partially
or completely replace the existing copper connection by fiber-
optic cables. In order to do so, different strategies, known as fiber-

to-the-home (FTTH), fiber-to-the-node (FTTN), fiber-to-the-curb

(FTTC) or fiber-to-the-building (FTTB), are applied.
(S. Gollowitzer),

: [T334].

Y-NC-ND license.
ConFL models the FTTN/FTTC strategy: Fiber optic cables run to
a cabinet serving a neighborhood. End users connect to this
cabinet using the existing copper connections. Expensive switch-
ing devices are installed in these cabinets. The problem is to
minimize the costs by determining positions of cabinets, deciding
which customers to connect to them, and how to reconnect
cabinets among each other and to the backbone.
1.1. What is connected facility location?—problem definition

Gupta et al. [20] define the Connected Facility Location
problem as follows: We are given a graph G¼(V,E) with a set of
customers ðRDVÞ, a set of facilities ðFDVÞ and a set of Steiner
nodes ð ~SDVÞ such that ~S \ F ¼ |. For all eAE we are given an edge
cost ceZ0 and for all iAF we are given facility opening costs fiZ0.
Then ConFL consists of finding an assignment of each customer to
exactly one facility and connecting these facilities via a Steiner
tree. Thereby, assignment costs cij,iAF,jAR are given as the
shortest path distance between i and j in G.

The overall costs in this problem are defined as
P

jARdjciðjÞjþP
iAF fiþ

P
eAT Mce, where djZ1 is demand of customer j, i(j)

denotes the facility serving j, F is the set of open facilities, T is the
Steiner tree connecting open facilities and MZ1 is a constant.

Let S¼ ~S [ F denote the set of core nodes. We observe that
without loss of generality we can assume that S \ R¼ |. Other-
wise, we only need to replace each node uAS \ R, with a pair of
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nodes, u1AS and u2AR, connecting all iAS, core neighbors of u, to
u1, and all iAF, facility neighbors of u to u2, without changing the
edge/assignment costs. Finally, if uAF \ R, we need to connect
customer neighbors to u1 and add the service link {u1, u2} into E,
set its costs to zero and define fu1

:¼ fu. We also observe that
demands different from 1 can be set to 1 by adapting the
respective assignment costs. We set cij :¼ djcij for all jAR and iAF

and reflect the demand in the cost structure implicitly [33].
Alternatively, one can make dj copies of customer j, each with
demand equal to one (see, e.g., [14]).

For the development of approximation algorithms there are
two usual assumptions: The parameter M is used to distinguish
between ‘‘cheap’’ assignment and ‘‘expensive’’ core network
edges, and c is assumed to be a metric. As we will see later, both
these assumptions are not necessary in our approaches. Therefore,
we concentrate on a general cost structure.

Definition 1 (ConFL). For a given undirected graph (V,E) where
{S,R} is a disjoint partition of V with R� V being the set of
customers, S� V the set of possible Steiner nodes and FDS the set
of facilities, edge costs ceZ0, eAE and facility opening costs
fiZ0, iAF, in the Connected Facility Location problem we search
for a subset of open facilities such that:
�
 each customer is assigned to the closest open facility,

�
 a Steiner tree connects all open facilities, and

�
 the sum of assignment, facility opening and Steiner tree costs

is minimized.

Optionally, a root rAF may be considered as an open facility
always included in the network. In that case, we speak of the rooted

ConFL. Obviously, every optimal ConFL solution will be a tree in
which customers (and possibly the root r) are leaves. In the
telecommunications field a ‘‘central office’’ connecting to the
backbone network is often predefined and may be considered as
a root node active in any feasible solution. Therefore, in the
following we assume that the root is given in advance. In Section 3
we show how to solve unrooted instances.

The remainder of this paper is organized as follows: The
following section will provide an exhaustive literature review on
the topic. In Section 3 we propose ten mixed integer programming
models for ConFL and we show a transformation of ConFL into the
Steiner Arborescence (SA) problem. In Section 4 we provide a full
hierarchy of the models based on the theoretical comparison of
the quality of their lower bounds. Section 5 describes a branch-
and-cut (B&C) framework that has been used to solve two
formulations of exponential size. The computational results
provided in Section 6 are conducted on two sets of benchmark
instances introduced earlier in the literature.
2. Literature review

The Connected Facility Location Problem has lately started to
attract stronger interest in the scientific community. Compared to
some closely related problem classes, there is just a small number
of papers on the topic. A large share of publications about ConFL
comes from the computer science community who present
approximation algorithms of different kinds and qualities. The
operations research community has developed a small number of
heuristic methods. Preliminary results of one of our exact
approaches have been published in [33].

Approximation algorithms: A majority of the publications about
ConFL concentrates on approximation algorithms. However, not a
single one contains computational results. Thus, no conclusion can
be drawn to the practical applicability of the described algorithms.
Karger and Minkoff [22] describe an adapted version of the
Steiner tree problem, the so called maybecast problem. The authors
consider the distribution of single data items from a root to a set
of clients. It is not known beforehand which clients demand the
data item in question. For each client, there is a known probability
to become active and request the data. In addition, caching nodes,
i.e. nodes storing the demanded data for resending it to clients,
can be activated at a certain cost. The problem of finding a tree
with minimal expected cost corresponds to the Connected Facility
Location Problem. The authors propose a heuristic and show that
it approximates the given problem within a constant ratio.

Krick et al. [27] present a similar problem as the one in [22],
although in an other context. They consider a computer network
where clients (corresponding to customers) issue read and write
requests. The data for the requests is stored in memory modules
(facilities) at a certain cost. Read and write requests are served by
the nearest installed memory module for the respective client. To
keep data consistent throughout the network, all other memory
modules are updated with the latest version. This requires
connectivity between the memory modules. Krick et al. [27] give
a constant approximation algorithm with a larger constant than
the one given by Karger and Mikoff [22].

In the context of reserving bandwidth for virtual private
networks, Gupta et al. [20] introduce the term Connected Facility
Location. They give a proof for ConFL to be NP-hard. They present
a first cut-based integer programming formulation. Their for-
mulation will be described and discussed in detail in Section 3.2.
Their approximation algorithm for ConFL has a constant factor of
10.66. For the closely related rent-or-buy problem (RoB), in which
all nodes are potential facilities with opening costs equal to 0, the
algorithm gives an approximation factor of 9.002.

Swamy and Kumar [42] develop a primal-dual approximation
algorithm for ConFL, RoB and k-ConFL. The latter comprises the
additional restriction that in an optimum solution at most k

facilities can be opened. The integer programming formulation
used is the same as in Gupta et al. [20]. As results the authors give
approximation ratios of 8.55, 4.55 and 15.55 for ConFL, RoB and
k-ConFL, respectively.

The approximation factors have been successively improved in
Jung et al. [21] and Williamson and van Zuylen [44]. Finally,
Eisenbrand et al. [14] combine approximation algorithms for the
basic facility location problem and the connectivity problem of
the opened facilities by running a what they call core detouring

scheme. The randomized version of the approximation algorithm
gives new best expected approximation ratios for ConFL (4.00),
RoB (2.92) and k-ConFL (6.85). The ratios for the de-randomized
version are 4.23, 3.28 and 6.98, respectively.

Heuristics and exact methods: Ljubić [33] describes a hybrid
heuristic combining Variable Neighborhood Search with a reactive
tabu search method. The author compares it with an exact branch-
and-cut approach. The corresponding integer programming model
for the branch-and-cut approach will be explained in detail and
compared to other formulations in Section 3. Ljubić [33] also
presents two classes of test instances as a result of combining
Steiner tree and uncapacitated facility location instances. Results
for these instances with up to 1300 nodes are presented.

Tomazic and Ljubić [43] present a Greedy Randomized
Adaptive Search Procedure (GRASP) for the ConFL problem.
Results for a new set of test instances with up to 120 nodes
(facilities plus customers) are presented.
2.1. Related problems

The Connected Facility Location problem is a combination of
two other well-known problems in graph theory. These are the
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Steiner tree problem (STP) and the Uncapacitated Facility Location
problem (UFL). ConFL contains them both as special cases. For a
set of possible facility locations connected to a root via a star, we
have UFL. In case each customer can only be served by one
predefined facility, we know the set of facilities that needs to be
opened in advance. Thus, we then have an STP to solve.

Rent-or-buy problem (RoB): The rent-or-buy problem is often
viewed as a special case of the ConFL problem. In the RoB problem
facility opening costs are 0 and facilities can be opened anywhere.
Thus, also customer nodes can act as facilities and have other
customers assigned to them. The cost for each edge in a solution
to the RoB depends on its adjacent nodes. If an edge is used to
assign a customer to a facility, only assignment costs are incurred.
If an edge connects two facilities, a comparatively higher cost, i.e.
M times the assignment cost, has to be paid for.

The (general) Steiner tree-star problem ((G)STS): The Steiner
tree-star problem was introduced by Lee et al. [28]. It arises in the
design of some specific telecommunication networks, where
bridging occurs. The Steiner tree-star problem is the following:
Given a graph with disjoint sets of possible facility nodes and
customers, we want to find a minimum cost tree such that each
customer is assigned to a facility and that all open facilities are
connected by a Steiner tree. Facility opening costs are incurred for
any facility in the solution tree, regardless of whether any
customers are assigned to it or not.

Exact methods to solve the STS problem have been described by
Lee et al. [28,29], a tabu search based heuristic was developed by Xu
et al. [46]. Khuller and Zhu [23] introduced the general Steiner tree-
star problem. There, the sets of possible facilities and customers
need not be disjoint. Nodes can act in both ways and an open facility
can serve the customer in its own place at no additional cost. Khuller
and Zhu [23] derive two approximation algorithms for the general
STS with approximation factors of 5.16 and 5, respectively.

General connected facility location (GConFL): Bardossy and
Rahavan [5] develop a dual-based local search (DLS) heuristic
for a family of problems combining facility location decisions with
connectivity requirements, namely the (general) Steiner tree-star,
ConFL and RoB. They introduce the general ConFL problem, into
which any of the aforementioned 4 problem classes can be
transformed. The presented DLS heuristic works in two phases.
After applying dual-ascent in order to get a lower and upper
bound in the first phase, in the second phase a local search
procedure is carried out on the facilities and Steiner nodes
selected before. Computational results for instances with up to
100 nodes are presented. Running time and the quality of
solutions of Ljubic’ VNS heuristic and DLS are compared for the
set of instances introduced in [33].

Prize collecting capacitated connected facility location (CConFL):
This problem resembles a prize collecting variant of ConFL and
additionally considers capacity constraints on potential facility
locations. The problem has been introduced by Leitner and Raidl
[30] who propose an approach based on Lagrangian relaxation
which has been hybridized with local search and very large scale
neighborhood search. In Leitner and Raidl [31], the authors
present two mixed integer programming based approaches which
are solved using branch-and-cut and branch-and-cut-and-price,
respectively.

Tree of hubs location problem (THLP): Another related problem
with a tree-star topology is the tree of hubs location problem
proposed by Contreras et al. [11]. This is a network hub location
problem with single assignment in which a fixed number of hubs
needs to be located, with an additional requirement that the hubs
are connected by means of a tree. The sum of costs for routing the
flow between each pair of source-destination nodes is minimized.
In [11] the authors propose a compact MIP model, a number of
valid inequalities and present computational results for instances
with up to 25 nodes. A tighter formulation, a bounding heuristic
and a Lagrangian relaxation approach are presented in [10]. The
new approach solves instances with up to 100 nodes.
3. MIP formulations for ConFL

It is well known that the MIP formulations for optimization
problems with tree topology provide stronger lower bounds when
defined on directed graphs (see, e.g., [9,17,36]). In this section we
will first describe how to transform undirected instances for
ConFL into directed ones. A range of MIP formulations for the
ConFL will be presented afterwards. As the exponential size
formulations are hard to implement by means of a modeling
language, various compact MIP formulations will be described in
this section as well. They are either flow formulations or based on
sub-tour elimination constraints.

3.1. Transformation into directed graphs

Throughout this paper, an arc from i towards j will be denoted
by ij, and the corresponding undirected edge by {i,j}. Let (V,E) be a
given instance of ConFL with {S,R} being a partition of V and FDS.
This instance can be transformed into a bidirected instance (V,A)
as follows (cf. [43]):
�
 Replace core edges eAE with e¼ fi,jg, i,jAS by two directed
arcs ijAA and jiAA with cost cij ¼ cji ¼ ce. Since we are
modeling an arborescence directed away from the root node,
edges {r,j} are replaced by a single arc rj only.

�
 Replace assignment edges eAE with e¼ fj,kg, jAF, kAR by an

arc jkAA with cost cjk ¼ ce, respectively.

Rooting unrooted instances: To obtain an optimal solution for a
directed, unrooted instance (V, A) by solving a model for rooted
instances we adapt the input instance and the corresponding
model as follows:
�
 Expand the set of facilities F by adding an artificial root r to
V u¼ V [ frg with cost fr ¼ 0.

�
 Expand the set of arcs by adding an arc rj for all core nodes jAF

with crj ¼ 0.

�
 Limit the number of arcs emanating from the root r to 1.

In the remainder of this paper we will refer to the Connected
Facility Location problem on directed graphs as the following:

Definition 2 (ConFL on directed graphs). We are given a directed
graph ðV ,AÞ with edge costs cijZ0, ijAA, facility opening costs
fiZ0, iAF and a disjoint partition {S,R} of V with R� V being the
set of customers, S� V the set of possible Steiner tree nodes, FDS

the set of facilities, and the root node rAF. Find a subset of open
facilities such that
�
 each customer is assigned to exactly one open facility,

�
 a Steiner arborescence rooted in r connects all open facilities,

and

�
 the cost defined as the sum of assignment, facility opening and

Steiner arborescence cost, is minimized.

To model the problem, we will use the following binary
variables:

xij ¼
1 if ij belongs to the solution

0 otherwise

�
8ijAA zi ¼

1 if i is open

0 otherwise

�
8iAF
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We will use the following notation: AR ¼ fijAAjiAF,jARg,
AS ¼ fijAAji,jASg. Furthermore, for any W � V we denote by
d�ðWÞ ¼ fijAAji=2W ,jAWg and dþ ðWÞ ¼ fijAAjiAW ,j=2Wg.
Fig. 1. Graphic illustration for cut inequalities (2): W ¼ {r,1,2}, U ¼ {3,4}.

Fig. 2. In this example the cost structure is as follows: all facility opening and

assignment costs are 1: crs ¼ L and csi ¼ K, for all iAf1, . . . ,ng.
3.2. Cut-based formulations

There are two different formulations of exponential size for
ConFL given in the literature. They are both based on cut sets and
differ in strength.

Cut set formulation of Gupta et al. [20]: Gupta et al. [20] first
introduced an undirected ILP formulation for ConFL. To ensure
comparability, a directed version will be presented here. One
might think of any ConFL solution as a Steiner arborescence
rooted at r with customers as leaves and with node weights that
need to be payed for any node that is adjacent to a customer.
Therefore, instead of requiring connectivity among open facilities
and assignment of customers to open facilities, we are going to
ask for the solution that ensures a directed path between r and
any customer jAR, using the arcs from A.

The cut-based model reads then as follows:

ðCUTRÞ min
X
ijAA

xijcijþ
X
iA F

zifi

s:t:
X

uvAd�ðUÞ

xuvZ

X
jAU:jkAAR

xjk 8UDS\frg, U \ Fa|, 8kAR ð1Þ

X
jkAAR

xjk ¼ 1 8kAR ð2Þ

xjkrzj 8jkAAR ð3Þ

zr ¼ 1 ð4Þ

xijAf0,1g 8ijAA ð5Þ

ziAf0,1g 8iAF ð6Þ

The objective comprises the cost for the Steiner arborescence
ð
P

ijAAS
xijcijÞ, the cost to connect customers to facilities (that we

also refer to as assignment cost, i.e.
P

ijAAR
xijcijÞ and the facility

opening cost ð
P

iA FzifiÞ. Constraints (2) ensure that every
customer is connected to at least one facility, constraints (3)
ensure that each facility is opened if customers are assigned to it,
Eq. (4) defines the root node. Inequalities (1) represent the set of
cuts. For every subset UDS\frg and for each customer kAR, an
open arc from a facility in U toward j, necessitates a directed path
from r towards U. Constraints (2) can be replaced by inequality in
case that cijZ0, for all ijAAR. Furthermore, the same optimization
problem with continuous assignment variables xij, for all ijAAR,
returns an optimal ConFL solution. This is because the underlying
assignment matrix is totally unimodular, whenever zi values are
fixed to zero or one.

Observation 1. Using Eqs. (2), we can re-write constraints (1) as

follows:X
uvAd�ðUÞ

xuvþ
X

jkAAR :j=2U

xjkZ1, 8UDS\frg, U \ Fa| 8kAR ð7Þ

Denote by W ¼ S\U, and let AW
S :¼ dþ ðWÞ \ AS and AW

R ¼ dþ ðWÞ\ AR.
Now, we can interpret these constraints as follows: every cut

separating customer k from r (involving all arcs from AS [ ARÞ has

to be greater than or equal to one, i.e.:X
uvAAW

S

xuvþ
X

jkAAW
R

xjkZ1, 8WDS, rAW , W \ FaF, 8kAR

Fig. 1 illustrates an example of these cut set inequalities.
According to the result of Swamy and Kumar [42], the
integrality gap of the LP-relaxation of (CUTR) is not greater than
8.55, if c is a metric, and core costs are M times more expensive
than the assignment costs ðMZ1Þ.

Ljubić’ cut set formulation: Ljubić [33] presents a slightly
different formulation where the cuts are defined according to the
open facilities:

ðCUTF Þ min
X
ijAA

xijcijþ
X
iAF

zifi

s:t:
X

uvAd�ðWÞ

xuvZzi 8WDS\frg, 8iAW \ Fa| ð8Þ

ð2Þ2ð6Þ

Lemma 1. There are instances for which the values of the LP-

relaxation of the CUTF model can be as bad as 1=ðjFj�1ÞOPT , where

OPT denotes the optimal integer solution value.

Proof. Fig. 2 illustrates such a situation. In this example n :¼ jFj�1.
The optimal solution value for the LP-relaxation of CUTF is
uLPðCUTF Þ ¼ L=nþKþ3 and the optimal integer solution value is
OPT ¼ L + K + 3. For K5L, we get uLPðCUTF Þ=OPT � 1=n. &

3.3. Flow-based formulations

Extending flow formulations for the (prize-collecting) Steiner
tree problem (see, e.g., [32,41]), several ways to model ConFL as a
flow problem are possible. One option is to have a flow from the
root to each customer. Alternatively, flow can be allowed from the
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root node to open facilities only, with additional constraints
ensuring customers to be assigned to an open facility. Further it is
possible to consider just one single commodity or separate
commodities for each customer or facility, respectively.

In the following we propose six different flow formulations for
ConFL. The strength of the different formulations is discussed
later in Section 4.

Single-commodity flow between root and facilities: This single
commodity-flow formulation with flow between root node and
facilities is an extension of the single-commodity flow formula-
tion for the prize-collecting Steiner tree problem (see, e.g., Ljubić
[32]). The amount of flow terminating in a facility is linked to the
variable indicating whether the facility is open or not. For all
ijAAS, continuous variable gij denotes the amount of flow that is
simultaneously routed from r toward all open facilities over arc ij:

ðSCFF Þ min
X
ijAA

xijcijþ
X
iA F

zifi

s:t:
X

jiAAS

gji�
X

ijAAS

gij ¼

zk i¼ k, kAF

�
P

kA Fzk i¼ r 8iAS

0 iAS\fFg

8><
>: ð9Þ

0rgijrðjFj�1Þ � xij 8ijAAS ð10Þ

ð2Þ2ð6Þ

Constraints (9) ensure that each facility jAF receives zj units of
flow from the root. The coupling constraints (10) ensure that on
every arc ij, there is enough capacity to simultaneously route that
flow. They also force an arc ij to be installed if there is a flow sent
through it. Model SCFF comprises OðjAjÞ constraints and OðjAjÞ

binary and continuous variables.
The following result is due to the usage of ‘‘big-M’’ constraints

in (10):

Lemma 2. There are instances for which
(a)
 the values of the LP-relaxation of the SCFF model can be as bad as

1=ðjFj�1ÞOPT, and
(b)
 the ratio uLPðSCFF Þ=uLPðCUTF Þ � 1=jFj.
Proof.
(a)
 The example given in Fig. 2 provides uLPðSCFF Þ ¼ L=nþK=nþ3
which gives ratio uLPðSCFF Þ=OPT � 1=jFj.
(b)
 If KbL in the same example, we obtain

uLPðSCFF Þ

uLPðCUTF Þ
¼

L

n
þ

K

n
þ3

L

n
þKþ3

¼
1

jFj�1
�

1

jFj
&

Single-commodity flow between root and customers: We now
consider single commodity-flow from the root node to each of the
customers. At the expense of more flow variables this allows us to
drop constraints (2) used in SCFF:

ðSCFRÞ min
X
ijAA

xijcijþ
X
iA F

zifi

s:t:
X

jiAAS

fji�
X
ijAA

fij ¼

1 iAR

�jRj i¼ r

0 iAS\frg

8><
>: 8iAV ð11Þ

0r fijr jRj � xij 8ijAA ð12Þ

ð3Þ2ð6Þ
Constraints (11) ensure that each customer receives one unit of
flow from the root node and constraints (12) are similar to (10).
However, one easily observes that, although redundant for the
MIP formulation, assignment constraints (2) can strengthen the
quality of lower bounds. We denote by SCFþR the formulation SCFR

extended by (2). Models SCFR and SCFR
+ comprise OðjAjÞ constraints

and OðjAjÞ binary variables.

Lemma 3. There are instances for which
(a)
 the values of the LP-relaxation of the SCFR (SCF+
R ) model can be as

bad as 1=jRjOPT , and
(b)
 the ratio uLPðSCFRÞ=uLPðCUTRÞ � 1=jRj.
Multi-commodity flow with one commodity per facility: The two
flow formulations presented above can be improved by disag-
gregation of commodities.

Choosing one commodity per facility, each variable indicating
an open facility is linked to a distinct commodity. A multi-
commodity flow formulation with one commodity per facility is
given by

ðMCFF Þ min
X
ijAA

xijcijþ
X
iAF

zifi

s:t:
X

jiAAS

gk
ji�
X

ijAAS

gk
ij ¼

zk i¼ k

�zk i¼ r

0 iak,r

8><
>: 8iAS, 8kAF ð13Þ

0rgk
ijrxij 8ijAAS, 8kAF ð14Þ

ð3Þ2ð6Þ

Eqs. (13) are the flow preservation constraints defining the
flow from the root node to each facility. These constraints ensure
the existence of a connected path from r to every open facility.
The stronger coupling constraints ensure that the arc is open if a
flow is sent through it. Formulation MCFF comprises OðjASjjFjþ

jARjÞ constraints, OðjASjjFjÞ continuous and OðjAjÞ binary variables.
Multi-commodity flow with one commodity per customer:

Another choice for the commodities we use, is the set of
customers. Assigning a commodity of size 1 to each customer
allows to remove the z variables from the flow preservation
constraints. Using one commodity per customer, ConFL can be
stated as

ðMCFRÞ min
X
ijAA

xijcijþ
X
iAF

zifi

s:t:
X
jiAA

f k
ji�
X
ijAA

f k
ij ¼

1 i¼ k

�1 i¼ r

0 iak,r

8><
>: 8iAV ,8kAR ð15Þ

0r f k
ij rxij 8ijAA, 8kAR ð16Þ

ð3Þ2ð6Þ

Formulation MCFR comprises OðjAjjRjÞ constraints, OðjAjjRjÞ

continuous and OðjAjÞ binary variables.

Observation 2. Variables xij, ijAAR, are redundant in this formula-

tion, as every LP-optimal solution of MCFR also satisfies

f l
jk ¼

xjk if l¼ k

0 otherwise

�
8lAR, 8jkAAR:
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Therefore, constraints (2) are redundant, for both, the MCFR

model and its LP-relaxation. However, we keep variables xij,ijAAR

in this model for better readability.
3.3.1. Strong formulations comprising common flow variables

Polzin and Daneshmand [41] have developed a formulation
which they call Common Flow formulation for the Steiner
arborescence problem. It is based on a disaggregation of multi
commodity-flow formulation with additional 4-index variables.
These variables indicate the common flow from the root towards
any pair of terminals. For ConFL this gives two choices on the
common flows considered, towards facilities or towards custo-
mers. The variant, in which common flows towards facilities are
considered, is an extension of MCFF, the other one is an
augmentation of MCFR and it is the strongest one among all
formulations presented in this paper (see Section 4).

Common flow between root and facilities: Let gkl
ij denote the

common flow towards facilities k and l, k,lAF,ka l, over an arc ij.
Then a MIP formulation of ConFL using common flows from the
root to facilities is given by

ðCFF Þ min
X
ijAA

xijcijþ
X
iAF

zifi

s:t:
X

jiAAS

gk
ji�
X

ijAAS

gk
ij ¼

zk i¼ k

�zk i¼ r

0 iak,r

8><
>: 8iAS, 8kAF ð17Þ

X
ijAAS

gkl
ij�

X
jiAAS

gkl
ji r

minðzk,zlÞ i¼ r

0 iar

(
8iAS, 8k,lAF, ka l ð18Þ

0rgkl
ij rminðgk

ij,g
l
ijÞ 8ijAAS, 8k, lAF, ka l ð19Þ

0rgk
ijþgl

ij�gkl
ij rxij 8ijAAS, 8k, lAF, ka l ð20Þ

ð2Þ2ð6Þ

Constraints (17) are flow preservation constraints as in MCFF.
Constraints (18) ensure that the common flow from the root
toward facilities k and l is non-increasing. Inequalities (19) define
the relation between common flow and commodity flow
variables. The coupling constraints (20) ensure that the arc is
installed whenever there is a flow sent through it. Inequalities
(18) and (19) are written in a compact way: min indicates that
each of them is to be replaced by two constraints with either of
the min-arguments on the right hand side.

Formulation CFF comprises OðjASjjFj
2Þ constraints, OðjASjjFj

2Þ

continuous and OðjAjÞ binary variables.
Common flow between root and customers: Starting from the

MCFR model, we can now derive the other common flow
formulation. Let f

kl

ij denote the common flow towards customers
k and l, ka l. Then the common flow formulation with flows from
the root to customers is given by

ðCFRÞ min
X
ijAA

xijcijþ
X
iAF

zifi

s:t:
X
jiAA

f k
ji�
X
ijAA

f k
ij ¼

1 i¼ k

�1 i¼ r

0 iak,r

8><
>: 8kAR ð21Þ

X
ijAAS

f
kl

ij�
X

jiAAS

f
kl

ji r
1 i¼ r

0 iar

(
8iAS, 8k, lAR, ka l ð22Þ
0r f
kl

ij rminðf k
ij ,f l

ijÞ 8ijAA, 8k, lAR, ka l ð23Þ

0r f k
ij þ f l

ij�f
kl

ij rxij 8ijAA, 8k, lAR, ka l ð24Þ

ð3Þ2ð6Þ

Constraints (21) are flow preservation constraints as in MCFR.
Inequalities (22) ensure that the common flow from the root to
customers k and l is non-increasing. Constraints (23)–(24) are
equivalents of (19)–(20). In (23), min again indicates that the
corresponding inequalities are to be replaced by ones with either
of the arguments on the right hand side.

Formulation CFR comprises OðjAjjRj2Þ constraints, OðjAjjRj2Þ

continuous and OðjAjÞ binary variables.

3.4. Formulations based on sub-tour elimination constraints

Another well-studied group of MIP formulations for problems
on graphs are based on sub-tour elimination. We present here one
compact and one exponential size model.

Miller–Tucker–Zemlin formulation: One very simple strategy for
sub-tour elimination was proposed by Miller, Tucker and Zemlin
[38] and has been applied to a number of problems, including
(Asymmetric) Traveling Salesman, Vehicle Routing, Minimum
Spanning Tree and Steiner Tree Problem [12,13,19,39]. In addition
to x and z variables, we now introduce level variables uiZ0, for all
iAS, determining the level of node i in the tree solution. The root
node is assigned to the level zero.

Using the Miller–Tucker–Zemlin (MTZ) constraints (see, e.g.,
[12]), ConFL can be stated as:

ðMTZÞ min
X
ijAA

xijcijþ
X
iAF

zifi

s:t:
X

iA S\fkg

xijZxjk 8jAS\frg, 8kAV ð25Þ

jSj � xijþuirujþjSj�1 8ijAAS ð26Þ

ur ¼ 0 ð27Þ

uiZ0 8iAS\frg ð28Þ

ð2Þ2ð6Þ

Constraints (25) limit the out-degree of a node by its in-degree.
Constraints (26) are Miller–Tucker–Zemlin sub-tour elimination
constraints, setting the difference uj - ui for an open arc ij to at
least 1, thereby eliminating cycles in the Steiner tree connecting
the facilities. Constraint (27) sets the level of the root node to
zero.

Formulation MTZ comprises OðjAjÞ constraints, OðjSjÞ contin-
uous and OðjAjÞ binary variables. The formulation is small in the
number of constraints and variables, compared to the aforemen-
tioned formulations based on flows or cut sets. The quality of the
lower bounds, i.e. the strength of the formulations will be
analyzed in the subsequent section.

Lemma 4. The values of the LP-relaxation of the MTZ model can be

arbitrarily bad.

Proof. Consider the example in Fig. 3: The LP-solution opens each
facility with 1/n, and builds one directed cycle of fsg [ f1, . . . ,ng
where for each arc ij in the cycle xij ¼ 1/n. The value of the
optimal LP-solution is uLPðMTZÞ ¼ 4þ1=n and the optimal value is
OPT ¼ L + 4, which gives ratio uLPðMTZÞ=OPT � 1=L. &
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Note that for our computational experiments we replaced
constraints (26) by the following stronger ones:

ðjSj�2Þ � xjiþjSj � xijþuirujþjSj�1 8ijAAS

The polyhedral results in Section 4 are given for the weaker model.
Formulation based on generalized sub-tour elimination constraints:

To model the Steiner tree in the core network, one might consider
another formulation extended by the following node variables:

wi ¼
1 if i belongs to the solution,

0 otherwise

�
8iAS

Such a model has been used for the node-weighted Steiner tree
problems (see, e.g., [16,35,36]).

ðGSECÞ min
X
ijAA

xijcijþ
X
iA F

zifi

X
uvAA:u,vAU

xuvr
X

iAU\fkg

wi8U � S, jUjZ2, 8kAU ð29Þ

X
uvAA

xuv ¼
X

iAS\frg

wi ð30Þ

wiZzi 8iAF ð31Þ

0rwir1 8iAS ð32Þ

ð2Þ2ð6Þ

Equality (30) ensures that the set of edges is equal to the
number of selected nodes minus one. In order to ensure the tree
structure, sub-tours are eliminated by deploying constraints (29).
Since facility nodes can also be used only as Steiner nodes, in
which case wi¼1 and zi¼0, inequalities (31) must hold.

We will see in the following section that the results known for
Steiner trees with respect to GSEC, directly apply to ConFL.
4. Polyhedral comparison

In this section we provide a theoretical comparison of the MIP
models described above with respect to optimal values of their
LP-relaxations. The examples given below are used in the proofs
of this section. These examples employ the following notation:

’ represents the root node
&l represents a facility with label l
Fig. 3. In this example n :¼ jFj�1. The cost structure is as follows: all facility

opening, arc opening and assignment costs are 1, except for crs ¼ L, where Lb0 is

an arbitrarily large number.
3 represents a Steiner node
% represents a customer
Arc costs different from 1 are displayed next to the respective arc.
Facility opening, assignment and core costs are all 1 in all
examples, unless stated differently. All the values of facility node
variables stated in the descriptions below refer to optimal LP-
solutions. The core network is presented as undirected graph,
except in Fig. 6.

Let uLPð:Þ denote the optimal solution value of the LP-relaxation
of a given model. By comparing the optimal LP-solution values for
the aforementioned examples, provided by the models in Section 3,
we can state the following result.

Lemma 5. The following pairs of formulations are incomparable

with respect to the quality of lower bounds:
(a)
Fig.
facil
MTZ and SCFF,

(b)
 MTZ and SCFR (SCFR

+),

(c)
 SCFF and SCFR (SCF+

R ),

(d)
 SCFR (SCFR

+) and MCFF,

(e)
 SCFR (SCFR

+) and CFF,

(f)
 MCFR and CFF.
Proof.
(a)
 In Fig. 4 we have uLPðSCFF Þ ¼ 11o16¼ uLPðMTZÞ and in Fig. 7
we have uLPðMTZÞ ¼ 9o10¼ uLPðSCFF Þ.
(b)
 In Fig. 4 we have uLPðSCFRÞ ¼ 7:25ouLPðSCFþR Þ ¼ 11o
uLPðMTZÞ ¼ 16 and in Fig. 7 we have uLPðMTZÞ ¼ 9o 17:25¼
uLPðSCFRÞouLPðSCF þR Þ ¼ 21.
(c)
 In Fig. 5 we have uLPðSCFF Þ ¼ 14:325o18:125¼ uLPðSCFRÞ and in
Fig. 8 we have uLPðSCFRÞ ¼ 3:25ouLPðSCFþR Þ ¼ 7o uLPðSCFF Þ ¼ 8.
(d)
 For Fig. 5 we have uLPðSCFRÞ ¼ 18:125418¼ uLPðMCFF Þ. For Fig. 4
we have uLPðSCFRÞ ¼ 7:25ouLPðSCF þR Þ ¼ 11o uLPðMCFF Þ ¼ 16.
(e)
 For Fig. 4 we have uLPðSCFRÞ ¼ 7:25ouLPðSCFþR Þ ¼ 11o
uLPðCFF Þ ¼ 16, for Fig. 5 we have uLPðCFF Þ ¼ 18ouLPðSCFRÞ ¼

18:125ouLPðSCFþR Þ ¼ 22:25.

(f)
 Consider Examples 5 and 6. For Fig. 5 we have uLPðCFF Þ ¼

18o28¼ uLPðMCFRÞ, for Fig. 6 we have uLPðMCFRÞ ¼ 22o24¼
uLPðCFF Þ. &
Denote by P: the polytope of the LP-relaxation of any of the
MIP models described above, and with Projx,zðP:Þ the natural
projection of that polytope onto the space of variables x and z.

Lemma 6. The following results hold:
(a)
 Projx,zðPCFF
ÞDProjx,zðPMCFF

ÞDProjx,zðPSCFF
Þ, and
(b)
 Projx,zðPCFR
ÞDProjx,zðPMCFR

ÞDProjx,zðPSCF þR
ÞDProjx,zðPSCFR

Þ.
Furthermore, there exist ConFL instances for which the strict

inequality holds for each of the ‘‘ D ’’ relations given above.
4. This simple example demonstrates the weakness of formulation SCFR. The

ity node variable is 1/4 for SCFR and 1 for all other models.



Fig. 5. This example is a small variant of the one in Fig. 2. It will show the

weakness of models where the flows are only defined on the core subgraph AS .

Facility node variables are 1
8 for SCFR and 1

2 for all other models.

Fig. 6. In this example the core network is directed and there is exactly one

customer that can be assigned to each facility. Thus, every facility needs to be open

in a feasible solution. Facility node variables are 1
5 for SCFR and 1 for all other

models. A version of this example was described by Polzin and Daneshmand [41].

Table 1
Optimal LP-solutions for examples in Figs. 4–8.

Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8

MTZ 16 18 20 9 10

SCFF 11 14 3
8 14 1

5
16 8

SCFR 7 1
4 18 1

8
7 17 1

4 3 1
4

SCFR
+ 11 22 1

4 14 1
5

21 7

MCFF 16 18 22 26 10

MCFR 16 28 22 26 10

CFF 16 18 24 26 10

CFR 16 28 24 26 10
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Proof. The results follow immediately from the corresponding
results for Steiner trees, see e.g., [41]. Instances that prove the
strict inclusion can be found in Table 1. &

Lemma 7. The following results hold:
(a)
 Projx,zðPMCFF
Þ ¼PCUTF

¼ Projx,zðPGSECÞ, and
(b)
 Projx,zðPMCFR
Þ ¼PCUTR

.

Proof.
(a)
 The first equality follows from the max-flow min-cut
theorem, the second one follows from the related result for
node-weighted Steiner trees, see e.g. [36].
(b)
 This result follows from the max-flow min-cut theorem. &
Lemma 8. The following results hold:
(a)
 Projx,zðPMCFR
ÞDProjx,zðPMCFF

Þ and
(b)
 Projx,zðPCFR
ÞDProjx,zðPCFF

Þ.
Furthermore, there exist ConFL instances for which the strict

inequality holds.

Proof.
(a)
 According to Lemma 7, it is enough to show this relationship
by comparing PCUTR

and PCUTF
. Then it is easy to see that

every solution ðxu,zuÞAPCUTR
also belongs to PCUTF

. Fig. 5, with
uLPðCUTRÞ ¼ 28418¼ uLPðCUTF Þ, proves that the opposite is
not true.
(b)
 Projx,zðPCFR
ÞDProjx,zðPCFF

Þ: Let ðfu,f u,xu,zuÞ be in PCFR
. We

define the capacities on the subgraph GS¼(S, AS) as xij, for
all ijAAS. Since xijrmaxkARf k

ij , and zirmaxijAAR
xij, there will

be enough capacity to independently route zi units of flow,
for all iAF, such that zi40. Now, we are going to construct
ðg,g,x,zÞAPCFF

as follows: We fix the ordering of the
outgoing arcs of every node iAS and then apply an adapted
Ford–Fulkerson maximum flow algorithm. To define g, we
send zi units of flow from r towards iAF, for all iAF such that
zi40. When searching for augmenting paths, we always
follow the fixed ordering. Therefore, the outgoing arcs of a
node always get saturated in the same order, independently
on the commodity under consideration. It follows directly
from construction that the common flow g for any pair of
facilities k and l, once it splits up, will never meet again, i.e.,
inequalities (18) will be satisfied.

Projx,zðPCFF
ÞJProjx,zðPCFR

Þ: Consider Fig. 5, where uLPðCFRÞ ¼

28418¼ uLPðCFF Þ. &
Lemma 9. Formulation GSEC (i.e., CUTF, MCFF) is strictly stronger

than formulation MTZ, i.e. Projx,zðPMCFF
ÞDProjx,zðPMTZÞ and there

exist instances for which the strict inequality holds.

Proof. Let CS denote the set of all elementary circuits (i.e. no
nodes are repeated in the circuit) in S. Let C be the set of arcs
defining an arbitrary elementary circuit in CS. Gouveia [18] (see
also Padberg and Sung [40]) shows that, variables ui and
constraints (26) can be projected out by using the following set
of circuit packing constraints:

X
ijAC

xijr jCj�
jCj

jSj
8CDCS ð33Þ

It is not difficult to see that circuit packing constraints (33) are
implied by the generalized sub-tour elimination constraints (29),
i.e.:

X
ijAC

xijr jCj�1r jCj�
jCj

jSj
8CDCS

For Fig. 7 we have uLPðMTZÞ ¼ 9o26¼ uLPðGSECÞ. Thus, Projx,z

ðPGSECÞ � Projx,zðPMTZÞ for this particular case (Fig. 8). &
4.1. Reformulation as the Steiner arborescence problem

As we already observed in [43], the ConFL can be transformed
into the Steiner Arborescence Problem. This transformation is done
by using the well-known node splitting technique that has proven
useful for different network design problems, see e.g., [4,7].

To solve an instance of ConFL as SA, we use the following
procedure:
�
 Generate a directed graph ~G ¼ ð ~V , ~AÞ with costs ~c : ~A/Rþ0 , as
follows:
3 Initialize ~V ¼ V , ~A ¼ A and ~c ¼ c.
3 For any facility node i, add a node iu to the graph, connect i

to iu, and set ~c iiu ¼ fi.
3 Replace arcs ikAAR by iuk.
�
 Solve the Steiner arborescence problem on the transformed
graph ~G with customers as terminals.



Fig. 7. This example demonstrates the weakness of Miller–Tucker–Zemlin

constraints. The facility node variable is 1
4 for SCFR and 1 for all other models. In

the LP-solution for model MTZ there is a cycle consisting of the arcs of weight 1.

The open facility is not connected to the root.

Fig. 8. This example demonstrates the weakness of ‘‘big-M’’ constraints in the

models comprising single commodity flow. The facility node variable is 1
4 for SCFR

and 1 for all other models.

Fig. 9. Initial undirected ConFL instance and transformed SA instance.
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Recall that, given a directed graph ~G ¼ ð ~V , ~AÞ, with arc weights
~c : ~A/R, a root rA ~V , and a set of terminal nodes R� ~V , the
Steiner arborescence problem searches for the cheapest subtree
rooted at r that connects all terminals. Fig. 9 shows a simple
example that illustrates the transformation of ConFL into the
SA problem, according to the procedure described above.

For each facility iAF, i corresponds to node’s function as
Steiner node, while iu corresponds to its function as open facility.
With this transformation we ensure that the arc iiu belongs to a
solution if and only if facility i is open. Similarly, facility i is used
as Steiner node if and only if i belongs to the solution, but arc iiu

does not. A similar, but undirected transformation has been used
by [5] to transform (G)STS, ConFL and RoB into the GConFL [5].

To solve the SA problem as a MIP, let us define binary variables
vij as follows:

vij ¼
1 if ij belongs to the solution

0 otherwise

�
8ijA ~A

We extend the directed cut-based formulation for Steiner trees
(see Chopra and Rao [9]) by the root out-degree constraint as
follows:

ðSAÞ min
X
ijA ~A

~c ijvij ð34Þ

X
ijAd�ðWÞ

vijZ1 8WD ~V \frg, W \ Ra| ð35Þ

X
ijAd�ðfjgÞ

vij ¼ 1 8jAR ð36Þ

vrru ¼ 1 ð37Þ

vijAf0,1g 8ijA ~A ð38Þ
Let us denote by

Projx,zðPSAÞ ¼ fðx,zÞA ½0,1�jAj½0,1�jFjjvAPSA and

xkl ¼ vkl8klAAS; xij ¼ viuj8ijAAR; zi ¼ viiu8iAFg

the projection of the PSA polytope onto the space of variables (x,z).
We show the following result:

Lemma 10. The LP-relaxation of the Steiner arborescence formula-

tion is equally strong as the LP-relaxation of CUTR, i.e.:

Projx,zðPSAÞ ¼PCUTR

Proof. We prove equality by showing mutual inclusion.

Projx,zðPSAÞDPCUTR
: Let vu be a feasible solution of the LP-

relaxation of SA, and ðxu,zuÞ its projection into Projx,zðPSAÞ.
Obviously, (1), (2) and (4) are satisfied by ðxu,zuÞ. It only remains
to show that xuijrzui, 8ijAAR. Assume that there exist jAF and
kAR such that xjk4zj. From inequalities (36) follows

1¼
X

iAF\fjg

xikþxjk4
X

iAF\fjg

xikþzj ¼
X

ijAd�ðWÞ

vij

where W ¼ fk,jug in contradiction to constraints (35).
PCUTR

DProjx,zðPSAÞ: Let ðxu,zuÞ be a fractional solution satisfying
(1)–(4), and let us assume that the corresponding solution vu
from PSA is not feasible. In other words, assume that there
exists a cut-set ~W D ~V \frg, ~W \ Ra|, such that

P
ijAd�ð ~W Þvijo1.

Obviously, there must exist at least one iAF\frg, such that
iiuAd�ð ~W Þ. We now construct a new cut-set ~W n such that
d�ð ~W nÞ ¼ d�ð ~W Þ [ fiujjjA ~W g\fiiug. Obviously, if

P
ijAd�ð ~W Þvijo1,

then also d�ð ~W nÞo1. By repeating this procedure for all iAF

such that iiuAd�ð ~W Þ, we end up with a cut-set containing only
arcs from AR [ AS, that violates inequality (35), which is a
contradiction. &
4.2. Full Hierarchy of formulations

The hierarchical scheme given in Fig. 10 summarizes the
relationships between the LP-relaxations of the MIP models
considered throughout this paper. A filled arrow specifies that
the target formulation is strictly stronger than the source
formulation. A dashed connection specifies that the formula-
tions are not comparable to each other.

Note that we do not display formulation SCFR
+ separately,

because it has the same relations as the formulation SCFR.
Note that all three models SCFF, MCFF and CFF may have lower

bounds as bad as OPT=jFj. Model CFR is the strongest one among
all considered throughout this paper. Observe that there are
several other tree models known for Steiner trees, that can
directly be interpreted in ConFL context. Therefore, we do not
mention them here, but refer the interested reader to Magnanti
and Wolsey [36] and Polzon and Daneshmand [41].



Fig. 10. Relations between LP-relaxations of MIP models for ConFL.
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5. Branch-and-cut framework

We calculate lower bounds and provably optimal solutions of
both, CUTF and CUTR models using the same branch-and-cut
framework described below. The only difference is in the
separation of cut set inequalities. The main ingredients of our
implementation are provided in this section.

Initialization: We initialize the LP with assignment, capacity-
and root-inequalities (2)–(4). The following flow-balance con-
straints introduced by Koch and Martin [24] are also introduced in
the initialization phase. These constraints ensure that the in-
degree of each Steiner node is less or equal than its out-degree:X
klAA

xklr
X
lkAA

xlk, 8lAS\F: ð39Þ

These constraints are not induced by any of the MIP formulations
presented above, i.e., they can further strengthen the quality of
lower bounds (see, e.g., [34,41]).

Finally, we insert the following in-degree inequalities,X
klAA

xklr1 8lAS\frg

and the sub-tour elimination constraints of size two,

xklþxlkr1 8fk,lgAE,k, lAS, kar:

The latter two groups of constraints are not necessarily
binding, but they can speed up the cutting plane phase at the
root node of the branch-and-bound (B&B) tree.

Branching: Branching on single arc variables produces a huge
disbalance in the branch-and-bound tree. While discarding an
edge from the solution (i.e., setting xij to zero) has little effect,
setting a facility variable to one significantly reduces the size of
the search subspace. Therefore, we set the highest branching
priorities to variables zi, iAF.

5.1. Separation

Separation of cut set inequalities (8): In each node of the branch-
and-bound tree we separate the cut-inequalities (8). For a given
LP-solution ðx̂,ẑÞ, we construct a support graph GS ¼ ðS,AS,x̂Þ
with arc capacities set to x̂ij, for all ijAAS. Then we calculate the
maximum flow from the root node r to each potential facility node
iAF such that ẑi40. If this maximum flow value is less than zi, we
have found a violated inequality (8), induced by the corresponding
min-cut in the graph GS, and we insert it into the LP. For the
calculation of the maximum flow we used an adaptation of
Cherkassky and Goldberg’s maximum flow algorithm [8].

Separation of cut set inequalities (1): In order to separate cut set
inequalities (1), we build a support graph by copying G¼(V,A). For
a given fractional solution ðx̂,ẑÞ, we set the capacities to x̂ij, for all
ijAA. We then calculate the maximum flow that can be sent from
r to each of the customers jAR. If there exists customer j such that
the value of the maximum flow is less than one, we obtain a cut
set, say W � V , rAW , such that capacity of dþ ðWÞ is less than one.
Obviously, W \ FaF, since all the cuts involving only arcs from AR

are satisfied by (2). According to Observation 1, the violated cut
set inequality (1) induced by W can then be written as:P

ijAAW
S

xijþ
P

ijAAW
R

xijZ1.

Enhancing separation: To improve computational efficiency, we
search for nested, back and minimum-cardinality cuts and insert at
most 100 violated inequalities in each separation phase. For more
details, see our implementation of the B&C algorithm for the
prize-collecting Steiner tree problem, where the same separation
procedure has been used [32,34]. It is important to mention that
the performance of the branch-and-cut algorithm can further be
improved if we permute the order in which the minimum cuts
between r and iAF, zi40, in CUTF case, and between r and j, jAR,
in CUTR case, are calculated. Since this permutation is done
randomly, we fix the seed value for the results reported in
Section 6.

5.2. Primal heuristic

The primal heuristic works as follows: First, we initialize the
set of open facilities according to fractional values zi: if zi4p, we
label the facility as selected. Default value of p is set to 0:1. Denote
by F ¼ fiAFjzi4pg, the set of initially selected facilities. Starting
with F , we then calculate a feasible ConFL solution according to
the pseudo-code provided in Algorithm 1. We use the following
notation:
�
 vector xS refers to the core tree structure, i.e., xS
ij ¼ 1 if ijAAS

belongs to the solution, and it is zero otherwise.

�
 vector xA refers to assignment values, i.e., xA

ij¼1 if customer j is
assigned to facility i and xA

ij ¼ 0, otherwise, for all ijAAR.

�
 vector ẑ is set to one if facility i is open, and to zero otherwise.

�
 TS denotes the core Steiner tree (the set of nodes and edges)

that is uniquely defined by xS.

Outline: The algorithm works in three phases: In the assign-

ment phase (Assign), the cheapest assignment of customers to
facilities from F is found. If there are non-assigned customers,
solution is discarded. The set F is updated to contain only open

facilities, i.e., those that serve at least one customer. In the Steiner

tree phase, the set of open facilities is connected by a Steiner tree.
For that purpose, we use the minimum spanning tree heuristic
(MSTHeuristic) described below. Finally, we apply a local improve-

ment procedure (Peeling) that tries to remove leaves of the Steiner
tree in the core network and to re-assign customers to already
open facilities, by decreasing the overall costs.

Algorithm 1. The primal heuristic: calculation of the objective
function for a given vector ẑ.
Data: Binary vector ẑ: a facility i is selected if ẑi ¼ 1.

Result: Locally improved solution ðxS,xA,ẑÞ.

if HashðẑÞ defined then

ðxS,xA,ẑÞ ¼HashðẑÞ;
else

if Assignment exists then

ðxA,ẑÞ :¼ AssignðẑÞ;

ðxS,ẑÞ :¼ MSTHeuristicðẑÞ;

ðxS,xA,ẑÞ :¼ PeelingðxS,xA,ẑÞ;

Insert ðxS,xA,ẑÞ into Hash;
else

return infeasible;
end

end

return ðxS,xA,ẑÞ;
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Hashing: Given a vector of selected facilities, ẑ, we first check if
the objective value for this configuration has already been
calculated before (see, e.g., [26]). If so, we get the corresponding
solution ðxS,xA,ẑÞ from the hash-table Hash. Otherwise, we run a
three-step procedure whose steps are described below.

Detailed Description.
Step 1:
2 Calcul

initialization
3 Also s

branch-and-
ðxA,ẑÞ :¼ AssignðẑÞ: For each customer jAR, we find the
cheapest possible assignment to a facility from ẑ. The
assignment values are stored in vector xA. We close
those facilities i from F that do not serve any customer,
i.e., we set ẑi :¼ 0. If such assignment is not possible
(e.g., the subgraph induced by AR is not a complete
bipartite graph), we discard the solution.
This operation is calculated from scratch. Thus, the total
computational complexity for finding the cheapest
assignment in the worst case is OðjF jjRjÞ.
Step 2:
 ðxS,ẑÞ :¼ MSTHeuristicðẑÞ: We consider the graph
Gu¼ ðS,ESÞ2a subgraph of G induced by the set of facilities
and Steiner nodes with the edge costs c. For Gu, we
generate the so-called distance network2— a complete
graph whose nodes correspond to facilities iAF, and
whose edge-lengths lij are defined as shortest paths in Gu,
for all i, jAF.
We use the minimum spanning tree (MST) heuristic [37]
to find a spanning tree TS that connects all open facilities
ðẑi ¼ 1Þ.
1. Let Guu be the subgraph of Gu induced by F .
2. Calculate the minimum spanning tree MSTGuu of the

distance sub-network Guu.
3. On the subgraph of (S, ES) obtained by back-mapping

the edges from MSTGuu, re-calculate the minimum
spanning tree (TS) to obtain vector xS.
ation

of

ortin

cut
Step 3:
 ðxS,xA,ẑÞ :¼ PeelingðxS,xA,ẑÞ: We finally want to get rid
of some of those facilities that are still part of the
Steiner tree, but that are not used at all. We do this by
applying the so-called peeling procedure. Our peeling
heuristic tries to recursively remove all redundant leaf
nodes (including corresponding tree-paths) from the
tree-solution defined by xS. Let k denote a leaf node of
TS, and let Pk be a path that connects k to the next open
facility from F , or to the next branch, towards the root r.
1. If the leaf node is not an (open) facility, i.e. if ẑk ¼ 0,

we simply delete Pk.
2. Otherwise, we try to re-assign customers (originally

assigned to k) to already open facilities (if possible).
If such obtained solution is better, we delete Pk and
continue processing other leaves.
The main steps of this procedure are given in Algorithm 2.
If, for each customer, the set of facilities is sorted in
increasing order with respect to its assignment costs,3

this procedure can be implemented very efficiently.
Indeed, in order to find an open facility from F , nearest
to j and different from k (denoted by ik(j)), we only need
to proceed this ordered list starting from k until we
encounter a facility i such that ẑi ¼ 1.
The algorithm stops when only one node is left, or when
all the leaves from the tree have been proceeded. Thus,
the worst-case running time of the whole peeling method
is OðjF jjRjÞ.
of the distance network is done only once, during the

the branch-and-cut algorithm.

g of these lists is done once, in the initialization phase of the

algorithm.
Algorithm 2. Peeling procedure.
Data: Assignment xA, open facilities ẑ and a Steiner tree TS

corresponding to xS.

Result: Locally improved solution ðxS,xA,ẑÞ.
for each leaf k in TS do

Determine path Pk and its costs cðPkÞ: ¼
P

eAPk
ce

if ẑk ¼ 0 then

TS :¼ TS�Pk

else

Rk :¼ fjjjAR,xA
kj ¼ 1g

ikðjÞ ¼ argminfcijjiAF,ẑ i ¼ 1,iakg, 8jARk

if (jARk : ikðjÞ ¼ | then
continue

end
if
P

jARk
cikðjÞjo fkþcðPkÞþ

P
jARk

ckj then

ẑk :¼ 0

TS :¼ TS�Pk

xA
kj :¼ 0, xA

ikðjÞj
:1, 8jARk

end
end

end
6. Computational results

In our computational study, two groups of instances were
considered:

Randomly generated graphs from [43]: For this set of instances
the parameters for the generation were set as follows:
jSjAf20,50,100g, jRjAf20,50,100g. Edges of the core network are
generated with probability pðSÞAf0:1,0:5,1g, while the connec-
tions between facilities and customers are established with
probability pðRÞAf0:18,0:55,1g. Edge weights were uniformly
randomly set to an integer value between 50 and 100. Finally,
the facility opening costs were uniformly randomly assigned to
values between 150 and 200. Increasing only the core costs did
not significantly change the behavior of the GRASP algorithm for
this set of instances. The core network was generated by MAPLE
[3], using the parameters given above. Finally, customers are
randomly linked to the existing nodes using the density values p(R).

As the original instances are unrooted we selected the facility
with the highest index for the root node, respectively.

Graphs derived from OR-library [6] and UflLib [1]: We consider
another class of benchmark instances, obtained by merging data
from two public sources. In general, we combine an UFLP instance
with an STP instance, to generate ConFL input graphs in the
following way: first jFj nodes of the STP instance are selected as
potential facility locations, and the node with index 1 is selected
as the root. The number of facilities, the number of customers,
opening costs and assignment costs are provided in UFLP files. STP
files provide edge-costs and additional Steiner nodes.
�
 We consider two sets of non-trivial UFLP instances from UflLib [1]:
3 mp-{1,2} and mq-{1,2} instances have been proposed by

Kratica et al. [26]. They are designed to be similar to UFLP
real-world problems and have a large number of near-
optimal solutions. There are 6 classes of problems, and for
each problem jFj ¼ jRj. We took 2 representatives of the 2
classes MP and MQ of sizes 200200 and 300300, respec-
tively.

3 The gs-{250,500}a-{1,2} benchmark instances were
initially proposed by Koerkel [25] (see also Ghosh [15]).
Here we chose two representatives of the 250250 and
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500500 classes, respectively. The authors drew uniformly at
random connection costs from [1000, 2000], and the facility
opening costs from [100, 200].
le 2
nin
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�
 STP instances: Instances {c,d}n, for nAf5,10,15,20g were
chosen randomly from the OR-library [6] as representatives of
medium size instances for the STP. These instances define the
core networks with between 500 and 1000 nodes and with up
to 25,000 edges.

Combined with assignment graphs, the largest instances of this
data set contain 1300 nodes and 115,000 edges.

All experiments were performed on a Intel Core2 Quad
2.33 GHz machine with 3.25 GB RAM, where each run was
performed on a single processor. For solving the linear program-
ming relaxations and for a generic implementation of the branch-
and-cut approach, we used the commercial packages IBM CPLEX
(version 11.2) [2] and ILOG Concert Technology (version 2.7).
6.1. Testing randomly generated instances

For the following tests we turn the primal heuristics off, in
order to compare lower bounds of all presented MIP formulations.
Furthermore, our preliminary results have shown that turning all
CPLEX general purpose cuts off speeds up the performance.
Therefore, and in order to avoid biased results, all the results
reported in this paper are obtained without usage of these cuts.

LP-gaps: We first test the performance and the quality of lower
bounds for proposed formulations. For that purpose, we run the
models as linear programs. Table 2 provides the average gaps
calculated as ðOPT�uLPð:ÞÞ=OPT , where optimal values are obtained
g times (in seconds) and the number of branch-and-bound nodes for selected M

jRj p(S) p(R) Opt MTZ SCFR
+

t (s) B&B t (s)

100 0.1 0.18 9768 0.10 1 –

100 0.5 0.18 9577 0.29 10 –

100 1.0 0.18 9554 0.56 48 –

100 0.1 0.55 7428 2.52 103 –

100 0.5 0.55 7289 1.46 52 –

100 1.0 0.55 7316 1.97 57 –

100 0.1 1.00 6675 2.39 48 1.59

100 0.5 1.00 6683 2.02 25 1.41

100 1.0 1.00 6632 1.97 25 1.20

50 0.1 0.18 5295 4.47 171 –

50 0.5 0.18 5019 10.61 242 –

50 1.0 0.18 4987 4.43 42 –

50 0.1 0.55 4045 5.24 123 –

50 0.5 0.55 4011 6.67 55 –

50 1.0 0.55 3896 7.52 47 –

50 0.1 1.00 3615 4.91 51 1.10
50 0.5 1.00 3596 5.44 26 2.18

50 1.0 1.00 3596 7.30 16 2.17

20 0.1 0.18 2489 1.84 16 251.27

20 0.5 0.18 2463 10.43 35 –

20 1.0 0.18 2487 144.35 378 –

20 0.1 0.55 1921 4.44 51 118.32

20 0.5 0.55 1876 8.66 31 –

20 1.0 0.55 1873 14.16 13 –

20 0.1 1.00 1638 1.16 4 0.82

20 0.5 1.00 1638 2.70 1 1.26

20 1.0 1.00 1633 7.26 2 1.31

t running times are shown in bold.
by running the branch-and-cut approach (see below). The set of
81 instances is divided into 3 groups according to the size of the
core- and the assignment-subgraph.

Not surprisingly, the worst gaps are obtained by running SCFR

model in which ‘‘big-M’’ constraints affect all the arcs in G.
Comparing gap values of SCFF model on these three groups, we
observe that the gap increases with the size of the nodes of the
core network. This is also not surprising, since ‘‘big-M’’ constraints
of the SCFF model affect only the core network. We observe that
there is a correlation between the size of the two subgraphs and
the quality of obtained lower bounds for the other models as well.
The gaps obtained by MTZ model are surprisingly good, and very
close to those obtained by MCFF. The best LP-gaps are obtained by
MCFR model. Interestingly, the most difficult instances for the
latter three models appear to be those with the equal number of
facilities and customers.

Finally, we tried to make the same experiment with CFF and
CFR models, but apparently in almost all cases the execution has
been terminated because of memory overconsumption.

Solving MIPs: Table 3 shows the running times in seconds (t [s])
and the number of branch-and-bound nodes (B&B) needed to
solve this set of instances to optimality. Each row corresponds to
three instances generated according to the same probabilities p(R)
and p(S). We provide values for t [s] and B&B averaged over the
respective group. We set the time limit to 1000 seconds. If at least
one of the three instances per group is not solved to optimality,
we denote this by ‘‘–’’.

As expected, due to the weak lower bounds of the SCFR
+, most

of the instances could not be solved to optimality within the given
time limit. The exceptions are graphs with complete bipartite
structure of the assignment subgraph AR (p(R) ¼ 1) that appear to
IP formulations with CPLEX cuts turned off.

MCFR CUTF CUTR

B&B t (s) B&B t (s) B&B t (s) B&B

– 2.00 0 0.10 0 0.47 0

– 2.77 0 0.09 0 0.48 0

– 9.53 2 0.12 0 0.57 0

– 26.92 36 1.57 70 5.09 43

– 301.27 31 1.26 55 8.18 38

– – – 1.41 67 9.24 49

29 10.54 4 1.21 28 4.04 4

22 110.56 10 1.40 37 6.50 11

27 258.67 9 1.05 19 9.92 11

– – – 2.50 81 20.39 45

– – – 2.09 22 22.04 28

– – – 3.38 67 16.31 37

– 217.10 12 3.97 94 9.05 14

– – – 7.09 118 38.06 31

– – – 4.13 74 28.82 21

4 25.53 3 1.81 29 2.77 4

16 284.24 5 1.64 21 4.87 8

21 – – 2.74 21 10.28 13

171,598 122.51 6 1.22 14 2.72 3

– – – 5.30 33 23.57 16

– – – 7.79 44 42.62 39

27,557 43.20 7 1.75 30 2.68 9

– – – 4.08 29 3.26 5

– – – 2.12 13 4.95 4

4 3.07 0 0.29 3 1.02 0

1 8.98 0 0.47 2 1.59 0

1 21.08 0 0.91 2 2.59 0
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be easy for SCFR
+ . The second worse performance was shown by

the MCFR model, which is easily explained by its huge number of
variables.

This test gives two surprising results:
1.
Fig
fact
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Despite the fact, that the integrality gap of model CUTF can be
as bad as 1=jFj it outperforms even the strongest cut set based
model CUTR with respect to the running time. On average, the
number of B&B nodes needed by CUTF is greater by a factor of
2.3 than the corresponding number for CUTR. However,
averaged over all 81 instances, CUTF is about 4.6 times faster
than CUTR.
Fig. 12. Results for randomly generated instances from [43]: speed-up factors

2.
obtained by using branching priorities for facility nodes against default branching

times.
The compact MTZ model with arbitrarily bad lower bounds
performs comparatively well. It outperforms CUTR: The
average running time over all instances for MTZ is 5.6% below
the corresponding time for CUTR.

Testing the influence of the factor M: In the following test, we
multiply the costs of the core network by a factor MAf3,5,10g.
Our goal is to test the influence of the cost structure of the core
network on the overall performance of proposed MIP models. For
that purpose, we select the best performing models according to
the results obtained above, namely: MTZ, CUTF and CUTR. As a
reference value, we take the average running time the model CUTF

needed to solve the problems with M¼1 to optimality. For each of
the three MIP models, and for each of the possible values for M,
we divide the corresponding average running time by the
reference time to calculate the so-called slow down factor shown
in Fig. 11.

The obtained slow down factors indicate that the MTZ model is
the most affected by increasing the costs of the core network: MTZ

needs about 7 times more time to solve the instances to
optimality, if the costs of the core network are multiplied by
factor M¼10. This result is due to the decreasing quality of the
lower bounds of the MTZ model with increasing M values. On
the other hand, models CUTF and CUTR are less affected by that
effect: In the worst case, when M¼ 10, the average running time
increases by a factor of approximately 2.6 and 2.1 for CUTF and
CUTR, respectively. We also observe that CUTF outperforms MTZ by
a factor of 5 for M¼1, and by a factor of 16 for M¼10.
. 11. Results for randomly generated instances from [43]: average slow-down

ors for three MIP models and for MAf1,3,5,10g.

le 3
rage integrality gaps ððOPT�uLPð:ÞÞ=OPTÞ for selected MIP formulations.

j jRj MTZ (%) SCFF (%) SCFR (%) MCFF (%) MCFR (%)

0 100 1.36 5.44 96.24 1.33 0.73

0 50 2.57 7.33 93.28 2.51 1.36

00 20 2.48 8.33 85.19 2.43 1.22
Branching: We also tested our branching strategy described in
Section 5 against the CPLEX default branching strategy. For each
of the 27 density settings, Fig. 12 shows the speed up factor
obtained by dividing two running times: The one needed to solve
the instance with default CPLEX setting to optimality by the one
obtained with our branching strategy. The values are averaged
over three instances per setting. In most of the cases our
branching strategy significantly reduces the overall running
time. On average over all 81 instances, our branching strategy
outperforms CPLEX default branching by a factor of 1.4, 3.3 and
2.9, when models MTZ, CUTF and CUTR are solved, respectively.
6.2. Testing larger graphs

The set of instances is divided into three groups according to
the underlying instance for the assignment graph. We refer to
them as mp, mq and gs group. Tables 4 and 5 report on the results
obtained through this experiment. Note that the optimal values,
as well as lower bounds reported in this paper differ from those
reported in [33]. This is due to in-degree inequalities used in [33],
that turned out to model the Steiner tree star problem, instead
of ConFL.

Comparing two branch-and-cut approaches: First, we compare
the two branch-and-cut approaches by running them with the
proposed primal heuristic. Regarding 32 instances obtained by
combining stein and mp/q instances, CUTF solves all 32 instances
to provable optimality within 213 seconds on average. The gaps
we report for each model were calculated as

gap½%� ¼
UB�LB

UB
,

where UB and LB are the upper and lower bound obtained by the
respective model. In addition, we report on the running time in
seconds (t [s]), the model CUTF needs to solve the instances of
the mp/q group to optimality. Note that CUTR solves only 7 out of
32 mp/q instances to optimality. For the majority of instances
CUTR does not branch at all, as it has not finished the cutting plane
phase at the root node of the branch-and-bound tree. This is
because the assignment graphs for these instances are complete
bipartite, which means that many dense cuts of the CUTR model
need to be separated.

Comparing MIP models initialized with best upper bound: Second,
we run all three models, MTZ, CUTF and CUTR, but we deactivate
the primal heuristic. Instead, we initialize the models with the
best upper bound found in the previous setting. For the gs group
of instances, the best lower and upper bounds obtained with this
setting can be found in the right hand half of Table 5. Each of the
models MTZ and CUTR solves only 8 instances to optimality. For
the mp subgroup, MTZ gives much smaller gaps though, on average



Table 4
Results for large scale instances I: The best obtained gaps per setting and instance are shown in bold.

Stein UFL OPT PH on, no UB given PH off, best UB given

CUTR CUTF MTZ CUTR CUTF

Gap (%) B&B Gap (%) B&B t (s) Gap (%) B&B Gap (%) B&B Gap (%) B&B t (s)

c05 mp1 2691.5 0.00 13 0.00 27 73 0.34 605 0.00 23 0.00 33 50

c10 mp1 2661.7 0.00 17 0.00 17 67 0.00 86 0.00 23 0.00 25 47

c15 mp1 2634.7 1.45 1 0.00 15 100 0.15 1084 1.39 3 0.00 17 73

c20 mp1 2618.7 1.91 3 0.00 33 185 0.00 58 1.50 1 0.00 11 104

d05 mp1 2677.9 0.00 9 0.00 27 62 0.00 19 0.00 9 0.00 37 40

d10 mp1 2676.5 2.39 0 0.00 21 92 0.24 542 2.39 1 0.00 21 66

d15 mp1 2635.7 1.05 5 0.00 13 67 0.00 43 0.00 15 0.00 11 41

d20 mp1 2619.7 1.59 0 0.00 27 229 0.06 49 1.59 1 0.00 15 82

c05 mp2 2692.5 0.00 11 0.00 15 37 0.00 58 0.00 17 0.00 13 26

c10 mp2 2661.5 0.00 9 0.00 5 27 0.00 97 0.00 7 0.00 11 23

c15 mp2 2640.5 0.61 3 0.00 10 47 0.13 1772 0.89 0 0.00 5 28

c20 mp2 2626.5 0.00 11 0.00 11 55 0.06 300 0.00 11 0.00 11 43

d05 mp2 2710.6 0.00 25 0.00 19 41 0.00 1048 0.00 31 0.00 17 31

d10 mp2 2682.5 1.14 0 0.00 29 50 0.26 574 0.94 3 0.00 27 50

d15 mp2 2647.5 0.53 7 0.00 7 43 0.00 14 0.53 7 0.00 7 31

d20 mp2 2628.5 2.14 0 0.00 11 222 0.09 70 2.14 0 0.00 11 142

c05 mq1 3907.0 3.08 1 0.00 53 261 1.56 11 3.08 1 0.00 41 193

c10 mq1 3866.5 4.12 0 0.00 35 214 1.49 20 4.12 0 0.00 37 146

c15 mq1 3842.5 3.09 0 0.00 41 183 1.61 12 3.09 0 0.00 35 142

c20 mq1 3826.5 3.08 0 0.00 33 289 1.43 7 3.08 0 0.00 35 173

d05 mq1 3879.0 2.56 1 0.00 31 210 0.00 25 2.12 3 0.00 51 127

d10 mq1 3869.1 2.99 0 0.00 43 242 1.72 15 2.92 0 0.00 29 156

d15 mq1 3843.5 2.68 3 0.00 61 173 1.07 28 2.02 5 0.00 37 134

d20 mq1 3828.5 2.80 0 0.00 45 483 1.87 5 2.80 0 0.00 39 387

c05 mq2 3768.6 2.89 0 0.00 73 561 2.99 10 2.88 0 0.00 71 283

c10 mq2 3732.6 5.14 0 0.00 63 320 2.99 9 5.14 1 0.00 50 190

c15 mq2 3689.6 2.31 0 0.00 41 259 1.23 6 2.31 0 0.00 69 231

c20 mq2 3686.5 4.58 0 0.00 45 620 2.33 3 4.03 0 0.00 27 317

d05 mq2 3741.5 2.60 0 0.00 47 276 1.34 8 2.59 0 0.00 73 236

d10 mq2 3720.9 4.24 0 0.00 31 285 4.07 6 2.52 0 0.00 43 396

d15 mq2 3696.5 3.96 0 0.00 41 328 1.49 5 2.44 0 0.00 33 198

d20 mq2 3685.5 5.73 0 0.00 27 727 2.60 2 5.73 0 0.00 33 402

Table 5
Results for large scale instances II: the best obtained gaps per setting and instance are shown in bold.

Stein UFL PH on, no UB given PH off, best UB given

Best UB Best LB CUTR CUTF Best UB Best LB MTZ CUTR CUTF

Gap (%) B&B Gap (%) B&B Gap (%) B&B Gap (%) B&B Gap (%) B&B

c5 gs250a-1 258,568.0 258,088.8 0.27 2 0.19 162 258,540.0 258,112.9 0.20 180 0.27 5 0.17 289

c10 gs250a-1 258,480.0 257,955.7 0.25 1 0.20 147 258,464.0 257,986.5 0.20 201 0.20 7 0.18 227

c15 gs250a-1 258,387.0 257,823.3 0.22 0 – – 258,387.0 257,858.5 0.20 280 0.23 3 – –

c20 gs250a-1 258,250.0 257,786.4 0.50 0 0.18 15 258,250.0 257,798.6 0.18 28 0.52 0 0.49 28

c5 gs250a-2 258,287.0 257,724.9 0.22 0 0.31 68 258,077.0 257,744.4 0.23 125 0.42 2 0.13 192

c10 gs250a-2 257,990.0 257,600.0 0.24 0 0.15 92 257,990.0 257,625.1 0.14 120 0.22 3 0.19 175

c15 gs250a-2 257,911.0 257,564.4 0.45 0 0.13 17 257,911.0 257,536.4 0.15 109 0.27 1 – –

c20 gs250a-2 258,193.0 257,462.5 0.53 0 0.28 6 258,054.0 257,471.5 0.28 11 0.53 0 0.23 15

c5 gs500a-1 513,476.0 510,860.9 0.53 0 0.51 0 513,364.0 510,866.9 0.51 0 0.49 0 0.55 0

c10 gs500a-1 513,148.0 510,733.5 0.48 0 0.47 0 513,091.0 510,734.9 0.47 0 0.52 0 0.46 2

c15 gs500a-1 512,919.0 510,637.7 0.47 0 0.45 0 512,919.0 510,635.8 0.45 0 0.47 0 0.45 0

c20 gs500a-1 513,158.0 510,568.0 0.51 0 0.50 0 513,131.0 510,568.0 – – 0.52 0 0.50 0

c5 gs500a-2 513,663.0 510,844.5 0.61 0 0.55 0 513,544.0 510,846.2 0.55 0 0.61 0 0.53 0

c10 gs500a-2 513,357.0 510,717.7 0.57 0 0.51 0 513,357.0 510,719.7 0.52 0 0.55 0 0.52 0

c15 gs500a-2 513,127.0 510,616.9 0.49 0 0.49 0 513,127.0 510,617.4 0.49 0 0.49 0 0.49 0

c20 gs500a-2 513,511.0 510,545.7 0.58 0 0.59 0 513,254.0 510,545.7 – – 0.53 0 0.58 0
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0.17% compared to 1.42% for CUTR. For the group of mq instances
MTZ also outperforms CUTR with an average gap of 1.86% vs. 3.18%
for the latter.

In the last group of large scale instances derived from the gs

group, the performance of MTZ is comparatively better. CUTF
obtains the smallest gap in 11 cases, but MTZ performs best
on 7 instances. Not a single instance of gs group has been solved
to optimality. Note that for this last group of instances the cost
structure is special. The factor M, describing the scale between
core and assignment costs is about 0.001.
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7. Conclusion

We provide a first theoretical comparison of MIP models for
ConFL. We show that there are basically two groups of models,
derived from the way the connectivity requirements in the whole
graph are defined. Our ‘‘F’’ models require connectivity among
open facilities and the root node, and in addition a proper
assignment of customers. We derive the stronger ‘‘R’’ models by
requiring connectivity between customers and the root node.
There is also the weak Miller–Tucker–Zemlin formulation which
follows a sub-tour elimination concept, instead of a connectivity-
based one. In contrast to known results for the traveling salesman
problem [45], we show that MTZ is not dominated by the two
single commodity flow models. The second interesting result is
that, in general, the integrality gap of all ‘‘F’’ models is not a
constant value.

In our computational study we also obtain two surprising
results. First, the branch-and-cut algorithm for the correspond-
ingly weaker ‘‘F’’ cut-based model, significantly outperforms all
other models in practice. Second, the weak but small MTZ

formulation performs comparatively well, and in most cases
outperforms even the branch-and-cut derived for the stronger ‘‘R’’
model.
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