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We study several ways of obtaining valid inequalities for mixed integer programs. We show how 
inequalities obtained from a disjunctive argument can be represented by superadditive functions 
and we show how the superadditive inequalities relate to Gomory's mixed integer cuts. We also 
show how all valid inequalities for mixed 0 1 programs can be generated recursively from a 
simple subclass of the disjunctive inequalities. 
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1. Introduction 

This paper,  which is a substant ial  revision of a technical  report  that appeared  in 

1984 [9], was motivated by Chvdtal 's  [3] descr ipt ion of a simple recursive procedure  

for generat ing all valid inequali t ies  for pure integer programs. We examine  several 

ways of ob ta in ing  valid inequali t ies for mixed integer programs.  In part icular ,  we 

show how inequal i t ies  based on a dis junct ive a rgument  can be represented as 

superaddi t ive inequali t ies  and  we show how these inequal i t ies  relate to Gomory ' s  

mixed integer cuts. We then show how all valid inequal i t ies  for mixed 0-1 programs 

can be generated recursively from a simple subclass of the dis junct ive inequali t ies.  

Cook, K a n n a n  and Schrijver [4] have con t inued  the deve lopment  of this approach;  

they have established that the recursive use of valid inequal i t ies  obta ined  by combin-  

ing a dis junct ive a rgument  with a round ing  a rgument  based on the size of numbers  

gives all valid inequali t ies  for any mixed integer program with rat ional  data. 

2. Disjunctive and mixed integer rounding (MIR) inequalities 

Let 
p = { x c ~  n, y c R J ' :  A x  +Gy<~b}  

* The research of this author was supported by NSF (ontract No. ECS-8540898. 
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be a rat ional  po lyhedron  and  T = P ~ ( 7 7 " x W ' )  be a mixed integer set, i.e. the 
feasible region for  a mixed  integer program.  

We descr ibe three p rocedures  for generat ing valid inequali t ies for T using a pa i r  
o f  valid inequalit ies for  P. 

Disjunctive method [1, 2, 6]. I f  

cx + hy - a(  Trx - ~o) <~ co 

cx + hy + ~(zcx - Zro - 1) <~ co 

with (~-, Zro) c 7/"+~ and a, /3 >~ 0 are valid inequali t ies for P, then 

cx + hy <~ Co 

is valid for  T. 

( la )  

( lb )  

( lc)  

The fol lowing result establishes the val idi ty of  the M I R  method.  

Proposit ion 1. The disjunctive, split and M I R  inequalities are equivalent. 

Proof.  The  equivalence of  the disjunctive and split me thods  follows immedia te ly  
f rom l inear  p r o g r a m m i n g  duality. We now show that  every M I R  inequali ty is 

disjunctive. 
Mult ip lying (2a) by 1 / ( 1 -  3 ' )>  0, we obta in  that  

~ x  + ( c l x  + h y  - c~ , ) / ( 1  - 3") - ~ ( ~ x -  ~ o )  <~ ~ , ,  

where a = 1. Mult iplying (2b) by 1/(1 - 3") and  rewrit ing the inequali ty gives 

zrx + (c~x+ hy - c~)/(1 - 3 ')+/3 (~-x - Zro- 1) ~< ~-o 

where fl = 3"/(1 - 7). Hence  the disjunctive me thod  gives (2c). 
Finally to see that  the disjunctive me thod  is MIR,  mult iply the inequalities ( l a )  

and ( lb)  by 1 / ( a + f l ) .  The M I R  me thod  with 3 " = / 3 / ( a + f i )  then gives after 
s implif icat ion 

( c x + h y - c o ) / a < ~ O .  [] 

(B) Split method [4]. I f  cx + hy <~ Co is a valid inequal i ty  for P ~ {(x, y):  ~'x <~ 7to} 
and for P c~ {(x, y):  ~-x ~> ~-o+ 1}, then cx+ hy<~ Co is valid for  T. 

(C) M I R  method [9]. I f  

' (2a) c l x + h y ~ c o  

and 
cZx + hy <~ c~ (2b) 

2 1 are valid inequalit ies for  P, and ~- = e 2 - e ~ c ~", ~'o = [c~ - c~] and 3' = Co - c o -  7to, 
then 

7rx+ ( c l x +  hy - c~)/(1 - 3') <~ ~'o (2c) 

is valid for  T. 
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In the next section we examine how to represent the inequalities by superaddit ive 

functions. 

3. Superadditivity and Gomory's mixed integer inequalities 

Here we consider  a functional  description o f  inequalities for mixed integer programs.  
As the theory  is easier to describe when the variables are nonnegat ive,  we consider  

n+p T+=P+n(7/nx~ p) where P + = P n R +  . Let as f o r j ~ N = { 1 , . . . ,  n) be the j th  

co lumn of  A and gi for j c J = { 1 , . . . ,  p} be the j th  column of  G. 
A funct ion F : ~ m ~  is called superadditive if F ( 0 ) = 0 ,  and F(u)+F(v )<~  

F(u  + v) for  all u, v c ~ .  F is called nondecreasing if u <~ v implies F(u)<~ F(v) .  
It is known,  see [7, 8], that  if F is superaddit ive and nondecreas ing  and P defined 

by ~e(d)=l imA+o+(F(Zd) /Z)  exists and is finite for all d c ~ ' ,  then 

Y F(ai)xs+ E f:(gs)yj<~F(b) (3) 
JC N iCY 

is a valid inequality for T +. 
We now develop two superaddit ive functions that we will use to generate 

inequalities closely related to those of  the previous section, and also to generate 

Gomory ' s  mixed integer cuts. 
Let x ~ = max(0, x) and x rain(0, x). 

Proposition 2. L e t  Fy :[~l---)~ 1 .,[or 0 < 3 ' <  1 be defined by 

F ~ ( d ) -  [ d J + ( d - [ d ]  3 ' ) ' / (1  y). 
Then 

(i) /(y is superadditive and nondecreasing; 
(ii) Fr exists, and F:~(d) - m i n { d / ( 1  - y),  0}. 

Proof.  (i) F r is nondecreas ing  because it is piecewise linear with slope o f  either 0 
or  1/(1 - y)  and has no jumps.  To prove superaddit ivity,  l e t f  = d i -  [diJ for i 1, 2. 

Case 1. f~ +j~ < 1. 

( L  - 3')+ FT(d,)+Fr(d2) = [d,] + +- Ida] -t 
1 - 3 '  

( f ,  +J~  3')+ 
~< [d ,+ d2 ]  + 

1 3' 

Case 2. j ;  +f~ > 1, f2 <~ t- 

(y; - 3')+ 
Fr(d,)+F~(d2) = [d,J -~ - -  ~- [d2J 

1 - 3 '  

(f~ - ~,)+ 
1 - y  

- F~,(d~ + d2 ) .  

< [dlJ + [d2] + 1 [d, + d2] <~ Fy(d, + d2). 
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(The same argument  applies i f f i  <~ 7-) 

Case  3. f i+ f2>~  1, f l ,  A > y. 

F~(dl) + F~(d2)= Ld,] +A-7+ Ld2J +f2-~ 
1 - y  1 - y  

= Ld,] + [d2J + 1 +  A + A - 1  --'Y~ ~(dlq- d2). 
1 - y  

(ii) I f  the magni tude o f  d is sufficiently small then F v ( d ) = 0  for 

F ~ , ( d ) = d / ( 1 - y )  for d < 0 .  [] 

d > O  and 

To represent inequalities derived f rom two inequalities, we consider a two- 
dimensional  funct ion 

Hv(d l ,  d2) = d l / (1  - Y) + F~,(d2-  d,), 0 < y < 1. (4) 

The contours  of  this funct ion are exhibited in Figure 1 for y = ½. 

To show the superaddit ivity o f  Hv, we use the following result on the composi t ion  

o f  superaddit ive functions.  

Proposition 3. Le t  L:  ~k  -~ R1 be superaddi t ive  and  nondecreasing and let Fi : R m -~  E 1 

be superaddi t ive  f o r  i = 1 , . . . ,  k. The composi te  f unc t ion  L(  F1, . . . , Fk ) is superaddit ive.  

M o r e o v e r  i f  the Fi are also nondecreasing,  then L(  F1, . . . , Fk ) is nondecreasing.  [] 

d2 

v 

l I l I~1 I . 
r ii1'. II 
[I ~ I ~1 bl 
0 ii1~ i1~ h~ ~1 

Fig. 1. Contours of (1-y)Hv(dl, d2) for y=½. 
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Proposition 4. Hv given by (4) is nondecreasing and superadditive, and ITt~( d~, d2) = 

min(dl ,  d2)/(1 - Y). 

Proof .  Since F~ is nondecreasing, H~ is nondecreasing in d2. With respect to d~, 

the first term in the definition of Hv has slope 1 / ( 1 - T )  and the second term is 
piecewise linear with slope of - 1 / ( 1 - y )  or 0. Hence, Hy is nondecreasing in d~. 

Since the first term is linear, to prove that H~ is superadditive it suffices to show 
that the second term is superadditive. But this follows from Proposition 3 and the 
superadditivity of  F~ and d 2 - d l .  

Now we establish the form of H r. For A positive and sufficiently close to zero, 

if dl < d2 then 

Ad, A min(d, ,  d2) 
H.e(Ad,, A d 2 )  - -  + 0 -  

1 - y  1 - y  

and if d~ m d2 then 

Ad,_+ A d 2 - A d  , A min(d,, d 2 )  
/qv(adl ,  Ad2) 

1 y 1 y 1 y 

Hence /q~=min(d , ,  d 2 ) / ( 1 - y ) .  [] 

The function H~ allows us to define another class of valid inequalities. 

(D) Superadditive method. Given two valid inequalities c'x+ hy ~ cl)for i =  1, 2, 
for P+, use the function H~ with Y c o -  c~ 2 l = ~ [Co- Co] to obtain the valid inequality 

g H~(c). c~)X,+ g &(h. hi)y,<<- H~(c,',. ~) 
/ c N j { .l 

(5) 

for T +. 

Proposition 5. The superadditive inequality (5) is equal to or dominates the MIR 
inequality (2c) Jor T +. 

Proof. Suppose the inequalities (2a) and (2b) are valid for P+ with ~r = c 2 -  c 1 c Z", 
= 2 ~ro [c 2 -  c~,] and T = Co- c~,- ~ro. We have 

Hr(c}, c.~) = c)/(l - T) + F,(c.{ - C~) - C)/( 1 - T)+ 70, 

/~(g, hi) : h/(l - r) 
and 

As the terms on the right hand side are the coefficients of  (2c) in the M I R  method, 
the claim follows. [] 
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Now we show how the functions F~ and H~ also give descriptions of Gomory's  
mixed integer cuts. 

Given P+ and T +, let 

r + ( u ) = { ( x , y ,  s ) c  7/~_xRP+ xN~': u A x + u G y + u s = u b } .  

T+(u) represents a row of an optimal LP tableau after adding slack variables and 
aggregating the rows with multipliers u ¢ N~. The corresponding Gomory's  mixed 
integer cut is 

fo Z ~xj + - -  E (1-£)xj+jE+ (ugj)y2 

fo E L 
1-foj~J (ug2)Y2+i~M + ~" UiSi----l_f,i~M y UiSi>~fo (6) 

where £ = u a j -  [uaj], fo = u b -  [ub], J+ = {j C J :  ugj ) 0} ,  J = J \ J + ,  M = 

{ 1 , . . . ,  m}, M + = { i c  M: ui>~O} and M -  = M \ M  +. 

Proposition 6. Let y =fo = ub - [ ub J. The inequality (6) is equivalent to the superaddi- 
tire valid inequality 

E Fv(uai)xj + E Fv(ugj)yj+ E #~(u,)s,<~Fv(ub) • (7) 
. jcN .jeJ i~M 

Proof. We subtract (7) from uAx + uGy + us = b. It is easily shown that 

uaj - F,(uaj) = { £  
i f ~  ~f0 ,  

• ~ ( 1 - f j ) / ( 1 - f o )  i f £  >fo ,  

ugi -  p~(ug:) = {ug~ 
if g~ 0, 

• t - f o (ug~) / (1 - fo )  if g~ < 0, 

u,-  P,(u~) = {u, if Ui 0, 

- f o u d ( 1 - f o )  if u i<0 ,  

and u b - F v ( u b )  =f~. E~ 

Now, by using the function Hv, we obtain the Gomory cut in the form of a 
superadditive inequality (3) in (x, y)-space. Let u + be the vector with components 
max(0, ui) and u be the vector with components min(0, ui). 

Proposition 7. Let y = ub - Lub], and F : ~'~ -~ •1 be defined by 

F ( d )  = H v ( - u - d ,  u+d). 

The inequality (6) is equivalent to the superadditive valid inequality 

F(aj)xj+ Y, P(gj)yi<~F(b). 
j ~ N  j~d 

(8) 
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Proof. We show that the inequa l i ty  (8) is equivalent to (7). 

F ( d ) =  H~,(-u d, u + d ) = - u - d / ( 1 - y ) +  Fu(ud), 

P ( d ) = / q ~ ( - u  d, u + d ) = - u - d / ( 1 - y ) +  F~(ud). 

Therefore 

Y. F(a~)xj+ Y F ( g j ) y j - F ( b )  
j~  N ,]~J 

= E F~,(uaj)xj+ E F'~,(ugj)yj-F,y(ub) 
j ~ N  j ~ J  

1 [ ~N(U-aj)xjq- ~ ( u - g j ) y j - u - b  ] 
1 - -  ~ /  j " ] ~ J  " 

I g - S  
= E F~(uaj)xj+ E P~(ugj)yj-F~,(ub)q 

i~ N i~J 1 -- Y 

(because  u - A x + u  G y + u  s = u  b) 

= E Fr(uaj)x,+ E P~(ugj)Yi+ E Fr(u,)&-F~(ub) 
j c N l~ . l  i ~1 

(because  /~T(Ui)--O if u i > O  and Fr(ui ) u i / ( 1 - y )  if ui<70). [] 

385 

4. Reeursive procedure for generating inequalities 

Here we cons ide r  a recursive p rocedure  for genera t ing  valid inequal i t ies  for T (or  

T~), i.e. a val id  inequal i ty  is a d d e d  to P giving a new po lyhe d ron  P '  with T -  P'c~ 

( g " ×  W') and  then the p rocedu re  is repea ted .  

We will use a special  case of  the d is junct ive  me thod  cal led the @-method.  

J~-method. If  

cx + hy - cexk <~ co (9a) 

and  

cx + hy + fi(xk - 1) ~< co (9b) 

are valid inequal i t ies  for P, where  a , /3 c R~+, then cx + hy <~ co is a val id  inequa l i ty  

for  PC~{(x,y):xk c2I}. 

We say that  cx + hy <~ co is a ~-inequality for T with respect to P if  (a) cx + hy <~ Co 
is val id  for P or  i f ( b )  for  some " < Co ~ co, cx + hv <~ co is ob ta ined  f rom a finite recurs ion  

of  the  2 - m e t h o d .  

C o n s i d e r  the p o l y h e d r o n  

PB = {x ~ R", y c N P : A x +  Gy<~ b, O~x<~ 1}, 

and  let TB = PB ¢~ 7/" x I~ p. The main  result  o f  this sect ion is that  every val id  inequa l i ty  

for TB is a F~-inequali ty with respect  to PB. 
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This result leads to a constructive proof  of  the superadditive duality theorem for 
feasible 0-1 mixed integer programs. 

Proposition 8. I f  TB # 0 and if ~rx + i~y ~ ~r o is a valid inequality for TB, there exists 
an to >10 such that for all partitions N °, N ~ of  N, the inequality 

~TjXj-- ~ WXJ--j ~ '  to (1-  Xj)d- t~y~ (10) 
j ~ N  j~N 0 " 

is valid for PB. 

Proof. Since TB # 0 and ~rx + Ixy is bounded over TB, it also is bounded over PB. 
Thus it suffices to show that (10) is satisfied for all extreme points of  PB. Let {x k, yk} 
for k c K be the extreme points of PB. I f  x k c  7/", then (10) is satisfied for all o)~> 0 
since ~rx + txy ~< ~r0 is valid for TB. So suppose x k ~ ;7 n. Then since 

pk= min ( Z x  k ~ ) 
{NO:NOwNI=N}\ jeN 0 J q-ieN, (1-- X)) > 0  

and rrx+txy is bounded over PB, it follows that (10) is valid for PB for all suitably 

large values of w. [] 

Theorem 9. Every valid inequality for TB ¢ ~) is a ~-inequality. 

Proof. Proposition 8 has established that the inequality (10) is valid for PB for all 
N ° w  N 1 = N and hence is a @-inequality. 

Now suppose the inequality (10) is a ~-inequali ty for ( N  O w { t + 1}, N1) and 

( N ° , N l w { t + l } )  where N ° w N l = { 1 , . . . , t } .  Applying the ~ -method  to these 

inequalities establishes that (10) is a ~-inequali ty for ( N  °, N1). 
Using backward induction on t from t = n , . . . , 0 ,  we obtain that (10) is a @- 

inequality when N O = N 1 = 0, i.e. ~rx + txy ~< ~ro is a @-inequality as claimed. [] 

Now we observe that since every application of the ~ -me thod  can be represented 
by the superadditive method,  it is possible by defining superadditive functions 
recursively to represent any valid inequality by a superadditive function. First we 

verify that superadditive functions can be defined recursively in an appropriate 
manner. 

Proposition 10. Given two superadditive functions F1, F2 : R m -> R 1, 
H :~---~R ~ given by H = F 1 / ( 1 - T ) +  Fv(F2-F1)  is 

(a) superadditive, 
(b) nondeereasing if  FI and F2 are nondecreasing. 

l f  Fl and F2 exist and are finite, Iq = min(F1, F 2 ) / ( 1 -  y). 

then the function 

Proof. By Proposition 2, F~ is superadditive and nondecreasing. Hence (a) and (b) 
follow from Proposition 3. It remains to show the form of/-). 



G.L Nemhauser, L.A. Wolsey/Mixed integer programming 387 

Using only the property that when P exists F(d)  >i F(d)  for all d, we first establish 
that H(Ad) /A  ~> min(F'~(d), F ' 2 ( d ) ) / ( 1 - y )  for all A ~>0. 

g ( a d ) _  1 FI(Ad) +IFr (F2(Ad)_FI ( Ad )  ) 
A 1 - y  A a 

1 F,(Ad) + 1  
FI(Ad)) 

A A 1 - y  

1 

1 - y  

1 
z 

1 - y  

1 

1 - y  

F,(ad) 1 1 
- -  ~- - -m in (F2(ad ) -F , (ad ) ,  O) 

a 1 - y a  

• [FI(Ad) ,  m,n~ ~- F 2 ~ d ) )  

min(Fl(d) , /52(d)) .  

Now we show the converse. As P~ and F2 exist, given d and e > 0, there exists A* 
such that for all 0 < A ~< A*, Ff(Ad)/A <~ [:s(d) + e for i = 1, 2. Hence 

H(Ad) 1 F, (Ad) 1 
- + 

A 1 - y  A A 

-< 1 F,(Ad) + 1  

1 - y  A a 

as F r is nondecreasing and F ~ ( a d )  

F,(ax)=min(O, Ax)/(1 y ) . S o  

Fr(Fp(Ad ) - F, (Ad)) 

r~(a (#~(d) - #, (d)+ ~)) 

F~(Ad) AFt(d). Now for A sufficiently small, 

H(Ad) 1 El(AN ) l 
- - < ~  + - - m i n ( 0 ,  f f :2 (d) -P , (d)+e)  

a 1 - y  a 1 - y  

1 (F,~Ad) 
<~ min 

1 -  T 

Now in the limit as A $0, we have 

- - ,  &(d )+2~) .  

1 H ( A d ) <  1 
~ min(Pl(d) ,  Fz(d)) <~ lira min(/~(d) ,  F2(d)). 
1 - y a~(}+ A 1 - y 

Hence /4 min(Ft ,  F 2 ) / ( 1 - T ) .  [] 

Now by Propositions 1, 5 and 10 and Theorem 9, we obtain the following. 

T h e o r e m  11 .  Let 

PB ~ = { x ~ ' , y ~ p : A x + G y < ~ b , 0 < ~ x < - -  1} 
and 

TB + = PB + c~ {x c ~", y ~ R p} # 0. 

Then every valid inequality rrx + tzy <~ rro Jor TB is equal to or dominated by an 
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inequality of  the form 

F(aj )x  j + • F(gj)yj <~ F(b) .  
. j cN  jEJ  

Proof. We use the proof  of Theorem 9. Suppose F~ is a superadditive function 
producing an inequality equal to or dominating the ( N ° w  {k}, N ~) inequality (10), 
and F2 produces an inequality equal to or dominating the ( N  °, N 1 w {k}) inequality 
(10). Writing the former as cx + hy - wxk <~ co and the latter as cx + hy + wxk <~ Co+ w, 

it follows from Propositions 1, 5 and 10 and the fact that F~, F2 and H~/2 are 
nondecreasing, t h a t t h e  inequality produced by H = wH~/2(F1/(2ro), F2/(2w)) is 
equal to or dominates cx + hy <~ Co, or the (N °, N~) inequality (10). 

Moreover, for all ( N  °, N 1) with N ° u  N ~= N, we know from Proposition 8 that 
there exist nonengative dual variables generating inequalities which are equal to or 
dominate (10). In other words, there exists a nondecreasing linear function FNoN, 
which produces an inequality equal to or dominating (10). The main statement now 
follows by induction. 

The validity of this result for general mixed integer programs has previously been 
established by Jeroslow [7] and Johnson [8]. However their proofs are essentially 
nonconstructive. 

It follows from Theorem 11 that the function F can be constructed iteratively 
using nonnegative linear functions and the function H~/2 a finite number of times. 
Furthermore, as the procedure starts with linear functions and/4~/2 is the minimum 
of linear functions, the corresponding function P is the minimum of a finite number 
of linear functions and is therefore piecewise linear and concave. 

Example. 

TB={x67/2 ,  ycN2+:yl+y2<~7, yi<~5Xj, O<~Xj<~ l, j =  1, 2}. 

We construct the function representing the valid inequality 

Y1-1- Y2-- 2X1 - - 2 x 2 ~  3. 

Consider the enumeration tree shown in Figure 2. 

Fig. 2. Enumeration tree. 
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Let the linear constraints be given in matrix form by 

0,0]f/ll 
0 , / V q  x,, <~ 0 ,  >~0. 

o o o/ /Yq 
1 0 0J Ly2J 

At each node ( N  °, N 1) with N ° u  N 1 = N, we use a linear function to construct 
an inequality dominating the inequality 

- 3  E o X j - 3  2 ( 1 - x j ) - 2 x ~ - 2 x 2 + y ~ + Y 2  <~3. (11) 
j ~ N  " j c N  " 

1. N ° : { 1 , 2 } ,  N I = 0 .  F l ( d ) = ( 0 1 1 0 0 ) d  gives - 3 x , - 3 x 2 + ( - 2 x , - 2 x 2 + y ~ +  

Y2) ~< 0, 
which is stronger than (11). 

2. N ° : { I } , N ' = { 2 } .  F 2 ( d ) : ( O l l O 6 ) d  gives 3 x , - 3 ( 1 - x 2 ) + (  2 x , - 2 x 2 +  

Yl +Y2) ~< 3. 
3. N o {2},N'={1}.  F ~ ( d ) - ( O l l 6 0 ) d  gives 3 ( 1 - X l ) - 3 x 2 + (  2x~-2x~+ 

Y~ +Y2) ~< 3. 
4. N ° : O ,  N ' - ~ l , 2 } .  F4(d) ( 1 0 0 1 1 ) d  gives -3(1 X l ) - 3 ( 1 - x 2 ) + (  2x~-  

2 x , +  y, + y2)<~3. 
Now to obtain the inequalities that dominate ( l l )  for the sets (N  °, N ~) with 

N ° ~ N ~ = { 1 } ,  we combine the superadditive functions generating the above 
inequalities as explained in the proof of Theorem 11. 

Combining the function F~ generating the N ° -  {1,2} and N~ 0 inequality and 
the function F2 generating the N °= {1} and N ~-  {2} inequality yields 

5. N°={1},  N I 0. F~ 1 l . ~,~) gives = 3 HI/2((~F,, -3x~ + (-2x~ - 2x2 + 3'1 + Y~-) <~ 3. 

Combining F3 and F4 yields 
1 1 F 6. N ° 0, N '={1} .  F(,=3H~/2((,F~ ~, 4) gives -3(1 x ~ ) + ( - 2 x ~ - 2 x 2 + y ~ +  

Y2) ~< 3. 
To obtain the inequality at the root, we combine Fs and F6. 
7. N ° = 0 ,  N l 0. F7 1 1 ~,G,) gives 2x2+ = =3H1/2((,Fs, -2x t  yr +y2<~3. 

5. Conclusions 

The results of this paper suggest the possibility that Gomory's  mixed integer cutting 
plane algorithm may be finite for 0-1 mixed integer programs. On the other hand, 
the recent results of Cook et al. indicate that for arbitrary mixed integer programs 
the recursive use of the disjunctive method is insufficient to generate all valid 
inequalities unless it is combined with a discretization step, based on the size of 
numbers. These remarks motivate the following problems: (a) give a finite cutting 
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p l a n e  a l g o r i t h m  for  0 -1  m i x e d  in t ege r  p r o g r a m s ;  (b) d e t e r m i n e  a s u p e r a d d i t i v e  

f u n c t i o n  c o r r e s p o n d i n g  to t he  d i s c r e t i z a t i o n  step.  
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